Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

InfVC: An Inference-Enhanced Local Search Algorithm for the Minimum Vertex
Cover Problem in Massive Graphs

Rui Sun'?, Peiyan Liu', Yiyuan Wang'?*

, Zhaohui Liu'! , Liping Du', Jian Gao'*

1School of Computer Science and Information Technology, Northeast Normal University, China
2Key Laboratory of Applied Statistics of MOE, Northeast Normal University, China

{ruisun, liupeiyan, wangyy912, liuch, duliping, gaojian} @nenu.edu.cn

Abstract

The minimum vertex cover (MVC) problem is a
classic NP-hard combinatorial optimization prob-
lem with extensive real-world applications. In this
paper, we propose an efficient local search algo-
rithm, InfVC, to solve the MVC in massive graphs,
which comprises three ideas. First, we introduce
an inference-driven optimization strategy that ex-
plores better feasible solutions through inference
rules. Second, we develop a structural-determined
perturbation strategy that is motivated by the struc-
ture features of high-quality solutions, prioritiz-
ing high-degree vertices into the candidate solu-
tion to guide the search process to some poten-
tial high-quality search area. Third, we design a
self-adaptive local search framework that dynami-
cally balances exploration and exploitation through
a perturbation management mechanism. Extensive
experiments demonstrate that InfVC outperforms
all the state-of-the-art algorithms on almost mas-
sive instances.

1 Introduction

Given an undirected graph G = (V, E), a vertex subset
D C V is a vertex cover of G if every edge in G has at least
one endpoint in D. The minimum vertex cover (MVC) prob-
lem is to obtain a vertex cover with the smallest size. As one
of the Karp’s 21 classic NP-complete problems [Karp, 1972],
the MVC is pivotal in the field of combinatorial optimiza-
tion. In practical applications, the MVC has been widely ap-
plied in various fields, such as cyber security [Javad-Kalbasi
et al., 2019] and sensor networks[Yigit er al., 2021]. Be-
cause the MVC is equivalent to the maximum independent
set (MIS) problem and the maximum clique (MC) problem
[Jin and Hao, 2015], solving the MVC inherently addresses
the challenges associated with MIS and MC problems. Thus,
the MVC holds substantial significance in terms of combina-
torial optimization problems.

The MVC algorithms primarily include exact, approxi-
mation, and heuristic algorithms. Exact algorithms for the

*Corresponding author

MVC guarantee to obtain optimal solution, but their expo-
nential time complexity renders them impractical for mas-
sive hard graphs due to the NP-harness of the MVC. The
current best exact algorithm for solving the MVC is based
on the branch-and-reduce method [Akiba and Iwata, 2016].
Since exact methods can hardly handle massive hard graphs,
researchers have turned to approximation and heuristic algo-
rithms as practical alternatives for approximating optimal so-
lutions. Approximation algorithms provide a guaranteed ap-
proximation ratio that quantifies the gap between the solution
generated by the algorithm and the optimal solution. These
algorithms have been widely applied to solve the MVC [Feo
et al., 1994; Bouamama et al., 2012]. However, previous
studies highlight the inherent challenges of approximating the
MVC, as it has been proven NP-hard to achieve an approxi-
mation ratio smaller than 1.3606 [Dinur and Safra, 2005]. In
practice, approximation algorithms for the MVC usually gen-
erate low-quality approximation solutions.

Heuristic algorithms usually employ various ways to im-
prove the solution produced by specific approximation algo-
rithm, typically achieving high-quality results within a rea-
sonable time frame. Among all the heuristic algorithms for
the MVC, local search plays a particularly significant role, as
it serves as a fundamental component across all the state-of-
the-art heuristic algorithms [Cai er al., 2017; Gao et al., 2017,
Weise et al., 2019; Chen and Hao, 2019; Luo et al., 2019;
Quan and Guo, 2021; Gu and Guo, 2021; Zhou et al., 2022;
Zhang et al., 2023; Liao et al., 2023]. To efficiently address
the MVC in massive hard graphs, these studies have proposed
a range of notable strategies, such as the best from multiple
selections (BMS) heuristic [Cai et al., 2017; Gu and Guo,
2021; Zhang et al., 2023], graph reduction [Cai et al., 2017,
Gu and Guo, 2021], parallel component search [Gu and Guo,
2021; Liao et al., 2023], and perturbation strategy [Luo et
al., 2019; Liao et al., 2023]. According to the literature,
the best-performing heuristic algorithms for the MVC are
QMeaMetaVC [Liao et al., 2023] and PEAVC [Gu and Guo,
2021].

Despite various notable strategies that have been devel-
oped for the MVC, some key aspects remain under-explored.
Specifically, existing algorithms have not considered the po-
tential of using inference heuristics to directly improve the
solution quality. Besides, the key characteristics for high-
quality solutions for the MVC is not considered by previous

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

studies to develop strategies. Moreover, existing studies do
limited work on the local search framework for the MVC.
Based on the above considerations, we propose an inference-
enhanced local search algorithm called InfVC to solve the
MVC in massive graphs, which comprises three ideas.

First, we propose an inference-driven optimization strat-
egy. Our experiments reveal that feasible solutions can often
be optimized by making minor adjustments. This suggests
improvements can be made without search procedure. Moti-
vated by this, we conduct an in-depth exploration of the char-
acteristics of the MVC and propose an inference-driven op-
timization approach, which directly improves the quality of
a feasible solution. Furthermore, we extend this approach to
the set cover problem, a generalized version of the MVC. Our
experimental results reveal that the proposed approach is not
only effective for MVC but also exhibits strong scalability.

Second, we develop a novel structural-determined pertur-
bation strategy for the MVC. Unlike existing methods, which
primarily rely on random vertex selection or high-score crite-
ria, our perturbation approach incorporates the structural in-
formation of a given graph. It is inspired by a key obser-
vation: high-quality solutions tend to include vertices with
higher degrees, while vertices with lower degrees are more
likely to be excluded. Building on this insight, we pro-
pose two new vertex selection rules and develop a structural-
determined perturbation strategy. The proposed strategy
helps the search escape from local optima and directs it to-
ward promising search regions.

Lastly, we introduce a self-adaptive local search frame-
work, which organizes the search procedure into three phases:
stochastic search phase, perturbation phase, and convergence
phase. This framework incorporates a perturbation manage-
ment mechanism that continuously monitors and evaluates
the impact of perturbations throughout the search process
and the current search state. Based on these evaluations, the
mechanism adaptively decides when to apply the perturba-
tion and transitions the algorithm to a specified search phase.
Furthermore, in each distinct search phase, the proposed algo-
rithm employs a specific search model, ensuring an effective
search manner in a specified search scenario.

Building upon the above strategies, we develop the
inference-enhanced local search algorithm InfVC !. Experi-
mental results show that the proposed algorithm achieves the
best results in almost all the instances, and all the proposed
strategies play a critical role in InfVC.

In Section 2, we provide the necessary preliminaries for the
MVC. Section 3 introduces our inference-driven optimization
strategy. In Section 4, we present the structure-determined
perturbation strategy. Following that, Section 5 details the
self-adaptive local search framework. Section 6 describes the
proposed InfVC algorithm. The experimental results are re-
ported in Section 7. Finally, Section 8 concludes the paper.

2 Preliminaries
Given an undirected graph G = (V, E), V and F repre-
sent the set of vertices and edges, respectively. For an edge

'Source code and supplementary materials are available at
https://github.com/yiyuanwang1988/InfVC

e = {u,v}, u and v are referred to as its endpoints. If two
vertices share an edge, they are considered neighbors. The
set of all neighbors of a vertex v € V constitutes its neigh-
borhood, denoted by N (v). The closed neighborhood is de-
fined as Nv] = N(v) U {v}. The degree of a vertex v is
defined as |N(v)|. Given a vertex set D C V, an edge e is
covered by D if at least one of its endpoints belongs to D;
otherwise, e is uncovered. D is a vertex cover of the graph G
if D covers all edges in E. The MVC aims to identify a ver-
tex cover with the smallest size. Given a vertex set S C V,
the induced subgraph G[S] = (Vg, Eg) is a subgraph of G
where Vg = S and the edge set Es consists of all edges in
E whose endpoints are both contained in S. A clique is an
induced subgraph of a graph such that all the vertices in this
subgraph are connected with each other.

Local search algorithms for the MVC maintain a candidate
solution D C V during the search procedure. If D is a vertex
cover of GG, D is called a feasible solution. Given the can-
didate solution D, the number of uncovered edges for D is
denoted by uncov(D) , and the scoring function of a vertex v
is defined as follows:

Cil, D
score(v) = { —||C1’l|, f}iD

where C' represents the set of edges that would switch from
uncovered to covered after the vertex v is added and C5 rep-
resents the set of edges that would switch from covered to
uncovered after the vertex v is removed. Additionally, age(v)
represents the number of search steps since v was last op-
erated. During the local search, two sets are maintained for
the candidate solution D, including Seto(D) = {v € D |
score(v) = 0} and Set_1(D) = {v € D | score(v) = —1}.
For a vertex v € V, Relate(v) = {u € N(v) | u €
Set_1(D)} is defined as the set of vertices in Set_; (D) that
are adjacent with v.

3 Inference-Driven Optimization Strategy

During the local search, feasible solutions often have poten-
tial for further improvement through minor adjustments. This
suggests that even without local search, improving the solu-
tion quality may be possible. Motivated by the above consid-
eration, we propose an inference-driven optimization strat-
egy, which is seen as a direct way to improve the quality of a
feasible solution.

3.1 Foundations of Inference-Driven Optimization

First, we define two types of vertices, i.e., potential addition
vertex and critical addition vertex.

Definition 1 (Potential Addition Vertex). Given a graph G =
(V, E) and a candidate solution D, a vertexv € V \ D is a
potential addition vertex if |Relate(v)| > 2.

Definition 2 (Critical Addition Vertex). Given a graph G =
(V, E) and a candidate solution D, a vertexv € V \ D is a
critical addition vertex if v is a potential addition vertex and
G|[Relate(v)] is not a clique.

Obviously, for a critical addition vertex v, since
G[Relate(v)] is not a clique, there must exist an unadjacent

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

vertex pair in Relate(v). Then, we present the following

proposition.

Proposition 1. Given a graph G = (V, E) and a vertex cover
D, if v is a critical addition vertex and two distinct vertices
u,w € Relate(v) satisfy (u,w) ¢ E, then DU {v} \ {u,w}

is a vertex cover.

Proof. Given score(u) = —1 and score(w) = —1, it is triv-
ially to prove that there must exist exactly one respective ver-
tex in N(u) and N(w) that is outside from D. Given that
u,w € Relate(v) and v is a critical addition vertex, it follows
that v is the unique vertex in both N (u) and N (w) that is ex-
cluded from D. Because u and w are unadjacent, removing
uw and w from D results in two uncovered edges, i.e., (u,v)
and (w,v). By adding v to D, these two edges are covered,
ensuring that the updated solution D U {v} \ {u,w} becomes
a better feasible solution. O

3.2 Details of the Inference-Driven Optimization

Based on the above foundations, we present the inference-
driven optimization algorithm InfOpt in Algorithm 1. First,
we introduce the detailed information of this algorithm, fol-
lowed by a discussion of its time complexity.

The InfOpt Algorithm
We utilize CriAdd(D) to denote the set of critical addition
vertices of D. After obtaining a feasible solution D, a random
vertex v € CriAdd(D) is added and two random unadjacent
vertices {u,w} C Relate(v) are removed until CriAdd is
empty (Lines 1-3). Finally, the improved solution D is re-
turned. Notably, the proposed inference-driven optimization
strategy can directly enhance solution quality, without rely-
ing on any local search procedure. In practice, it typically
reduces the size of feasible solutions to some extent.
Additionally, we extend the proposed inference-driven op-
timization strategy to the set cover problem. The details of
this extension are provided in the supplementary material.

Time Complexity of the Inference-Driven Optimization
Strategy

In the InfOpt algorithm, we continuously maintain the set of
potential addition vertices and evaluate whether each poten-
tial addition vertex is a critical addition vertex. If so, we add
a critical addition vertex v and randomly remove two unadja-
cent vertices from Relate(v) until there is no critical addition
vertex. But if a potential addition vertex v is determined to
be not a critical addition vertex, we will no longer check this
vertex unless Relate(v) changes. Thus, the time complexity
comprises three components: 1) initially, distinguishing the
potential addition vertices; 2) checking whether the potential
addition vertices are critical addition vertices; 3) swapping a
critical addition vertex and the corresponding two vertices in
Set_; and maintaining potential addition vertices.

By using an array to store the vertices in Set_; (D) and an-
other array to track the index of each vertex within Set_; (D),
the time complexity for maintaining Set_q(D) is O(1).
Next, let degree q, denote the maximum degree in the graph
G. According to the definition of potential addition ver-
tices, distinguishing these vertices incurs a time complexity
of O(|Set_1(D)| - degreemaz)-

Algorithm 1: InfOpt

Input: A feasible solution D
Qutput: An improved solution D
1 while CriAdd(D) # (do
2 L select a random vertex v € CriAdd(D) and two

random unadjacent vertices u, w € Relate(v);
D :=DU{v}\ {u,w};

4 return D;

3

For a potential addition vertex v, determining whether
Relate(v) forms a clique requires a time complexity of
O(degreemas - |Relate(v)|) = O(degree?,,.), because
|Relate(v)| is smaller than degree,,q,.. Since the total num-
ber of critical addition vertices is smaller than |Set_;(D)],
the time complexity to determine whether all potential addi-
tion vertices are critical addition vertices is O(|Set_1(D)]| -
degree?, ..).

Furthermore, adding a critical addition vertex v and remov-
ing two unadjacent vertices u and w from Relate(v) requires
a time complexity of O(degree?,,,) to maintain the set of
potential addition vertices. This is because the score of v’s
neighbors changes to -1, which may necessitate finding a ver-
tex outside D in N (v) to maintain the set of potential addition

vertices.

Based on the above analysis, the overall time complexity
of InfOpt is O(|Set_1(D)| - degree?, ...).

max

4 Structural-Determined Perturbation
Strategy

During the process of local search, perturbation procedures
are commonly used to escape from local optima [Wang er al.,
2020; Jin et al., 2021; Chen et al., 2023]. In this section, we
introduce the structural-determined perturbation strategy for
MVC. Initially, we review existing perturbation strategies for
the MVC. Subsequently, we present an observation from our
experiments. Finally, we present the structural-determined
perturbation strategy.

4.1 Previous Perturbation Strategies for MVC

Previous heuristic algorithms for the MVC have periodically
invoked perturbation strategies to escape from local optima.
In detail, two automatic configuration algorithms, MetaVC
and MetaVC2 [Luo et al., 2019], employ a simple perturba-
tion strategy when dealing with massive graphs. Addition-
ally, Q-MeaMetaVC [Liao er al., 2023] utilizes three types
of perturbation strategies to alter three different kinds of so-
lutions, with one of these strategies being identical to that
used by MetaVC and MetaVC2. However, these strategies ei-
ther select vertices randomly or prioritize those with the high-
est score values, but they overlook the structural distribution
characteristics of high-quality solutions, potentially limiting
their ability to guide the search toward more promising re-
gions of the search space.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

X X

(a) delaunay_n22 (b) inf-roadNet-PA

0 10 50 0 0 B 0
X X

(e) sc-shipsecl (f) soc-pokec

X X

(c) patents (d) rec-dating

0 10 50 0 0 B 20
X X

(g) soc-orkut-dir (h) soctb-Indiana

Figure 1: An intuitive presentation of the characteristics of high-quality solutions on eight representative instances.

4.2 An Observation of Structural Characteristics
of High-Quality Solutions

In our preliminary experiments, we observe a key structural
characteristic in most graphs: vertices with high degrees are
more likely to be included in high-quality solutions, whereas
vertices with low degrees tend to be excluded. To illustrate
this observation more intuitively, we select eight represen-
tative instances for detailed analysis. Specifically, we em-
ploy the state-of-the-art algorithm QMetaMeaVC [Liao et
al., 2023] to generate high-quality solutions for the eight in-
stances, using a time limit of 10,000 seconds and a fixed seed
of 1, and record the best solution achieved within this pe-
riod. After obtaining the solutions, we rank the vertices of
the graph in descending order by degree, dividing them into
50 equal segments, and present the proportion of the vertices
belonging to the achieved high-quality solution in each seg-
ment. The results are presented in Figure 1, where the X-
axis represents the segments arranged in descending order of
degree, and the Y-axis shows the proportion of high-quality
solutions within each segment. According to Figure 1, high-
degree vertices tend to appear in the high-quality solutions
achieved.

4.3 Details of Structural-Determined Perturbation
Strategy

Based on the above observation, the structural-determined
perturbation strategy is proposed. We adopt the best from
multiple selections (BMS) heuristic [Cai, 2015] to select ver-
tex, i.e., randomly sampling % vertices and then choosing the
best one among them according to a specified criterion. The
proposed perturbation selection rules are presented below.

Perturbation Addition Rule. sample k& random vertices
from the V' \ D, and select the one with the highest degree,
breaking ties with the highest age value.

Perturbation Removal Rule. select a random vertex in D
as the best initial candidate vertex, and then iteratively sam-

ples & — 1 extra random vertices. For each sampled vertex, if
its degree is smaller than the current best vertex and its age is
higher than the current best vertex, the current best vertex is
updated to the sampled vertex.

Because high-degree vertices are more likely to appear in
high-quality solutions, the sets of high-degree vertices across
different high-quality solutions tend to be similar. Thus, in
the proposed perturbation addition rule, we primarily select
vertices with high degrees and then add them to the candidate
solution. As for the operation of low-degree vertices, since
these vertices are less frequently included in high-quality so-
lutions, the sets of low-degree vertices across different high-
quality solutions tend to be varied. Thus, we operate these
vertices in a more diversified manner. The proposed pertur-
bation removal rule equally takes both the degree and age of
vertices into account.

The structural-determined perturbation strategy is depicted
in Algorithm 2. It iteratively removes N vertices and then
adds N vertices according to two perturbation rules, where
N is a parameter (Lines 1-6). Finally, the perturbed solu-
tion is returned (Line 7). This perturbation method generates
a solution that contains more high-degree vertices and fewer
low-degree vertices, while ensuring a certain level of diver-
sity.

5 Self-Adaptive Local Search Framework

In this section, we propose a self-adaptive local search frame-
work. It organizes the local search procedure with three dis-
tinct phases: the stochastic search phase, the perturbation
phase, and the convergence search phase. Initially, the algo-
rithm goes into a stochastic search phase to explore the neigh-
boring search space extensively. Subsequently, a perturbation
phase is periodically triggered to facilitate escape from local
optima. After the perturbation phase, the algorithm transi-
tions to the convergence search phase, which aims to restore
a desired level of convergence. Once this is achieved, the al-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 2: StruPerturb

Algorithm 3: SelfAdaptiveLS

Input: A graph G = (V, E), current solution D
Output: The solution D after perturbed
1 fori =1to N do
2 select a vertex vrem based on Perturbation Removal
Rule;
3 D := D\ {vrem};
4 fori =1to N do

5 select a vertex v,qq based on Perturbation Addition
Rule;

6 | D:=DU{vaaa};

7 return D;

gorithm transitions back to the stochastic search phase, con-
tinuing until the next perturbation phase is triggered.

The transitions between these phases are governed by a
perturbation management mechanism, which continuously
monitors the current search state and evaluates the impact of
perturbations. Building up on this, it dynamically determines
the appropriate search phase, enabling the framework to adapt
to varying search conditions.

The proposed framework employs distinct search models
for each phase. In the following, we begin by describing the
vertex selection rules, which form the foundation of the pro-
posed local search framework. Then, we provide a detailed
explanation of the self-adaptive local search and the pertur-
bation management mechanism.

5.1 Vertex Selection Rules

The vertex selection rules adopt the configuration checking
(CC) strategy to forbid the cycling problem, where the CC is a
technique specifically designed to prevent the cycling during
the local search. The CC strategy associates each vertex with
a binary indicator conf. For a vertex outside D, it can only
be added back to D if its con f value is 1. Detailed process of
CC can be referred to [Cai et al., 2011]. It has been proven
that, under the CC method for the MVC, at least one endpoint
of any uncovered edge must have a conf value of 1 [Cai et
al.,2013].

During the stochastic search phase, introducing a certain
degree of randomness can enhance exploration and help to
escape from local optima. Based on this consideration, we
propose two general vertex selection rules as follows:

General Removal Rule. With a small probability p, select
a random vertex in D. Otherwise, sample k£ random vertices
from D, and among these vertices select the one with the
highest score value, breaking ties by prioritizing the vertex
with the highest age value.

General Addition Rule. Choose a random uncovered
edge e. If one endpoint of e has a con f value of 0, the other
endpoint is selected. Otherwise, the endpoint with the higher
score is selected, breaking ties by prioritizing the vertex with
the higher age value.

However, at the start of the convergence search phase, there
often exists a large number of uncovered edges, requiring a
quick recovery to restore convergence. To address this issue,
we introduce the two greedy vertex selection rules as below:

Input: A graph G = (V, E), the cutoff time cutoff
Output: the best obtained solution D*

t D := D" := Reducelnit(G);

2 conv_flag := conv_indicator := 1;

3 per_step := conv_count := early_count := 0;

4 while elapsed_time < cutoff do

5 if uncov(D) = 0 then

6 D := InfOpt(D);

7 while Seto (D) # 0 do

8 select a random vertex v € Seto(D);

9 L D :=D\ {v};

10 D* := D, conv_flag :=1;

11 select a vertex v according to the General Removal
Rule and D := D \ {v};

12 continue;

13 (conv_flag, D) := PerManage(conv_flag, D);
14 if conv_flag = 1 then

/% Stochastic Search Phase */
15 select a vertex v according to the General
Removal Rule and D := D\ {v1 };
16 select a vertex v according to the General
Addition Rule and D := D U {v2};
17 else
/* Convergence Search Phase */
18 select a vertex v; according to the Greedy
Removal Rule and D := D \ {v1 };
19 select a vertex v according to the Greedy

Addition Rule and D := D U {v2};

20 return D*;

Greedy Removal Rule. If Seto(D) or Set_;(D) is not
empty, select the first non-empty set in the order of Seto(D)
followed by Set_1(D). Sample k random vertices from the
selected set and select the one with the highest age value,
breaking ties randomly. Otherwise, select a removal vertex
according to the general removal rule.

Greedy Addition Rule. Sample |\/uncov(D)| uncov-
ered edges, and identify the endpoints of these edges with
a conf value of 1. Among these satisfied vertices, select the
one with the highest score value, breaking ties by prioritizing
the vertex with the highest age value.

By leveraging these two kinds of selection rule in specific
search phases, the local search framework dynamically ad-
justs its behavior to balance rapid convergence and effective
exploration, thus improving search efficiency and avoiding
stagnation in local optima.

5.2 The Self-Adaptive Local Search Algorithm

The details of the self-adaptive local search algorithm is pre-
sented in Algorithm 3. During the local search procedure,
D and D* are the candidate solution and the best solution
during the local search procedure, whereas conv_flag rep-
resents the current search phase where conv_flag = 0 rep-
resents the convergence phase and conv_flag = 1 indicates
the stochastic phase. In addition, four global variables need
to be maintained, which play a critical rule in the perturbation
management mechanism. They will be described in the next

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

subsection.

Initially, D and D* are initialized by reduction based ini-
tialization strategy, which can be referred to [Fan et al., 2015]
(Line 1), and other variables are initialized accordingly (Lines
2-3). During the local search, the algorithm iteratively swaps
a pair of vertices to improve the solution (Lines 4-20). In
each iteration, the algorithm checks if uncov(D) is zero. If
so, the algorithm uses the proposed inference-driven opti-
mization strategy to improve D (Line 6). Several redundant
vertices are removed until Sety(D) becomes empty (Lines
7-9). Lastly, the D* is updated by D, and the search phase
is switched to the stochastic phase by setting conv_flag to
1, and a vertex is selected by the general removal rule to be
removed (Lines 10-11).

Subsequently, the algorithm employs a perturbation man-
agement mechanism to assess the current search phase and
determine whether to perturb the current solution (Line 13).
If a perturbation phase is executed, D will be updated by the
perturbed solution. This process will be described in the next
subsection. Subsequently, if the current search phase is the
stochastic phase, the algorithm would utilize the general se-
lection rules to explore neighboring search space (Lines 14—
16). Otherwise, the current search phase is the convergence
search phase, and the algorithm utilizes the greedy selection
rules to converge the solution quickly (Lines 17-19). By
combining these distinct search phases, the framework effec-
tively balances exploration and exploitation. Finally, D* is
returned (Line 20).

5.3 Perturbation Management Mechanism

In this subsection, we introduce the perturbation management
mechanism. It continuously monitors and evaluates the ef-
fects of perturbations during the search process. Based on
the evaluation, it dynamically determines the current search
phase. We depict this procedure in Algorithm 4. It initially
decides whether to transition from the convergence search
phase to the stochastic search phase (Lines 1-4). Subse-
quently, it determines whether to shift from the stochastic
search phase to the perturbation phase and then back to the
convergence search phase (Lines 5-10).

In this procedure, T is a parameter that controls the exe-
cution of perturbations. We introduce four global variables:
1) conv_count denotes the total number of times the conver-
gence phase has taken place; 2) per_step records the steps
since the last perturbation; 3) conv_indicator represents the
number of uncovered edges before the most recent perturba-
tion; 4) early_count denotes the total number of times the
early convergence phase has taken place; If the current search
phase is the convergence search phase and uncov(D) doesn’t
exceed conv_indicator, it indicates the uncov(D) have re-
covered to the level before the most recent perturbation. In
this case, the search process is considered converged. if this
convergence occurs within % steps since the latest perturba-
tion, we consider this convergence phase is an early conver-
gence phase. If early_count is not larger than %C"“”t, it
indicates at least half of the convergence search phases are
early convergence phase, indicating that the graph is easy to
converge. Otherwise, the graph is considered challenging to
converge.

Algorithm 4: PerManage

Input: Candidate solution D, search indicator conv_flag
Output: Candidate solution D, search indicator conv_flag
1 if conv_flag = 0 A uncov(D) < conv_indicator then
2 conv_flag :=1;
3 if per_step < T'/2 then

4 L early_count := early_count + 1;

5 if per_step > T then

6 if conv_flag = 1V early_count < %co“"t then
/+ Perturbation Phase */

7 D :=StruPerturb(G, D) and conv_flag := 0,

8 per_step := 0;

9 conv_count := conv_count + 1;

10 conv_indicator := uncov(D);

11 per_step := per_step + 1;
12 return (conv_flag, D) ;

Initially, if the current search phase is convergence phase
(i.e., conv_flag = 0) and the convergence level has returned
to the state before the latest perturbation (i.e., uncov(D) <
conv_indicator), then the algorithm shifts to the stochastic
phase (Lines 1-2), i.e., setting conv_flag to 1. Moreover, if
this convergence phase is an early convergence phase (i.e.,
per_step < %), then early_count is incremented by one
(Lines 3-4).

Next, the algorithm periodically determines whether the
the perturbation procedure needs to be called (Line 5).
If needed, the algorithm further evaluates whether the
current search phase is the stochastic search phase (i.e.,
conv_flag = 1) or the current graph is easy to converge
(i.e., early_count < %m) If satisfied, the algorithm
calls the StruPerturb and then shifts the search phase to the
convergence search phase (Lines 7-8). After shifting to the
convergence search phase, three global variables are updated
accordingly (Lines 7-10). Finally, per_step is incremented
by 1 (Line 11), and {conv_flag, D) is returned.

6 The InfVC Algorithm

In this section, we introduce the framework of the InfVC al-
gorithm in Algorithm 5.

Initially, the algorithm employs a state-of-the-art prepro-
cessing strategy PreP to simplify the input graph G, generat-
ing a smaller graph G*. The detailed preprocessing method
can be referred to [Gu and Guo, 2021]. G* comprises one or
numerous connected components, and we utilize D, to repre-
sents the solution of the ith component, and the union of the
solutions of all components is stored in D;;.

For each connected component G; of G, if |G;] is smaller
than a certain threshold V;p,., a complete MVC solver

CPLEX is utilized to solve it within a time limit of ‘l“//i“ * "”;"ﬁ
Vil

where & is the ratio of the vertices in the sth component to
the vertices in the G* (Line 4). We employ CPLEX 22.10 as
the complete MV C solver to solve these small components. If
the complete solver returns an empty solution, it means that
the solution cannot be solved in the given time limit. Other-
wise, it indicates the component is successfully solved. If so,

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 5: InfVC

Input: A graph G = (V, E), the cutoff time cutoff
Output: The obtained best solution D fipnai
1 G* := PreP(G), Doy := 0;
2 foreach component G; € G* do
if |Vi| < Tinre then
D; := CPLEX (G, f » “0);
if D; # (then
L Doy == Dou U D;;

AU N Y

remove G; from G*;

8 re-calculate the remaining time limit cutoff;
9 foreach component G; € G* do

10 L Doy := Doy U SelfAdaptiveLS(G;, Vil

%
11 Dyinar := InvPreP(Day);
12 return D inar;

o cutoff);

D,y and G* are updated accordingly (Lines 5-7). According
to our preliminary experiments, we set 7T}, to 300.

After the above procedure, the algorithm needs to update
the cutoff by excluding the the time consumption of calling
the Prep and CPLEX (Line 8). After that, the algorithm con-
ducts SelfAdaptiveLS on each component G;, with the cor-
responding time limit (Lines 9-10). Finally, the algorithm
reconstructs the solution using InvPreP, which is a dual tech-
nology of PreP, and it restores the vertex cover of G based on
the solutions obtained from G* (Line 11). The details of this
process can be referred to [Gu and Guo, 2021]. Finally, the
best solution D ¢;y,4; is returned (Line 12).

7 Experimental Evaluation

In this section, we evaluate the performance of InfVC and the
proposed strategies.

We compare InfVC with the state-of-the-art heuristic al-
gorithms for MVC, including FastVC2+p [Cai e al., 2017],
MetaVC [Luo et al., 2019], MetaVC2 [Luo et al., 2019],
EAVC3+p [Quan and Guo, 20211, TIVC [Zhang et al., 2023],
PEAVC [Gu and Guo, 2021], and QMeaMetaVC [Liao et al.,
2023]. The source codes of FastVC2+p, MetaVC, MetaVC2,
EAVC3+p are kindly provided by the authors. However, the
source codes of TIVC, PEAVC, and QMeaMetaVC are not
available for us, so we have to re-implement them. In ad-
dition to these comparisons, InfVC is also compared with
the best-record results. Following the most recent and best-
performing heuristic algorithm [Liao et al., 2023] for the
MVC, we set the time limit of all algorithms to 3600 sec-
onds, with seeds ranging from 1 to 10. All the algorithms
are implemented in C++ and compiled by g++ with ‘-O3’ op-
tion. For all competitors, we utilize the same parameters as
described in the corresponding literature and optimize these
parameters for newly added instances. All experiments are
run on an Intel Xeon Gold 6238 CPU @ 2.10GHz CPU with
512GB RAM under Ubuntu 22.04.4 LTS.

We utilize all massive graphs that were previously eval-
vated in previous studies. Specifically, 102 instances from
the Network Data Repository [Rossi and Ahmed, 2015] have
been utilized in numerous MVC studies [Cai et al., 2017,

FastvC2+p
MetaVC

TIVC
EAVC3+p
PEAVC
MetaVC2
QMeaMetaVC

InfvC

- Minimum

Average

Figure 2: An overall comparison between InfVC and all comparative
algorithms.

FastVC2+p
MetaVC
EAVC3+p
PEAVC

TIVC
MetavC2
QMeaMetaVC

InfvC

0 10 20 30 40 50 60 70 80

. Minimum

Average

Figure 3: An overall comparison between InfVC and all comparative
algorithms under the state-of-the-art preprocessing strategy.

Chen and Hao, 2019; Luo et al., 2019; Quan and Guo, 2021;
Gu and Guo, 2021; Liao et al., 2023], as well as algorithms
for other combinatorial optimization problems [Sun et al.,
2024; Luo et al., 2024; Sun et al., 2025]. In 2023, Zhang
et al. [2023] selected 72 additional instances from the same
repository. We select all the above instances. Note that there
are 18 duplicate instances across the two benchmarks. In to-
tal, we selected 156 instances.

By utilizing the automatic configuration tool irace [Lépez-
Ibéfiez et al., 2016], we tune the parameters of InfVC, and
the results are presented in Table 1. Specifically, we con-
struct a training set by randomly selecting 20 instances. The
tuning process was allotted a budget of 1000 runs for this
training set, with each run having a time limit of 3600 sec-
onds. In addition, we conduct experiments to examine the pa-
rameter sensitivity of the InfVC algorithm. The results show
that our algorithm exhibits low sensitivity to parameter vari-
ations. The best solution achieved using optimal parameter
settings, is on average only 0.008% smaller than those ob-
tained through other parameter combinations.

Parameter Parameter Range Final value
T {30000, 34000, 38000, 42000} 38000

N {65, 75, 85,95} 85

D {0.00045, 0.0005, 0.00055, 0.0006} 0.0005

k {50, 250, 500, 750, 1000} 750

Table 1: Tuned parameters of our proposed algorithm.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

#inst. vs. InfVC1 vs. InfVC2 vs. InfVC3 vs. InfVC4 vs. InfVC5 vs. InfVC6 vs. InfVC7 vs. InfVCS8
#bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor)
82 17(6) 24(6) 23(7) 25(8) 12(7) 7(2) 21(5) 15(7)

Table 2: Comparing InfVC with 8 modified versions. #bet and #wor represent respectively the number of instances where InfVC achieves

better and worse minimal solutions.

7.1 Results on All Instances

Note that all the algorithms incorporate efficient preprocess-
ing mechanisms from [Cai er al., 2017] or its advanced ver-
sion [Gu and Guo, 2021] to reduce the graph. After this re-
duction, many instances become trivially solvable. Specifi-
cally, 74 instances are reduced to fewer than 1,000 vertices,
for which all algorithms produce the same solution across all
seeds. We used CPLEX to verify that the solutions are op-
timal. Thus, we concentrate only on the remaining 82 in-
stances.

We summarize the results of all algorithms in Figure 2,
where Minimal and Average denote the number of instances
where the corresponding algorithm finds the best minimal and
average solutions among all algorithms. As shown in Fig-
ure 2, InfVC significantly outperforms the other heuristic al-
gorithms. Specifically, it outperforms FastVC2+p, MetaVC,
MetaVC2, EAVC3+p, TIVC, PEAVC, and QMeaMetaVC on
63, 59, 49, 57, 58, 50, and 34 instances, while only being
outperformed by these seven algorithms on only 4 instances.
Additionally, InfVC surpasses the best-record solutions on 31
instances, but is outperformed on 4 only instances. Detailed
comparisons are provided in the supplementary material.

Note that PEAVC, QMeaMetaVC, and InfVC employ a
more advanced preprocessing procedure [Gu and Guo, 2021]
compared to other algorithms. To ensure a fair comparison of
the local search effectiveness of InfVC, we apply the same
preprocessing procedure to FastVC2+p, EAVC3+p, TIVC,
MeataVC, and MetaVC2, and reevaluate the performance of
all algorithms. The results are shown in Figure 3. After in-
tegrating the state-of-the-art preprocessing, the performance
of InfVC remains largely unchanged. Specifically, the num-
ber of best minimal solutions and best average solutions de-
creases slightly, from 78 to 77 and 71 to 70, respectively.

7.2 Further Results with Exact MVC Algorithms

Additionally, we compare InfVC with the state-of-the-art ex-
act algorithms for MVC. To the best of our knowledge, the
best-performing exact algorithms for MVC are the algorithms
proposed in [Akiba and Iwata, 2016]. In this work, the
authors propose several state-of-the-art reduction methods
for MVC and develop a branch-and-reduce algorithm B&R
for solving MVC. Additionally, they utilize these reduction
methods to preprocess graphs and employ the CPLEX to di-
rectly solve the MVC problem. Following their methodology,
we compare InfVC with B&R and the CPLEX 22.10 2 where
the CPLEX is carried out on the graphs that are reduced based
on the methods proposed in the study.

The time limit for all algorithms is set to 3600 seconds,
and we compare the two exact algorithms with InfVC under
the specified seed value 1. It is worth noting that even when

Zhttps://www.ibm.com/products/software

CPLEX does not find an optimal solution, it still returns a fea-
sible solution. In contrast, B&R does not output any solution
if it fails to find the optimal one. Therefore, we present the
best solutions found by InfVC and CPLEX within the 3600-
second time limit. If B&R fails to find an optimal solution for
a given instance, we mark it as ”’—”. The detailed results are
presented in the supplementary material. The results show
that InfVC outperforms CPLEX and B&R in 41 and 48 in-
stances, respectively, while being surpassed in only 5 and 3
instances. The results clearly highlight the effectiveness of
InfVC.

7.3 Effectiveness of the Proposed Strategies

To evaluate the effectiveness of our proposed strategies, we
generated several alternative versions: InfVCI disables the
inference-driven optimization strategy; InfVC2, InfVC3, and
InfVC4, each substituting the proposed perturbation strat-
egy with one of three perturbation strategies used in Q-

1000000
100000
10000

1000

Average improvement achieved on each instance
2 2
-~ 3 8

o

10 20 30 40 50 60 70 80
Instances

Figure 4: Average improvement obtained by the InfOpt.

10000
1000

100

20 40 60 20 100 120

-100
-1000

-10000

Performance gap between DmDS and InfDmDS

-100000

-1000000

Figure 5: Comparison between InfDmDS and DmDS.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

MeaMetaVC, respectively; InfVC5 deletes the structural-
determined perturbation strategy; InfVC6 directly executes
the structure-determined perturbation strategy every 1" steps,
that is, omitting Line 6 in Algorithm 4; InfVC7 ignores
the convergence search phase; InfVCS8 ignores the stochas-
tic search. The results are presented in Table 2, which clearly
indicates that all the proposed strategies are crucial in InfVC.

7.4 Further Analysis of the Inference-Driven
Optimization Strategy

Figure 4 presents the average improvement achieved by the
inference-driven optimization strategy for each instance, with
each column representing the corresponding average im-
provement over 10 runs. The results clearly show that the pro-
posed strategy delivers significant improvements across many
instances.

Furthermore, we integrate the inference-driven optimiza-
tion strategy into the minimum dominating set(MDS), which
can be seen as a specific variant of the set cover problem.
Specifically, we apply the proposed strategy to DmDS [Zhu
et al., 2024] that is the state-of-the-art heuristic algorithm for
the MDS problem, resulting in a new algorithm, InfDmDS.
We conducted experiments on 260 massive graphs used in
[Zhu et al., 2024]. Following the experimental settings of
DmDS, we set the time limit to 1000 seconds and use random
seeds ranging from 1 to 10. We present the results in Figure
5, where each column is the best solution obtained by DmDS
minus the best solution obtained by InfDmDS for a specified
instance. The scenarios in which the two algorithms achieve
the same best solution are excluded. As depicted in Figure 5,
InfDmDS significantly outperforms DmDS.

8 Conclusion

In this paper, we propose an inference-enhanced local search
algorithm to tackle the MVC. It comprises three strate-
gies: an inference-driven optimization strategy, a structural-
determined perturbation strategy, and a self-adaptive local
search framework. InfVC effectively balances exploration
and exploitation, leveraging structural insights and adap-
tive mechanisms to improve the solution quality and escape
from local optima. Experimental results demonstrate that the
proposed algorithm significantly outperforms previous algo-
rithms in massive graphs.

In future work, we plan to develop a pseudo-reduction
based heuristic algorithm that integrates reduction techniques
into the heuristic search process.

Acknowledgments

This work is supported by National Cryptologic Science
Fund of China 2025NCSF02046, NSFC under Grant No.
61806050 and 61972063, the Fundamental Research Funds
for the Central Universities 2412023YQO003, Jilin Science
and Technology Department YDZJ202201ZYTS412.

References

[Akiba and Iwata, 2016] Takuya Akiba and Yoichi Iwata.
Branch-and-reduce exponential/fpt algorithms in practice:

A case study of vertex cover. Theoretical Computer Sci-
ence, 609:211-225, 2016.

[Bouamama et al., 2012] Salim Bouamama, Christian Blum,
and Abdellah Boukerram. A population-based iterated
greedy algorithm for the minimum weight vertex cover
problem. Applied Soft Computing, 12(6):1632—-1639,
2012.

[Cai et al.,2011] Shaowei Cai, Kaile Su, and Abdul Sat-
tar. Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artificial
Intelligence, 175(9-10):1672-1696, 201 1.

[Cai et al., 2013] Shaowei Cai, Kaile Su, Chuan Luo, and
Abdul Sattar. Numvc: An efficient local search algorithm
for minimum vertex cover. Journal of Artificial Intelli-
gence Research, 46:687-716, 2013.

[Cai et al., 2017] Shaowei Cai, Jinkun Lin, and Chuan Luo.
Finding a small vertex cover in massive sparse graphs:
Construct, local search, and preprocess. Journal of Arti-
ficial Intelligence Research, 59:463—-494, 2017.

[Cai, 2015] Shaowei Cai. Balance between complexity and
quality: Local search for minimum vertex cover in massive
graphs. In Qiang Yang and Michael J. Wooldridge, editors,
1JCAI, pages 747-753, 2015.

[Chen and Hao, 2019] Yuning Chen and Jin-Kao Hao. Dy-
namic thresholding search for minimum vertex cover in
massive sparse graphs. Engineering Applications of Arti-
ficial Intelligence, 82:76-84, 2019.

[Chen et al., 2023] Jiejiang Chen, Shaowei Cai, Yiyuan
Wang, Wenhao Xu, Jia Ji, and Minghao Yin. Improved
local search for the minimum weight dominating set prob-
lem in massive graphs by using a deep optimization mech-
anism. Artificial Intelligence, 314:103819, 2023.

[Dinur and Safra, 2005] Irit Dinur and Samuel Safra. On the
hardness of approximating minimum vertex cover. Annals
of mathematics, pages 439—485, 2005.

[Fan et al., 2015] Yi Fan, Chengqian Li, Zongjie Ma, LjiL-
jana Brankovic, Vladimir Estivill-Castro, and Abdul Sat-
tar. Exploiting reduction rules and data structures: Local

search for minimum vertex cover in massive graphs. arXiv
preprint arXiv:1509.05870, 2015.

[Feo et al., 1994] Thomas A Feo, Mauricio GC Resende,
and Stuart H Smith. A greedy randomized adaptive search

procedure for maximum independent set. Operations Re-
search, 42(5):860-878, 1994.

[Gao et al., 2017] Wanru Gao, Tobias Friedrich, Timo
Kétzing, and Frank Neumann. Scaling up local search for
minimum vertex cover in large graphs by parallel kernel-
ization. In A7 2017, pages 131-143. Springer, 2017.

[Gu and Guo, 2021] Jiagi Gu and Ping Guo. Peavc: An im-
proved minimum vertex cover solver for massive sparse
graphs. Engineering Applications of Artificial Intelligence,
104:104344, 2021.

[Javad-Kalbasi et al., 2019] Mohammad Javad-Kalbasi,
Keivan Dabiri, Shahrokh Valaee, and Ali Sheikholeslami.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Digitally annealed solution for the vertex cover problem
with application in cyber security. In ICASSP, pages
2642-2646. IEEE, 2019.

[Jin and Hao, 2015] Yan Jin and Jin-Kao Hao. General
swap-based multiple neighborhood tabu search for the
maximum independent set problem. Engineering Appli-
cations of Artificial Intelligence, 37:20-33, 2015.

[in et al., 2021] Yan Jin, Bowen Xiong, Kun He, Jin-Kao
Hao, Chu-Min Li, and Zhang-Hua Fu. Clustering driven
iterated hybrid search for vertex bisection minimiza-
tion. [IEEE Transactions on Computers, 71(10):2370—
2380, 2021.

[Karp, 1972] Richard M. Karp. Reducibility among Combi-
natorial Problems, pages 85-103. Boston, MA, 1972.

[Liao et al., 2023] Chunmei Liao, Ping Guo, Jiagi Gu, and
Qiuju Deng. Q-meametavc: An mvc solver of a large-
scale graph based on membrane evolutionary algorithms.
Applied Sciences, 13(14):8021, 2023.

[Lépez-Tbdfez er al., 2016] Manuel Lopez-Ibdfiez, Jérémie
Dubois-Lacoste, Leslie Pérez Caceres, Mauro Birattari,
and Thomas Stiitzle. The irace package: Iterated racing for
automatic algorithm configuration. Operations Research
Perspectives, 3:43-58, 2016.

[Luo et al., 2019] Chuan Luo, Holger H Hoos, Shaowei Cai,
Qingwei Lin, Hongyu Zhang, and Dongmei Zhang. Local
search with efficient automatic configuration for minimum
vertex cover. In IJCAI, pages 1297-1304, 2019.

[Luo ef al., 2024] Chunyu Luo, Yi Zhou, Zhengren Wang,
and Mingyu Xiao. A faster branching algorithm for the
maximum k-defective clique problem. In ECAI 2024,
pages 4132-4139. IOS Press, 2024.

[Quan and Guo, 2021] Changsheng Quan and Ping Guo. A
local search method based on edge age strategy for mini-
mum vertex cover problem in massive graphs. Expert Sys-
tems with Applications, 182:115185, 2021.

[Rossi and Ahmed, 2015] Ryan Rossi and Nesreen Ahmed.
The network data repository with interactive graph analyt-
ics and visualization. In AAAI, volume 29, 2015.

[Sun e al., 2024] Rui Sun, Yiyuan Wang, HL Shimao Wang,
Hui Li, Ximing Li, and Minghao Yin. Nukplex: An effi-
cient local search algorithm for maximum k-plex problem.
In IJCAL, pages 7029-7037, 2024.

[Sun et al., 2025] Rui Sun, Yiyuan Wang, and Minghao Yin.
Improving local search algorithms for clique relaxation
problems via group driven initialization. Frontiers of Com-
puter Science, 19(6):1-12, 2025.

[Wang et al., 2020] Yiyuan Wang, Shaowei Cai, Jiejiang
Chen, and Minghao Yin. Sccwalk: An efficient lo-
cal search algorithm and its improvements for maxi-
mum weight clique problem. Artificial Intelligence,
280:103230, 2020.

[Weise et al., 2019] Thomas Weise, Zijun Wu, and Markus
Wagner. An improved generic bet-and-run strategy with
performance prediction for stochastic local search. In
AAAI volume 33, pages 2395-2402, 2019.

[Yigit et al., 2021] Yasin Yigit, Vahid Khalilpour Akram,
and Orhan Dagdeviren. Breadth-first search tree inte-
grated vertex cover algorithms for link monitoring and

routing in wireless sensor networks. Computer Networks,
194:108144, 2021.

[Zhang et al., 2023] Yu Zhang, Shengzhi Wang, Chanjuan
Liu, and Enqgiang Zhu. Tive: An efficient local search algo-
rithm for minimum vertex cover in large graphs. Sensors,
23(18):7831, 2023.

[Zhou et al., 2022] Qian Zhou, Xiaojun Xie, Hua Dai, and
Weizhi Meng. A novel rough set-based approach for mini-
mum vertex cover of hypergraphs. Neural Computing and
Applications, 34(24):21793-21808, 2022.

[Zhu et al., 2024] Engiang Zhu, Yu Zhang, Shengzhi Wang,
Darren Strash, and Chanjuan Liu. A dual-mode local
search algorithm for solving the minimum dominating set
problem. Knowledge-Based Systems, page 111950, 2024.

