Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

A Fine-Grained Complexity View on Propositional Abduction — Algorithms and
Lower Bounds

Victor Lagerkvist>, Mohamed Maizia'?> and Johannes Schmidt!

! Department of Computer Science and Informatics, Jonkoping University, Jonkdping, Sweden
2 Department of Computer and Information Science, Linkdping University, Linkdping, Sweden
victor.lagerkvist@liu.se, mohamed.maizia@ju.se, mohamed.maizia@liu.se, johannes.schmidt@ju.se

Abstract

The Boolean satisfiability problem (SAT) is a well-
known example of monotonic reasoning, of intense
practical interest due to fast solvers, complemented
by rigorous fine-grained complexity results. How-
ever, for non-monotonic reasoning, e.g., abductive
reasoning, comparably little is known outside clas-
sic complexity theory. In this paper we take a first
step of bridging the gap between monotonic and
non-monotonic reasoning by analyzing the com-
plexity of intractable abduction problems under the
seemingly overlooked but natural parameter n: the
number of variables in the knowledge base. We
obtain several positive results for ¥4~ as well as
NP- and coNP-complete fragments, which implies
the first example of beating exhaustive search for
a Y.¥-complete problem (to the best of our knowl-
edge). We complement this with lower bounds and
for many fragments rule out improvements under
the (strong) exponential-time hypothesis.

1 Introduction

The Boolean satisfiability problem is a well-known NP-
complete problem. Due to the rapid advance of SAT solvers,
many combinatorial problems are today solved by reducing
to SAT, which can then be solved with off-the-shelf solvers.
SAT fundamentally encodes a form of monotonic reason-
ing in the sense that conclusions remain valid regardless if
new information is added. However, the real world is non-
monotonic, meaning that one should be able to retract a state-
ment if new data is added which violates the previous con-
clusion. One of the best known examples of non-monotonic
reasoning is abductive reasoning where we are interested in
finding an explanation, vis-a-vis a hypothesis, of some ob-
served manifestation. Abduction has many practical applica-
tions, e.g., scientific discovery [Inoue et al., 20091, network
security [Alberti er al., 2005], computational biology [Ray et
al., 2006], medical diagnosis [Obeid et al., 2019], knowledge
base updates [Sakama and Inoue, 2003], and explainabil-
ity issues in machine learning and decision support systems
[Ignatiev et al., 2019; Ignatiev, 2020; Brarda er al., 2021;
Racharak and Tojo, 2021]. This may be especially poignant
in forthcoming decades due to the continued emergence of Al

in new and surprising applications, which need to be made
GDPR compliant [Sovrano et al., 2020] and explainable. The
incitement for solving abduction fast, even when it is classi-
cally intractable, thus seems highly practically motivated.

Can non-monotonic reasoning be performed as efficiently
as monotonic reasoning, or are there fundamental differences
between the two? The classical complexity of abduction
(and many other forms of non-monotonic reasoning) is well-
known [Eiter and Gottlob, 1995; Thomas and Vollmer, 2010]
and suggests a difference: SAT is NP-complete, while most
forms of non-monotonic reasoning, including propositional
abduction, are generally ¥¥'-complete. However, modern
complexity theory typically tells a different story, where clas-
sical hardness results do not imply that the problems are
hopelessly intractable, but rather that different algorithmic
schemes should be applied. For SAT, there is a healthy
amount of theoretical research complementing the advances
of SAT solvers, and k-SAT for every k can be solved sub-
stantially faster than 2" (where n is the number of variables)
via the resolution-based PPSZ algorithm [Paturi et al., 2005].
There is a complementary theory of lower bounds where the
central conjecture is that 3-SAT is not solvable in 2°(") time
(exponential-time hypothesis (ETH) [Impagliazzo and Paturi,
2001]) and the strong exponential-time hypothesis (SETH)
which implies that SAT with unrestricted clause length (CNF-
SAT) cannot be solved in ¢” time for any ¢ < 2.

In contrast, the precise exponential time complexity of ab-
duction is currently a blind spot, and no improved algorithms
are known for the intractable cases. In this paper we thus is-
sue a systematic attack on the complexity of abduction with
a particular focus on the natural complexity parameter n, the
number of variables in the knowledge base, sometimes sup-
plemented by |H| or |M]|, the number elements in the hy-
pothesis H or manifestation M. To obtain general results
we primarily consider the setup where we are given a set
of relations I' (a constraint language) where the knowledge
base of an instance is provided by a I'-formula. We write
ABD(T") for this problem and additionally also consider the
variant where an explanation only consists of positive literals
(P-ABD(T")) since these two variants exhibit interesting dif-
ferences. The classical complexity of abduction is either in P,
NP-complete, coNP-complete, or Y1’ -complete [Nordh and
Zanuttini, 2008], and for which intractable I" is it possible
to beat exhaustive search? According to Cygan et al., tools

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

to precisely analyze the exponential time complexity of NP-
complete problems are in its infancy [2016]. For problems at
higher levels of the polynomial hierarchy the situation is even
more dire. Are algorithmic approaches for problems in NP
still usable? Are the tools to obtain lower bounds still usable?
Why are no sharp upper bounds known for problems in non-
monotonic reasoning, and are these problems fundamentally
different from e.g. satisfiability problems?

We successfully answer many of these questions with novel
algorithmic contributions. First, in Section 3 we show why
enumerating all possible subsets of the hypothesis gives a
bound 2" for ABD and the (surprisingly bad) 3™ bound for
P-ABD. Hence, any notion of improvement should be mea-
sured against 2" for ABD and 3™ for P-ABD. Generally
improving the factor 21| (which may equal 2") seems diffi-
cult but we do manage this for languages I where all possi-
ble models of the knowledge base can be enumerated in c”
time, for some ¢ < 2, which we call sparsely enumerable
languages. We succeed with this for both ABD(I") (Sec-
tion 3.1) and P-ABD(T") (Section 3.2), and while the algo-
rithms for the two different cases share ideas, the details differ
in intricate ways. It should be remarked that both algorithms
solve the substantially more general problem of enumerat-
ing all (maximal) explanations which may open up further,
e.g., probabilistic, applications for abduction. The enumer-
ation algorithms in addition to exponential time also need
exponential memory, but we manage to improve the naive
3™ bound for P-ABD(I") to 2" with only polynomial mem-
ory. The sparsely enumerable property is strong: it fails
even for 2-SAT and it is a priori not clear if it is ever true
for intractable languages. Despite this, we manage to (in
Section 3.3) describe three properties implying sparse enu-
merability. This captures relations definable by equations
14 ...+ xp =¢q (mod p) (EQUATIONS®). The problem(s)
(P-)ABD(EQUATIONS) is 24’ -complete and is, to the best of
our knowledge, the first example of beating exhaustive search
for a X1’-complete problem (under n). This yields improved
algorithms for X1’ -complete P-ABD(XSAT) (exact satisfi-

ability) and NP-complete P-ABD(AFF(=)) (arity bounded
equations over GF(2)).

(Type) Class Classical complexity Improved
EQUATIONS® (k > 1) »P.c Yes
XSAT »i-C 0*(27)
(P) AFF* (k > 1) NP-C Yes
(M) k-CNF* (k > 1) NP-C Yes
(P) k-CNF~ UIMP (k > 1) NP-C Yes
(P) finite 1-valid coNP-C Yes

Table 1: Upper bounds for P-ABD and ABD.

In Section 3.4 we consider more restricted types of abduc-
tion problems with a particular focus on (P—)ABD(k—CNF+)
where k-CNFT contains all positive clauses of arity k. Here,
the problems are only NP-complete, in which case circum-
venting the 2/7! barrier appears easier. For these, and simi-
lar, problems, we construct an improved algorithm based on
a novel reduction to a problem SIMPLESAT? which can be

(Type) Class Assumption Bound
(M) 2-CNE™ ETH (H%)D(‘M”
(P) 2-CNF* U IMP ETH ({1
(M) k-CNF (k > 4) SETH on

(P) k-CNF (k > 4) SETH 1.4142"
CNF~ U IMP, Horn SETH 1.2599™
(M) CNF™, DualHorn SETH 1.2599™

Table 2: Lower bounds for P-ABD and ABD.

solved by branching. For coNP, only P-ABD(I") becomes
relevant, and we (in Section 3.5) prove a simple but general
improvement whenever a finite I' is invariant under a constant
Boolean operation.

In Section 4, we prove lower bounds under
(S)ETH for missing intractable cases. Let IMP =
{{(0,0),(0,1),(1,1)}}. Under the ETH, we first prove
that ABD(2-CNF") and ABD(2-CNF~ U IMP) cannot be

solved in time (%)O”M) under ETH, which asymptotically

matches exhaustive search. For classical cases like k-CNF
(k > 4) and NAE-k-SAT (k > 5) we establish sharp lower
bounds of the form 2™ for ABD and 1.4142™ for P-ABD
under the SETH. For (P-)ABD(CNF~ U IMP), we rule out

: |H| o|M]| |H]| M|
improvements to 1.2599", 1.4142**1 21%1 or (W)

under SETH. This transfers to Horn for (P-)ABD and to
DualHorn for ABD. For ABD(2-CNF), we prove that sharp
lower bounds under the SETH are unlikely unless NP C
P/Poly, leaving its precise fine-grained complexity as an
interesting open question.

The results are summarized in Table 1 and Table 2 where
(P), respectively (M), indicates that the result only holds for
P-ABD, respectively ABD. Thus, put together, we ob-
tain a rather precise picture of the fine-grained complex-
ity of ABD(T") and P-ABD(I") for almost all classical in-
tractable languages I'. Notably, we have proven that even
P _complete problems can admit improved algorithms with
respect to n, and that the barrier of exhaustively enumerating
all possible explanations can be broken.

Proofs of statements marked with (x) can be found in the techni-
cal report [Lagerkvist et al., 2025].

2 Preliminaries

We begin by introducing basic notation and terminology.

Propositional logic. We assume familiarity with proposi-
tional logic, clauses, and formulas in conjunctive/disjunctive
form (CNF/DNF). We denote Var(yp) the variables of a for-
mula ¢ and for a set of formulas ', Var(F) = (J ¢ Var(p).
We identify finite F' with the conjunction of all formulas from
F, that is /\@e - A model of a formula ¢ is an assignment
o : Var(p) — {0, 1} that satisfies ¢. For two formulas 1, ¢
we write ¢ |= ¢ if every model of 1) also satisfies ¢. For a
set of variables V, Lits(V/) the set of all literals formed upon
V., thatis, Lits(V) = VU {-z |z € V}.

Boolean constraint languages. A logical relation of arity
k € Nis arelation R C {0,1}*, and ar(R) = k denotes the

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

arity. An (R-)constraint C'is a formula C = R(z1,..., k),
where R is a k-ary logical relation, and x1, ..., x) are (not
necessarily distinct) variables. An assignment o satisfies C,
if (o(x1),...,0(zx)) € R. A (Boolean) constraint lan-
guage T is a (possibly infinite) set of logical relations, and
a I'-formula is a conjunction of constraints over elements
from I'. A I'-formula ¢ is satisfied by an assignment o, if
o simultaneously satisfies all constraints in it, in which case
o is also called a model of ¢. We define the two constant
unary Boolean relations as L = {(0)} and T = {(1)}, and
the two constant O-ary relations as f = () and t = {0}.
We say that a k-ary relation R is represented by a proposi-
tional CNF-formula ¢ if ¢ is a formula over k distinct vari-
ables z1, ...,z and ¢ = R(x1,...,xx). Note such a CNF-
representation exists for any logical relation R C {0,1}*.
We write CNF for the relations corresponding to all possible
clauses and Horn/DualHorn for the set relations correspond-
ing to Horn/DualHorn clauses. Additionally, k-CNF is the
subset of CNF of arity k, IMP = {R}, where R(z,y) =
{0,1}2 — {(1,0)}. The notation (k-)CNF™ (resp. (k-)CNF~
) denotes the version where each clause is positive (resp.
negative). We use AFF to denote the set of relations rep-
resentable by systems of Boolean equations modulo 2, i.e.,
Z1+4...+ 2, = ¢ (mod 2) for g € {0,1}. As representation
of each relation in a constraint language we use the defining
CNF-formula unless stated otherwise.

The satisfiability problem for I'-formulas, also known as
Boolean constraint satisfaction problem, is denoted SAT(T").
It asks, given a I'-formula ¢, whether ¢ admits a model.

Propositional Abduction. An instance of the abduc-
tion problem over a constraint language I' is given by
(KB, H, M), where KB is a I'-formula, and H and M sets
of variables, referred to as hypothesis and manifestation. We
let V. = Var(KB) U Var(H) U Var(M) be the set of vari-
ables and write n = |V for its cardinality. The symmetric
abduction problem, denoted ABD(T"), asks whether there ex-
istsan E C Lits(H) such that 1) KB A E is satisfiable, and 2)
KB A E = M. If such an E exists, it is called an explanation
for M. If an explanation E satisfies Var(E) = H it is called
a full explanation, if it satisfies ' C H, it is called a positive
explanation. If there exists an explanation F, it can always be
extended to a full explanation (by extending E according to
the satisfying assignment underlying condition 1). However,
the existence of an explanation does not imply the existence
of a positive explanation. The positive abduction problem,
denoted P-ABD(T"), asks whether there exists a positive ex-
planation. We write (P-)ABD(T) if the specific abduction
type is not important.

Example 1. Consider the following example.
KB={AANB—C,D— B,-E — CA-D},
H={AD,E}, M={C}
Ey = {A,~D,—FE} is a full explanation, and E; = {A, D}
is a positive explanation.

We note at this point that the classical complexity of
ABD(T') and P-ABD(T) is fully determined for all T', due
to Nordh and Zanuttini [2008]. An illustration of these clas-
sifications is found in the technical report [Lagerkvist et al.,
2025].

Algebra. We denote by & the Boolean negation operation,
that is, f(x) = —x. An n-ary projection is an operation f of
the form f(z1,...,z,) = x; for some fixed 1 < i < n.
An operation f : {0,1}* — {0,1} is constant if for all
x € {0,1}* it holds f(x) = ¢, fora c € {0,1}. For a k-ary
operation f: {0,1}* — {0,1} and X C {0,1}* we write
fix for the function obtained by restricting the domain of f
to X. An operation f is a polymorphism of a relation R if for
every t1,...,t, € Ritholds that f(¢1,...,tx) € R, where
f is applied coordinate-wise. In this case R is called closed
or invariant, under f, ard Inv(F') denotes the set of all rela-
tions invariant under every function in F'. Dually, for a set
of relations T, Pol(T") denotes the set of all polymorphisms
of T'. Sets of the form Pol(T") are known as clones, and sets
of the form Inv(F') are known as co-clones. A clone is a set
of functions closed under 1) functional composition, and 2)
projections (selecting an arbitrary but fixed coordinate). For
a set B of (Boolean) functions, [B] denotes the corresponding
clone, and B is called its base. There is an inverse relation-
ship between Pol(T") and Inv(F') but we defer the details to
the technical report.

Complexity theory. We assume familiarity with basic no-
tions in classical complexity theory (cf. [Sipser, 1997]) and
use complexity classes P, NP, coNP, NPV = zg. In this pa-
per we work in the setting of parameterized complexity where
the complexity parameter is the number of variables n, in ei-
ther an abduction or SAT instance, or the number of vertices
in a graph problem. For a variable problem A we let I(A) be
the set of instances and Var(I) the set of variables. If clear
from the context we usually write n rather than | Var(I)|.We
define the following two types of reductions [Jonsson et al.,
2017] (note that ordinary polynomial-time reductions do not
necessarily preserve the number of variables).

Definition 2. Be A, B two variable problems. A function
f: I(A) — I(B) is a many-one linear variable reduction
(LV-reduction) with parameter C > 0 if I is a yes-instance
of A iff f(I) is a yes-instance of B, (f() = C -
| Var(I)| 4+ O(1), and f can be computed in polynomial time.

If in an LV-reduction the parameter C is 1, we speak
of a CV-reduction, and we take us the liberty to view a
reduction which actually shrinks the number of variables

(| Var(f L < |Var(I)| + O(1)) as CV-reduction, too.
We use A <V B, respectively A <™V B as shorthands, and
sometimes write A =CV Bif A §CV B and B <V A. For
algorithms’ (exponential) running time and space usage we
adopt the O* notation which suppresses polynomial factors.
A CV-reduction transfers exact exponential running time: if
A <® B, and B can be solved in time O*(c"), then also A
can be solved in time O*(¢™) (where n denotes the complex-
ity parameter). LV-reductions, on the other hand, preserve
subexponential complexity, i.e., if B can be solved in O*(c¢™)
time for every ¢ > 1 and A <"V B then A is solvable in
O*(¢™) time for every ¢ > 1, too. For additional details we
refer the reader to [Jonsson et al., 2021b].

3 Upper Bounds via SAT Based Approaches

We begin by investigating the possibility of solving ABD(T")
and P-ABD(T") faster, conditioned by a reasonably efficient

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

algorithm for SAT(T"). This assumption is necessary to beat
exhaustive search since SAT(I') <¢V (P-)ABD(I"), which
implies that if SAT(T") is not solvable in O(c™) time for any
¢ < 2 then (P-)ABD(I) is not solvable in O(c™) time for
any c < 2, either.

For a constraint language T we let '™ =T U { L, T}, i.e.,
I" expanded with the two constant Boolean relations. Triv-
ially, we have SAT(I") <©V SAT(I'T), and we observe that
if Pol(I") does not contain a constant operation then we addi-
tionally have SAT(I') <©V SAT(T") [Jonsson et al., 2021a].
We obtain the following baseline bound to beat.

Theorem 3. (x) Let " be a constraint language such that
SAT(T') is solvable in f(n) time for some computable func-
tion f: N — N. Then

1. ABD(I) is solvable in 217! f(n— |H|)- (|]M|+1) time,

2. P-ABD(T) is solvable in Xpcy f(n— |E|) - (M| +1)
time.

Since every SAT(I'") problem is solvable in O*(c")
time for some ¢ < 2 we get an overall bound
of 2l . O*(cn~1Hl) € 0*(2") for ABD(T), and
EEQHO*(CH_IE‘) _ O*(CTL—|H\ . (C+ 1)\H|) c O*((C+
1)™) € O*(3™) for P-ABD(T').

The question is now when these baseline bounds can be
beaten. As a general method we (for both ABD and P-ABD)
consider the assumption that all models of the knowledge
base can be enumerated sufficiently fast.

Definition 4. The set of models of a SAT(T) instance ¢ is
denoted Mod (). If there exists ¢ < 2 such that |Mod(y)| <
c" then SAT(I") is said to be sparse.

We also need the corresponding computational property
where we require all models to be enumerable fast.

Definition 5. Let I' be a constraint language. If Mod(yp),
Sor every SAT(T) instance p, can be enumerated in O*(c™)
time for some ¢ < 2 then we say that SAT(T") is sparsely
enumerable.

3.1 Faster Algorithms for ABD

We handle ABD(T") first since the analysis is simpler than
for P-ABD(I") (in Section 3.2). Trading polynomial for ex-
ponential space we consider a faster algorithm for ABD(T)
under the condition that SAT(T") is sparsely enumerable.

We first state a technical lemma, facilitating the presenta-
tion of the algorithms and reductions throughout the follow-
ing sections.

Lemma 6. (x) When solving an abduction instance
(KB,H,M), we can W.L.O.G. assume that M,H C
Var(KB), via a polynomial time preprocessing. This consti-
tutes even a CV-reduction of the problem to itself.

Now the basic idea to solve ABD(T) is to define an equiv-
alence relation =g over Mod(KB) by letting f =g ¢ if and
only if fiz = gz (where H is the hypothesis set). We then
construct the equivalence classes of =g and discard a class
when it fails to explain M. An explanation exists if there
is a non-empty class where every member satisfies M. Ini-
tially, this requires exponential space, O*(2"). However, by
only storing information on whether a potential explanation

FE has an extension that fails to satisfy M, space usage is re-
duced to O* (2771}, The space usage is further limited by the
enumerating algorithm’s runtime, O*(c™), resulting in total
space usage bounded by O*(min(c”,2/7)). We obtain the
following theorem.

Theorem 7. (x) Let T' be a constraint language where
SAT(T') is sparsely enumerable in O*(c"™) time. Then
ABD(T) is solvable in O*(c") time and O* (min(c", 21111)
space.

3.2 Faster Algorithms for P-ABD

In this section we present improved algorithms for brute force
and enumeration for positive abduction, that have the same
complexities as the symmetric variants described above. Re-
call that the baseline bound to beat for P-ABD (from Theo-
rem 3) is O*(3™), and we begin by lowering this to O*(2™)
via a more sophisticated exhaustive search scheme.

Algorithm 1 Algorithm A for P-ABD(T").

Require: KB, H, M, D, ¢
I: E=DUJ
2 G=FEU{-x|zeH-E}
3: if KB A G A —M is satisfiable then
4. return 1
5: if KB A G is satisfiable then
6.
7
8

: return T
: else
if D = () then

9: return L
10 flag=_1
11: forz € D do
12: flag = flag vV A(KB, H, M, D — {x},)
13: §=056U{x}
14: return flag

Theorem 8. (x) For any constraint language T', P-ABD(T")
can be solved in O*(2™) time and polynomial space.

Proof. Consider Algorithm 1. The starting parameters are
D = H and § = (). The recursive algorithm systematically
explores all subsets of H as candidates. It starts with the base
candidate ¥ = H. Inside each recursive call, it first checks
if the current candidate E, extended to a full candidate G,
entails the manifestation (line 3). If this fails, it concludes
that neither G nor any subset of G’ (which includes F and
all its subsets) can be an explanation, and returns L. Else, it
checks if G is consistent with KB. If yes, then G is obviously
a (full) explanation, but the algorithm concludes that in this
case even £ C @ is a (positive) explanation. If G is not
consistent with KB, the algorithm concludes that neither F is
consistent with KB, and can thus not be an explanation. Then
the algorithm systematically checks candidates where exactly
one variable is removed from E (lines 11-14). Descending in
the recursive calls (line 12) it makes sure to systematically
explore all subsets of a candidate, thereby avoiding visiting
the same subset multiple times (this is the purpose of §). For
correctness, we refer to the technical report. O

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

We now consider an algorithm based on enumerating all
models of the knowledge base, similar to the symmetric ab-
duction case, by trading polynomial for exponential space.

Theorem 9. (x) Let T' be a constraint language where
SAT(T') is sparsely enumerable in O*(c"™) time. Then
P-ABD(T) is solvable in O*(c™) time and O*(c™) space.

3.3 Provably Sparse Languages

We have proved that (P-)ABD can be solved faster if all
models of the underlying SAT problem can be enumerated
sufficiently fast. Hence, it is highly desirable to classify the
SAT problems where this is indeed the case — provided that
any positive, non-trivial examples actually exist. We obtain
a general characterization of such languages based on three
abstract properties. Here, we always assume that a SAT(T")
instance is represented by listing all tuples in a relation.

Definition 10. A constraint language 1" is asymptotically
sparse if there exists ro > 1 and ¢ < 2 such that for r-ary
ReT, rg <rwehave |R| < c".

If R is an n-ary relation and g: [m] — [n], for some m <
n, then the relation Ry(z1,...,2m) = R(Tg1), - Tg(m))
is said to be a minor of R.

Definition 11. For a constraint language T we let Min(T") =
{M | M is a minor of R € T'} be the set of minors of .

Similarly, if R € T of arity ar(R) = kand f: X — {0,1}
for some X C [k] then we define the substitution of f over
R as the relation Ry = {Projy_x(t) [t = (c1,...,cx) €
R,i € X = ¢; = f(i)} where Projy_x(t) denotes the
(k — | X|)-ary tuple obtained by only keeping indices in [k]
outside X.

Definition 12. A language T is said to be closed under
branching if it is closed under substitutions, i.e., if R € T
and f: X — {0,1} for X C [ar(R)] then R|; € T, and is
closed under minors, i.e., Min(I") =T

We observe that I is finite if and only if Min(T") is finite.

Example 13. Any language T can be closed under branch-
ing simply by repeatedly closing it under minors and substi-
tutions. For example, consider 3-SAT and a positive clause
corresponding to the relation R = {0,1}3—{(0,0,0)}. Then
Min({R}) = {R,{0,1}2 — {(0,0)}, T}. If we close R un-
der substitutions then we obtain {{0,1}> —{(0,0)}, T,f} by
identifying one or more variable to 0 and {{0,1}?,{0,1},t}
by identifying one or more variable to 1.

Thus, while it is easy to close a language I" under branch-
ing, this process might introduce undesirable relations of the
form {0, 1}* which do not enforce any constraints.

Definition 14. A relation R C {0,1}* is said to be non-
trivial. The relation {0, 1}* is said to be trivial.

By combining these properties we obtain a novel charac-
terization of sparsely enumerable languages.

Theorem 15. () Let T" be a constraint language which (1)
is asymptotically sparse, (2) is closed under branching, and
(3) every R € T is non-trivial. Then SAT(T) is sparsely
enumerable.

We continue by proving that such languages actually exist.
First, say that a k-ary Boolean relation R is totally symmetric,
or just symmetric, if there exists a set S C [k] U {0} such that
(1,...,21) € Rifandonly if 21 +...+x; € S. Given S C
{0,...,k} we write Rg for the symmetric relation induced by
S,ie., Rs(z1,...,21) = O _x; €9).

Definition 16. We let EQUATIONS = {Rs | k > 1,p,q <
k+1,S={ie[k]u{0}|i=q (mod p)}.

Thus, each relation in EQUATIONS can be defined by an
equation of the form x; + ... + x; = ¢ (mod p) for fixed
P, q, k. In particular AFF C EQUATIONS but it also contains
relations inducing ¥¥-complete (P-)ABD problems. Per-
haps contrary to intuition, EQUATIONS is not closed under
minors, since the resulting relations are not necessarily sym-
metric, but a simple work-around is to fix a finite subset of
EQUATIONS and then close it under minors. We obtain the
following.

Lemma 17. (x) The following statements are true.

1. EQUATIONS is closed under substitutions and contains
only non-trivial relations.

2. Letk > 1. For £5% = {R € EQUATIONS | ar(R) < k}
SAT(Min(E<F)) is sparsely enumerable.

Finally, let XSAT C EQUATIONS be the set of rela-
tions R, representable by equations x1 + ...+ = 1
(mod k) + 1, and for each & > 1 the constant relation
1k = {(0,...,0)} of arity k (note also that Ry;; = T),
and, finally, the two nullary relations f and t. The resulting
problem SAT(XSAT) is thus the natural generalization of
the well-known NP-complete problem 1-IN-3-SAT to arbi-
trary arities. Also, recall that AFF C EQUATIONS is the set
of relations representable by systems of Boolean equations
modulo 2, i.e., 71 + ... + zx = ¢ (mod 2) for ¢ € {0,1}.
We additionally write AFF=F for the set of affine relations of
arity at most k.

Theorem 18. (x) The following statements are true.
1. SAT(XSAT) is sparsely enumerable in O*(v/2") time.

2. SAT(AFF=*) is sparsely enumerable for every k > 1.

Let us also observe that the bound for SAT (XSAT) is tight

in the sense that |[Mod(¢)| = V2", n = 2m, if ¢ encodes
inequalities between z; and x5, x3 and x4, and so on.

3.4 Algorithms for NP-complete Fragments

Symmetric abduction is NP-complete for k-CNF™ languages
for any k£ > 2, and both symmetric and positive abduction are
NP-complete for languages of the form k-CNF~UIMP, k& > 2
[Nordh and Zanuttini, 2008]. We show in the following that
these cases can be solved in improved time.

Definition 19. Denote by SIMPLESAT? the SAT-problem
where we are given a formula ¢ of the following form. Here,
C stands for a positive clause of size at most p and T' stands
for a negative term of any size.

= NCAAVT

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Lemma 20. SIMPLESAT? can be solved in time O*(c"),
where c is the branching factor associated with a (1, ..., p)-
branching.

Proof. Perform a branch and reduce scheme. Variables not
occurring in any positive clause can be reduced to 0 (thereby
simplifying some of the negative terms). Then branch on
the variables of positive clauses, with the standard (1, ..., p)-
branching.

We are now ready to show that ABD(k-CNF*) can be CV-
reduced to SIMPLESAT®.

Theorem 21. (x) ABD(k-CNF™) <®V SIMPLESAT*. More-
over, the SIMPLES AT-instance contains only variables from
H.

We show that (P-)ABD(k-CNF~ U IMP) can be CV-
reduced to ABD(k-CNF ™).

Lemma 22. (x) (P-)ABD(k-CNF~
ABD(k-CNF™).

The following corollary finally states the improved results,
following immediately from the previous statements.
Corollary 23. ABD(k-CNF') and (P-)ABD(k-CNF~ U
IMP) can be solved in improved time. That is, in time
O*(C|H|), for a c < 2, stemming from the branching vector

(L,....k).

u IMP) <¢V

3.5 Algorithms for coNP-complete Fragments

In the case of positive abduction coNP-complete cases arise
[Nordh and Zanuttini, 2008] when I is 1-valid. Under cer-
tain additional assumptions, P-ABD(I") can then be solved
in improved time.

Theorem 24. Let I' be a I-valid constraint language. If
SAT(I'") can be decided in O*(c™) time for ¢ < 2 then
P-ABD(T") can be decided in O*(c") time.

Proof. First, note that the 1-valid property is responsible for
coNP-membership: there is an explanation iff H is an expla-
nation. Then KB A H is always consistent (since 1-valid).
Thus, we only need to check whether KB A H = M. This
implication can be decided by invoking the given SAT(I'")
algorithm | M| times: KB A H |= M iff for each m € M the
I'*-formula KB A H A —m is unsatisfiable, and we thus only
increase the O* (™) complexity by a polynomial factor.]

An application example is a knowledge base in k-CNF (k
> 3) where each clause contains at least 1 positive literal
(this ensures 1-validity). The underlying constraint language
T is still expressive enough to render P-ABD(I") coNP-hard
[Nordh and Zanuttini, 2008]. Then, any I'*-formula is ex-
pressible as k-CNF formula (without additional variables), so
SAT(T'") can be solved in improved time via the standard
(1,...,k)-branching. With Theorem 24 we conclude that
P-ABD(T") can be solved in improved time.

4 Lower Bounds and Reductions

We continue by matching our new upper bounds with lower
bounds. We base our lower bounds on ETH and its stronger
variant SETH (recall the definition in Section 1).

4.1 ETH Based Lower Bounds
Our aim in this section is to prove the following theorem.

Theorem 25. ABD(2-CNF*) and ABD(2-CNF~ U IMP)

cannot be solved in time (%)O(WD under ETH.

Proof. We provide a CV-reduction from the k-colored clique
problem to ABD(2-CNF~ U IMP), i.e., given a graph G =
(V, E)) where the vertices are colored with & different colors,
decide if a clique containing a vertex of each color exists. Itis
known that k-colored clique cannot be solved in time (2)°(*)
under ETH, where n is the number of vertices, and & is the
number of colors [Lokshtanov et al., 2011].

For the reduction, assume an arbitrary instance of a k-
colored clique problem over a graph G = (V, E), and where
C =c¢;|i€]l...k]isthe set of colors. For each color ¢; we
add a manifestation m; to M. For each vertex v; colored with
the color ¢; we add to KB the clause (—v; V'm;). For each two
vertices v; and v; that are not connected by an edge, we add
the clause (—w; V —w;). This completes the reduction. Since
the number of variables in the abduction problem is equal to
the number of vertices plus the number of colors, this is a CV-
reduction. If we can choose a clique that contains at least one
vertex from each color without choosing two vertices that are
not connected, then for each chosen vertex v;, we setv; = T
in the abduction instance as part of the solution. This will
entail all m;’s without causing a contradiction in KB. The
correctness proof from the other side is exactly the same.

Last, by Lemma 22 we additionally obtain that
ABD(2-CNF~ UIMP) <®V ABD(2-CNF™). O

Note that this lower bound is given with respect to | H| and
|M| and not n, and it is identical to the running time of the
brute force algorithms of these problems. Indeed, in the worst
case, we try all possible combinations of hypotheses for all
manifestations. If a hypothesis appears for two manifesta-
tions at the same time, it only reduces the need to choose an
additional hypothesis for the second one. The worst case is
then when all hypotheses are split up among manifestations.

The number of combinations is thus (@)|M |

M| , making the

algorithm close to optimal.

4.2 Lower Bounds for (P-)ABD(4-CNF) under
SETH

Here, we prove a strong lower bound under SETH which
shows that we should only expect small improvements for
4-CNF, and, more generally, k-CNF for any k& > 4.

Theorem 26. (x) Under SETH, there is no ¢ < 1 such that
ABD(4-CNF) is solvable in 2°™ time.

The following lemma gives the slightly worse lower bound
for positive abduction variant of 4-CNF.

Lemma 27. (%) Under SETH, there is no ¢ < 1 such that
P-ABD(4-CNF) can be solved in time 1.4142°™.

We remark that this leaves 3-CNF as an interesting open
case. We have no algorithms that run in less than 2" so far,
and no known lower bounds under SETH.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

4.3 Languages Closed under Complement

We analyze languages closed only under complement, i.e.,
languages T' such that Pol(T") = [z]. Well-known exam-
ples of such languages include not-all-equal satisfiability. For
this class of languages we manage to relate them to lan-
guages closed only under projections, in a very precise sense,
and show that one without loss of generality can concentrate
solely on the latter class.

Theorem 28. (x) Let I' be a constraint language such
that Pol(T') = [z]. Then (P-)ABD(I' U {L,T}) =¢V
(P-)ABD(T").

For the next theorem, let k-NAE be the set of all k-ary
relations that forbid exactly two complementary assignments
(determined by a sign pattern). The full details can be found
in the technical report.

Theorem 29. (%)
(P-)ABD((k+1)-NAE).

Thus, in general we should not expect to solve complemen-
tative abduction problems faster than 2™ (via Theorem 26).

4.4 Lower Bounds for Horn and CNF1 Abduction

Last, we prove strong lower bounds for Horn and CNF™.
These lower bounds do not conclusively rule out algorithms
faster than 2" but we stress that sharp lower (under SETH)
and upper bounds of the form ¢ are rather uncommon in the
literature, and an improved upper bound would likely need to
use completely new ideas.

Lemma 30. (%) Under SETH, there is no ¢ < 1 such that
(P-)ABD(CNF~ U IMP) can be solved in time 1.2599™ or

c|M|
1.4142¢1H1 op 2¢IM1 (%) .

(P-)ABD(k-CNF) <%V

Since 2-CNF~ U IMP is a special case of Horn, we obtain
the same lower bounds for Horn knowledge bases. Further-
more, using the reduction from Lemma 22, we obtain a CV-
reduction from (P-)ABD(CNF~ U IMP) to ABD(CNF™),
and CNF™ in turn is a special case of DualHorn. We therefore
obtain the following Corollary.

Corollary 31. Under SETH, there is no ¢ < 1 such that (P-
)JABD(Horn) as well as ABD(CNF') and ABD(DualHorn)
can be solved in time 1.2599°" or 1.4142¢/H1 op 2¢IMI o

(|H|) | M|
[M] :

An interesting question that might occur is whether or not
we can have SETH lower bounds for the problems in Section
4.1. Those problems instead have weaker lower bounds from
ETH. The following lemma will show that we are unlikely to

obtain such bounds with the same method we obtained them
for the problems in this Section (4.4).

Lemma 32. (x) If CNF-SAT <"V ABD(2-CNF) then NP C
P/Poly.

Proof. We provide a short proof sketch. From [Fortnow and
Santhanam, 2011], we know that CNF-SAT does not admit
a kernel of size f(n) where f is a polynomial, i.e., an eq-
uisatisfiable instance with e.g. a quadratic number of clauses
(unless NP C P/Poly). To prove the claim it suffices to have

a reduction from ABD(2-CNF) to CNF-SAT that only has a
polynomial number of clauses in terms of n. Assume an ar-
bitrary ABD(2-CNF) instance. For every m; € M, for all
clauses of the type: (¢; V m;), ..., ({x V m;) where {; ... 0y
are a literals, we delete these clauses and add the following
CNF clause (¢; V ...V {g), and otherwise keep everything
unchanged. O

It is thus unlikely to obtain SETH lower bounds for
ABD(2-CNF) from CNF-SAT under LV- or CV-reductions.

5 Concluding Remarks

We demonstrated that non-monotonic reasoning, and in par-
ticular propositional abduction, for many non-trivial cases do
admit improvements over exhaustive search. We find it par-
ticularly interesting that even ¥4’ -complete problems fall un-
der the scope of our methods. Might it even be the case that
¥ is not such an imposing barrier as classical complexity
theory tells us? Nevertheless, despite many positive and neg-
ative results, there are still open cases remaining and many
interesting directions for future research.

Faster Enumeration? We proved that finite subsets of
AFF and EQUATIONS are susceptible to enumeration. It is
easy to see that Pol(AFF) contains the Maltsev operation
x —y + 2((mod 2)), while EQUATIONS is exactly the set
of symmetric relations invariant under a partial Maltsev op-
eration [Lagerkvist and Wahlstrom, 2022]. Is it a coincidence
that all of our positive enumeration cases can be explained by
partial Maltsev operation, or could universal algebra be ap-
plied even further? For example, it is straightforward to show
that if a language is not preserved by partial Maltsev, then it
can not be sparsely enumerable. Extending this further, if one
allows e.g. a polynomial-time preprocessing, could it even be
the case that a Boolean (possibly non-symmetric) language is
sparsely enumerable if and only if it is invariant under partial
Maltsev?

2- and 3-CNF. While (P-)ABD(4-CNF) is unlikely to ad-
mit improved algorithms, (P-)ABD(k-CNF) for k& < 3 is
wide open. These languages are not sparsely enumerable
so they do not fall under the scope of the enumeration algo-
rithms, yet, it appears highly challenging to prove sharp lower
bounds for them (and recall that CNF-SAT does not admit an
LV-reduction to (P-)ABD(2-CNF) unless NP C P/Poly). As
a possible starting point one could consider instances with
only a linear number m of clauses in the knowledge base, or,
the more restricted case when each variable may only occur
in a fixed number of constraints. Could instances of this kind
be solved with enumeration?

Other Parameters? Related to the above question one
could more generally ask when (P-)ABD(I") admits an im-
proved algorithm with complexity parameter m, which we
observe in general can be much larger than n. Do any of the
algorithmic results carry over, and can lower bounds be ob-
tained? For the related quantified Boolean formula problems,
Williams [2002] constructed an O(1.709™) time algorithm,
so one could be cautiously optimistic about analyzing abduc-
tion with m.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

The authors are supported by the Swedish research council
under grant VR-2022-03214.

References

[Alberti et al., 2005] Marco Alberti, Federico Chesani,
Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo
Torroni. Security protocols verification in abductive logic
programming: A case study. In Engineering Societies in
the Agents World VI, 6th Internat. Workshop, ESAW’05,
pages 106—-124, 2005.

[Brarda et al., 2021] Martin E. Buron Brarda, Luciano H.
Tamargo, and Alejandro Javier Garcia. Using argumen-
tation to obtain and explain results in a decision support
system. IEEE Intell. Syst., 36(2):36-42, 2021.

[Cygan et al., 2016] Marek Cygan, Holger Dell, Daniel Lok-
shtanov, Ddniel Marx, and Jesper Nederlof et al. On
problems as hard as CNF-SAT. ACM Trans. Algorithms,
12(3):41:1-41:24, 2016.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob.
The complexity of logic-based abduction. Journal of the
ACM (JACM), 42(1):3-42, 1995.

[Fortnow and Santhanam, 2011] Lance Fortnow and Rahul
Santhanam. Infeasibility of instance compression and suc-
cinct peps for NP. J. Comput. Syst. Sci., 77(1):91-106,
2011.

[Tgnatiev er al., 2019] Alexey Ignatiev, Nina Narodytska,
and Jodo Marques-Silva. Abduction-based explanations
for machine learning models. In Proc. 33rd AAAI Conf. on
Artificial Intelligence (AAAI'19), pages 1511-1519, 2019.

[Ignatiev, 2020] Alexey Ignatiev. Towards trustable explain-
able Al. In Christian Bessiere, editor, Proc. 29th Inter-
nat. Joint Conf. on Artificial Intelligence (IJCAI’20), pages
5154-5158. ijcai.org, 2020.

[Impagliazzo and Paturi, 2001] Russell Impagliazzo and Ra-
mamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci, 62(2):367 — 375, 2001.

[Inoue et al., 2009] Katsumi Inoue, Taisuke Sato, Masakazu
Ishihata, Yoshitaka Kameya, and Hidetomo Nabeshima.
Evaluating abductive hypotheses using an EM algorithm
on bdds. In Proc. 21st Internat. Joint Conf. on Artificial
Intelligence (IJCAI’09), pages 810-815, 2009.

[Jonsson et al., 2017] Peter Jonsson, Victor Lagerkvist, Gus-
tav Nordh, and Bruno Zanuttini. Strong partial clones and
the time complexity of SAT problems. J. Comput. Syst.
Sci., 84:52 — 78, 2017.

[Jonsson et al., 2021a] Peter Jonsson, Victor Lagerkvist, and
Biman Roy. Fine-grained time complexity of constraint
satisfaction problems. ACM Trans. Comput. Theory.,
13(1), 2021.

[Jonsson et al., 2021b] Peter Jonsson, Victor Lagerkvist, Jo-
hannes Schmidt, and Hannes Uppman. The exponential-
time hypothesis and the relative complexity of optimiza-
tion and logical reasoning problems. Theor. Comput. Sci.,
892:1-24, 2021.

[Lagerkvist and Wahlstrém, 2022] Victor Lagerkvist and
Magnus Wahlstrom. The (coarse) fine-grained structure
of NP-hard SAT and CSP problems. ACM Trans. Comput.
Theory., 14(1), 2022.

[Lagerkvist et al., 2025] Victor ~ Lagerkvist, ~ Mohamed
Maizia, and Johannes Schmidt. A fine-grained complexity
view on propositional abduction - algorithms and lower
bounds. CoRR, abs/2505.10201, 2025.

[Lokshtanov et al., 2011] Daniel Lokshtanov, Déaniel Marx,
and Saket Saurabh. Lower bounds based on the exponen-
tial time hypothesis. Bulletin of the EATCS, 105:41-72,
2011.

[Nordh and Zanuttini, 2008] Gustav Nordh and Bruno
Zanuttini. What makes propositional abduction tractable.
Artif. Intell., 172(10):1245-1284, 2008.

[Obeid et al., 2019] Mariam Obeid, Zeinab Obeid, Asma
Moubaiddin, and Nadim Obeid. Using description logic
and abox abduction to capture medical diagnosis. In
Proc. 32nd Internat. Conf. on Industrial, Engineering
and Other Applications of Applied Intelligent Systems,
IEA/AIE 2019, pages 376-388, 2019.

[Paturi et al., 2005] Ramamohan Paturi, Pavel Pudldk,
Michael E. Saks, and Francis Zane. @ An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337—
364, 2005.

[Racharak and Tojo, 2021] Teeradaj Racharak and Satoshi
Tojo. On explanation of propositional logic-based argu-
mentation system. In Proc. 13th Internat. Conf. on Agents
and Artificial Intelligence (ICAART’21), pages 323-332,
2021.

[Ray et al., 2006] Oliver Ray, Athos Antoniades, Antonis C.
Kakas, and Ioannis Demetriades. Abductive logic pro-
gramming in the clinical management of HIV/AIDS. In
Proc. 17th European Conf. on Artificial Intelligence, pages
437441, 2006.

[Sakama and Inoue, 2003] Chiaki Sakama and Katsumi In-
oue. An abductive framework for computing knowledge
base updates. Theory Pract. Log. Program., 3(6):671-713,
2003.

[Sipser, 1997] Michael Sipser. Introduction to the theory of
computation. PWS Publishing Company, 1997.

[Sovrano et al., 20201 Francesco Sovrano, Fabio Vitali, and
Monica Palmirani. Modelling GDPR-compliant explana-
tions for trustworthy Al. In Proc. 9th Internat. Conf. on
Electronic Government and the Information Systems Per-
spective (EGOVIS’20), pages 219-233, 2020.

[Thomas and Vollmer, 2010] Michael Thomas and Heribert
Vollmer. Complexity of non-monotonic logics. Bull.
EATCS, 102:53-82, 2010.

[Williams, 2002] Ryan Williams. Algorithms for quantified
boolean formulas. In Proc. 13th Annual ACM-SIAM Symp.
on Discrete Algorithms (SODA’02), page 299-307, 2002.

