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Abstract

Human pose estimation in low-light conditions is
vital for applications such as surveillance and au-
tonomous systems, yet the severe visual distortions
hinder both manual annotation and estimation pre-
cision. Existing approaches typically rely on ad-
ditional reference information to mitigate these is-
sues, however, customized data collection equip-
ment poses limitations on their scalability. To al-
leviate the issue, we construct a Low-Light Im-
ages and Poses (LLIP) dataset, which includes only
paired low-light images and pose annotations ob-
tained using off-the-shelf motion capture devices.
Furthermore, we propose a Multi-grained High-
frequency Feature Consistency Learning frame-
work (MHFCL), which does not rely on addi-
tional reference information. MHFCL employs
a Retinex-inspired restoration stream to recover
high-frequency details and integrates them into
pose estimation using a multi-grained consistency
mechanism. Experiments demonstrate that our ap-
proach achieves a new benchmark in low-light pose
estimation, while maintaining competitive perfor-
mance in well-lit conditions.

1 Introduction

Human pose estimation (HPE) aims to locate the spatial co-
ordinates of key human joints in an image by capturing multi-
scale high-frequency information, making it a critical tool
for a range of various downstream applications [Markovitz
et al., 2020]. While recent HPE models [Li ef al., 2021a;
Wang et al., 2020b] demonstrate strong performance in well-
lit conditions, they struggle significantly in low-light condi-
tions due to substantial image degradation. Some solutions
use specialized sensors like LiDAR, depth, and thermal sen-
sors to handle low-light environments. For instance, Lee et al.
[Lee er al., 2023] paired well-lit images with low-light ones
from a dual-camera system and utilizes a teacher-student net-
work to transfer privileged Information from well-lit image
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Figure 1: Comparative analysis of our approach against existing
methods.

into low-light image. However, the collection and annota-
tion of paired low-light and well-lit data is resource-intensive
and error-prone, while the dependence on customized data
collection equipments, which significantly increases both the
training and deployment costs of low-light HPE models.

A feasible alternative is to collect only low-light images
and pose annotations, then develop a model capable of esti-
mating human pose in low-light conditions without relying on
reference information, as shown in Figure 1. While this ap-
proach obviates the necessity for customized data collection
equipments, it introduces two significant challenges: firstly,
existing methods [Lee et al., 2023] for low-light pose estima-
tion typically rely on aligned well-lit images and pre-trained
pose estimation models for annotations, yet the strategy is
not applicable when only low-light images are available; sec-
ondly, in low-light conditions, the reduction of brightness and
contrast amplifies the dominance of low-frequency compo-
nents in the frequency spectrum, while simultaneously caus-
ing blurring and attenuation of high-frequency details. On
the other hand, sensor noise, which is more pronounced in
low-light conditions, manifests as randomly distributed high-
frequency artifacts within the spectrum. In the absence of
additional reference information, traditional human pose esti-
mation (HPE) models encounter substantial difficulties in ad-
dressing the degradation of high-frequency information. This
limitation impairs their capacity to learn robust feature rep-
resentations, ultimately resulting in a marked decline in pose
estimation precision [Wang e al., 2020a].
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To address the aforementioned issues, we first present a
Low-Light Images and Poses (LLIP) dataset, which provides
paired low-light images and human poses annotations. Using
off-the-shelf motion capture devices, we accurately recorded
the 2D and 3D coordinates of 17 keypoints on the human
body. Motion capture devices, unlike annotations based on
pre-trained models or manual labeling, enable direct and ac-
curate pose annotation, improving both estimation reliability
and evaluation fairness. Moreover, LLIP provides both im-
age and video with comprehensive annotations, paving the
way for advanced research in low-light applications, such as
action recognition and video anomaly detection in low-light
conditions.

Then, we conceptualize reference-free low-light pose es-
timation within a two-stream architecture, termed Multi-
grained High-frequency Feature Consistency Learning (MH-
FCL). The MHFCL framework integrates a Retinex-inspired
High-frequency Restoration stream (RHR), which enhances
pixel-level high-frequency components by jointly modeling
global luminance distribution and local illumination dynam-
ics. Notably, the RHR stream operates in an unsupervised
manner, obviating the need for well-lit reference images as
supervisory signals. The restored high-frequency compo-
nents are subsequently fused into a Vision transformer-based
Pose Estimation stream (VPE), enabling precise pose estima-
tion under low-light conditions. To bridge the granularity gap
between the two streams, we propose a multi-grained feature
consistency learning mechanism that harmonizes pixel-level
high-frequency feature maps with pose heatmaps, thereby
enhancing feature coherence across the streams. Extensive
experiments on low-light images validate the effectiveness
of our approach, with the LLIP dataset and MHFCL being
instrumental to its success. Furthermore, MHFCL demon-
strates competitive performance in HPE tasks, underscoring
its robustness and versatility.

The main contributions of this work are summarized as fol-
lows:

¢ A low-light human pose estimation dataset, LLIP, which
consists of low-light images captured in various outdoor
environments and their corresponding pose annotations,
which demonstrates superior scalability by eliminating
the necessity for customized data collection equipment.

A multi-grained high-frequency feature consistency
learning architecture, MHFCL, which restores the high-
frequency degradation in an unsupervised manner and
integrates it into the pose estimation process, thereby es-
timating pose in low-light conditions without additional
reference information.

Through extensive quantitative and qualitative evalua-
tion, we demonstrate that our method shows competi-
tive or state-of-the-art (SOTA) performance in two vi-
sion tasks, and analyses confirm that both our model and
dataset play key roles in this success.

2 Related Works

2D Human Pose Estimation has advanced with deep learn-
ing, categorized into regression-based and heatmap-based

methods [Zheng et al., 2023]. Regression methods [Li er
al., 2023b; Panteleris and Argyros, 2022] focus on predicting
joint coordinates from images. A pivotal advancement came
from Toshev er al. [Toshev and Szegedy, 20141, who pro-
posed DeepPose, a cascaded deep neural network regressor
using AlexNet as the backbone to learn keypoints from im-
ages. After DeepPose, the research paradigm for HPE transi-
tioned from classical methods to deep learning. The methods
based on Res-Net backbone [Sun et al., 2017], differentiable
framework [Luvizon et al., 2018], and cascade transformer
[Li et al., 2021b] have been proposed. Unlike directly esti-
mating the 2D coordinates of human joints, heatmap-based
methods in HPE aim to estimate 2D heatmaps by adding 2D
Gaussian kernels at each joint position. Recent advancements
include hourglass residual units (HRU) for multi-scale fea-
ture capture [Chu er al., 2017], HRNet for accurate high-
resolution keypoint predictions, GAN-based methods [Tian
et al., 2021] for biologically plausible poses generating, and
Scale-Adaptive Heatmap Regression (SAHR) [Luo et al.,
2021] for scale adaptability improving. However, these meth-
ods depend on high-frequency information, and they struggle
in low-light conditions, where texture and details are signifi-
cantly degraded.

Downstream Low-light Vision Tasks. Recent advance-
ments in vision algorithms have been successful under op-
timal weather and lighting conditions. However, their per-
formance in challenging environments like fog, rain, snow,
low light, and nighttime is limited. Such conditions signifi-
cantly affect real-world applications, including autonomous
vehicles, rescue robotics, and security systems, which re-
quire consistent functionality in adverse weather and light-
ing. Hong et al. [Hong et al., 2021] proposed a robust ob-
ject detection system for low-light conditions using a syn-
thetic pipeline and recovery module. Chen et al. [Chen ef al.,
2023] tackled instance segmentation in low light, employing
adaptive weighted downsampling, smooth-oriented convolu-
tion blocks, and disturbance suppression. Lee et al. [Lee er
al., 2023] paired well-lit images with low-light ones from a
dual-camera system and utilizes a teacher-student network to
transfer privileged Information from well-lit image into low-
light image.

Multi-grained Feature Extraction. Multi-grained fea-
tures from CNNs have proven effective in various tasks. Li
et al. [Li ef al., 2023a] explored multi-grained features from
a transformer network for unsupervised Re-ID using a dual-
branch architecture. Zhao et al. [Zhao et al., 2021] proposed a
’slow vs. fast” (SvF) learning strategy to balance old and new
knowledge in few-shot class-incremental learning (FSCIL)
with frequency-aware regularization. Zhang et al. [Zhang et
al., 2024] introduced a multi-grained spatio-temporal learn-
ing network for video anomaly detection (VAD), incorporat-
ing tasks like continuity judgment and missing frame esti-
mation. Chen et al. [Chen et al., 2021] proposed a multi-
granular spatio-temporal graph network for skeleton-based
action recognition, modeling both coarse and fine-grained
motion patterns. Lastly et al. [Zhou ef al., 2022] designed
a multi-granular self-supervised learning framework to en-
hance feature generality through instance and group discrim-
ination.
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Figure 2: Overview of the LLIP dataset. Left: Configuration of
motion capture devices and visualization of keypoints on the human
body. Right: Visualization of low-light images under varying pixel
intensity levels (the values in the bottom-right corner indicate the
mean pixel intensity).

3 LLIP Dataset

The LLIP dataset! consists of 12,378 low-light images for
training and 4,814 images for testing. The training set in-
cludes images of eight individuals in two different scenes,
while the test set spans five distinct scenes, allowing for an
evaluation of model generalizability across varied conditions.
The subjects, comprising five males and three females, range
in height from 157 cm to 179 cm. All images are 400 x
712 pixels in resolution. The poses in the dataset are derived
from randomly sampled asymmetric actions, with each ac-
tion video beginning and ending in a T-pose. As illustrated
in Figure 2, the images were captured in real-world low-light
environments, and the corresponding pose information was
concurrently recorded using motion capture devices. These
devices capture data for 27 keypoints on the human body,
from which the coordinates of 17 significant joints are ex-
tracted for pose estimation.

As outlined in Table 1, the LLIP dataset offers several
advantages over existing low-light pose estimation datasets.
Firstly, unlike many alternatives, LLIP does not require a
custom-built dual-camera system, making the data collection
process more cost-effective and replicable. Secondly, the use
of motion capture devices for pose annotation eliminates the
need for manual annotation or pre-trained pose estimation
models. This not only ensures accurate pose labeling but also
reduces the associated labor and computational costs. Addi-
tionally, the LLIP dataset is provided in both low-light image
and video formats, making it suitable not only for low-light
pose estimation but also for tasks such as low-light human
action recognition and low-light video anomaly detection.

Lighting intensity is a critical factor influencing the degra-
dation of high-frequency information and the amplification
of noise in low-light images. To systematically investigate its
effect on human pose estimation (HPE) performance, we cat-

!The dataset is available on the project website: https://1lip2024.
github.io

Train/Test Resolution SC MCA SP
ExLPose 11405/2810 1920 x 1200 X X X
LLIP 12378/4814 400x712 ¢ V  V

Table 1: Comparison of LLIP and ExLPose in terms of Resolu-
tion, Standard Camera (SC), Motion Capture Annotation (MCA),
and Spatial-temporal Pattern (SP).

Testing set

Training set

CLL (0.3-0.6, 2542) m DLL (0.6-0.9, 3654) = CLL (0.3-0.6, 640) mDLL (0.6-0.9. 647)
mELL (0.9-1.8,3096) mFLL (1.8-3.2, 1187) mELL (0.9-1.8.2838) m FLL (1.8-3.2, 689)

Figure 3: Distribution of training and testing samples by mean pixel
intensity (range from 0.3 to 3.2) in the LLIP dataset.

egorized the images in the LLIP dataset based on their mean
pixel intensity into four distinct groups: Challenging Low
Light (CLL), Difficult Low Light (DLL), Extremely Low
Light (ELL), and Formidably Low Light (FLL). This clas-
sification provides a structured framework for analyzing how
varying levels of lighting intensity impact pose estimation ac-
curacy. Figure 3 illustrates the distribution of training and
testing samples across these categories, offering a detailed
overview of the dataset composition. Notably, samples in the
ELL and FLL categories account for over 70% of the test-
ing set, making the LLIP dataset particularly challenging for
low-light pose estimation tasks.

4 Method

In this paper, we propose a novel reference-free framework
for human pose estimation in low-light conditions, MHFCL.
As illustrated in Figure 4, MHFCL incorporates two distinct
streams: the RHR stream and the VPE stream. Inspired by
the Retinex theory [Guo et al., 2017], the RHR stream en-
hances the reflective component of the image in an unsuper-
vised manner, utilizing reflectance & illumination decompose
and a High-frequency aware loss to recover fine details ob-
scured by noise. Meanwhile, the VPE stream generates key-
point heatmaps directly from low-light images. Furthermore,
the Multi-grained Feature Consistency Learning mechanism
(MFCL) combines pixel-level high-frequency features with
pose heatmaps, thereby enhancing joint heatmap precision
and overall pose estimation performance.

4.1 Retinex-based High-Frequency Restoration

The RHR stream consists of a series of convolutional layers,
with strategically integrated Attention U-Net Block (AUB).
RHR ultimately producing a 4-channel output tensor, where
the first three channels correspond to reflectance (R) and
the fourth to illumination (L), with intermediate layers using
various convolution sizes and ReLU activations for channel
transformations and feature fusion, as shown in Figure 4.
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Figure 4: The architecture of the proposed Multi-grained High-frequency Feature Consistency Learning framework(MHFCL).

The AUB integrates attention mechanisms within the U-
Net architecture to enhance the feature representation capa-
bility. Taking AUB between the first and seventh convolu-
tional layers of the RHR stream as an example, the encoder
consists of three convolutional layers. The attention mech-
anism is implemented with three convolutional layers. The
first layer processes the input feature map. The second layer
processes the gate signal and resizes it using bilinear inter-
polation. The outputs of these two layers are summed, and
passed through a third convolutional layer with ReL.U acti-
vation, generating an attention map, which is subsequently
multiplied with the summed features to refine the final repre-
sentation. Subsequently, the intermediate feature map of the
encoder is also upsampled and concatenated with the illumi-
nation map. This concatenated feature is further processed
through the decoder that consists of two convolutional lay-
ers followed by ReLU activations. We introduce three losses
to enhance the recovery of fine details in low-light images,
especially under noisy conditions.

The ¢; is employed to mitigate high-frequency noise, es-
pecially from sharp image transitions or outliers, due to its
robustness to such artifacts.

Erecon ° I|RL—I||1 (1)

The lymoon [Wei et al., 2018] is designed to balance
the preservation of structural boundaries while smoothing
high-frequency texture features, effectively suppressing high-
frequency noise.

Esmooth = HIw : eXP(—W . Rw) + [y : eXp(—’y : RU)HQ (2)
where I, and I, represent the horizontal and vertical gradi-
ents of the input image I, R, and R, refers to the horizontal
and vertical gradients of reflectance components R, the bal-

ancing coefficient -y is set to 10 to enhance structural aware-
ness.

The leonse [Guo et al., 2020] ensures consistency across
the color channels, thereby preventing color imbalances that
could introduce abnormal high-frequency components.

gconst = (Ra - Ga)2 + (Ra - Ba)2 + (Ga - Ba)2 (3)

where R,, G,, and B, denote the average values of the red,
green, and blue channels.

4.2 Vision Transformer-based Pose Estimation

We developed a simple VPE stream based on the Vision
Transformer (ViT) architecture [Dosovitskiy et al., 2020],
which serves as a stream to capture the structural and part
high-frequency features of the human body. Following ViT
[Dosovitskiy er al., 2020], we divide each input image
into fixed-size patches and convert each patch into a vec-
tor of specific dimensions. The transformer block consti-
tutes the fundamental component of the ViT model, incor-
porating self-attention mechanisms and feedforward neural
networks. In the self-attention mechanism, each patch is
compared with other patches to compute their correlations
and obtain attention-weighted patch representations, @;,7 €
{1,..., H}. Following [Xu et al., 2022], we use the multi-
head attention to represent multiple projections, where there
are H different sets of learned projections instead of a single
attention function. The final patch representation is derived
by transforming the attention-weighted patch representation:

H, = MLP(= Concat(Oy, ...,05)W) 4)
where W is the output projection matrix.
Given the ground truth heatmap H,, € R92%768 of 3 hu-

man pose, we write our heatmap loss for H,, as:
1 & 2
gpose = N §
n=1

H, — H, (5)
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where NN refers the number of joints.

4.3 Multi-grained Feature Consistency Learning

The RHR stream operates at a pixel-level scale within low-
level vision models, focusing primarily on recovering de-
tailed information without explicit structural knowledge of
the human body. In contrast, the VPE stream emphasizes
both local and global body part structures, resulting in dif-
ferences in granularity in their representations. To address
this disparity, we propose a joint training approach that in-
tegrates the RHR stream with the VPE stream, introducing
a multi-grained high-frequency feature consistency learning
mechanism to ensure coherent feature representations across
both networks. We apply three convolutional layers and
bilinear interpolation operations to the output feature map
X € RO4X712x40 from the 7-th layer of the RHR stream.
The processed feature map X, € R192X768 is then aligned
with the heatmap X, € R'92X768 from the 11-th Trans-
former block of the VPE stream. Given the concatenated in-
put features, we apply a convolutional layer with 1 channel to
map and then normalize the output using layer normalization.
Then we utilize self-attention to capture spatial correlations
in the multi-grained feature map. Finally, we concatenate the
restored high-frequency feature map with the original pose
heatmap, resulting in X = [Xp,p, X] € R2X192X768 - Afer
passing this fused feature map through a convolutional layer
with 1 channel, we obtain the enhanced heatmap:

H = Conv(ReLU (X)) (6)

Subsequently, we obtain the enhanced heatmap that can be
dynamically optimized according to Eq. 5.

4.4 Loss Function
The total training loss £;,;4; 1S expressed as:

Etotal = )\l‘gpase + )\2‘€recon + )\3€smooth + )\4€const (7)
where A1, A2, A3, and )4 are the balance hyperparameters.

5 Experiment Results

5.1 Datasets

We conduct pose estimation experiments using three datasets:
the proposed LLIP dataset, which includes images captured
under low-light conditions, the ExLPose dataset, which com-
prises image pairs captured under low-light and well-lit con-
ditions, and the widely used MS-COCO keypoint dataset,
which comprises images captured under well-lit conditions.
ExLPose dataset [Lin et al., 2014]. The ExLPose dataset
contains 2,556 pairs of a low-light image and the correspond-
ing well-lit image. The data is collected with a dedicated
camera system and the pose annotations are generated by
the pre-trained HPE model with the help of manual correc-
tion. MS-COCO dataset [Lin et al., 2014]. The MS-COCO
dataset is a large-scale benchmark for human keypoint detec-
tion, comprising 150,000 labeled human instances for train-
ing, 5,000 images for validation, and 30,000 images for test-
ing. It has become the most widely used benchmark for train-
ing and evaluating pose estimation models. We utilized the
MS-COCO keypoints dataset to evaluate our method under
well-lit conditions, comparing it with other baselines.

5.2 Evaluation Protocols and Parameter Settings

Our experiments were conducted on an RTX 3090 platform
with a batch size of 6, utilizing the Adam optimizer. Dur-
ing the pre-training phase of the RHR stream, we augmented
the LOL training set with an additional 303 images from the
LLIP dataset, resulting in a total of 788 images. The initial
learning rate was set to 1 x 10~*. For the VPE stream, the
learning rate was set to 2 x 10~ Both streams were pre-
trained for 40 epochs. Subsequently, feature maps from the
penultimate block of the RHR stream were extracted and used
to enhance the heatmaps generated by the VPE stream. Joint
training was then performed for 100 epochs. During the pre-
training phase of the RHR stream, we applied regularization
coefficients: \; = 0, Ay = 0.1, A3 = 1, and \y = 0.5. For
the pre-training phase of the pose estimation network, we set
A1 = land Ay = A3 = Ay = 0. During the joint fine-tuning
phase, regularization coefficients were adjusted to \; = 1,
A=Az =AM =0.1.

To evaluate HPE performance on the MS-COCO dataset,
we use the standard Object Keypoint Similarity (OKS) metric
and report the Average Precision (AP). Without well-lit im-
ages, detection box annotation is challenging, as neither pre-
trained detectors nor manual annotations can provide accurate
boxes. To ensure accurate evaluation, we apply commonly
used metrics on the LLIP dataset: Mean per Joint Position
Error (MPJPE), Percentage of Correct Parts (PCP), Percent-
age of Correct Keypoints (PCK), and PC K}, which provide
a more reliable assessment in low-light conditions.

Method  Trained Flops MPIJPE| PCK@10 1

ViTpose X 598G 903 24.4

ViTpose v 59.8G 13.8 44.6
Ours v 252G 12.0 59.6

Table 2: Comparison of pose estimation performance on LLIP
dataset using various methods. “Trained” refers trained with LLIP.

5.3 Comparison with the State-of-the-art

Low-light HPE. Since the LLIP dataset does not include
paired well-lit images, existing dual-stream low-light meth-
ods cannot be directly evaluated. Instead, we select ViT-
pose [Huang et al., 2020], a model for well-lit conditions,
as a baseline due to its strong performance and single-stream
adaptability. Two experimental settings are considered: (1)
directly testing the pre-trained ViTPose model on LLIP and
(2) fine-tuning the pre-trained ViTPose model on LLIP before
evaluation. As shown in Table 2, the pre-trained model strug-
gles in low-light settings, while fine-tuning notably improves
its performance. Our method further surpasses the fine-tuned
ViTpose, demonstrating stronger robustness under low-light
conditions. These results underscore the importance of the
LLIP dataset for model adaptation and the effectiveness of
our specialized approach in enhancing pose estimation accu-
racy.

Figures 5 and 7 compare our method with ViTPose on the
LLIP and ExLPose datasets. On LLIP, where both models
were trained, our method consistently outperforms ViTPose,
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Figure 5: Qualitative results of our approach and comparison method on samples from LLIP dataset.

demonstrating superior precision. On ExLPose, where the
pre-trained models were directly tested, our method achieves
notably better results, showcasing its robustness in adapting
to unseen datasets. These observations further emphasize the
indispensable role of specialized low-light datasets and be-
spoke models in advancing low-light pose estimation.

Method

UDP [Huang ef al., 2020]
TokenPose [Li et al., 2021c]
HigherHRNet [Cheng et al., 2020]  154.3G  89.3 77.2
PRTR [Li et al., 2021al 21.6G 89.4 79.8
HRNetV1 [Wang et al., 2020b] 7.1G 89.5 80.7
DarkPose [Zhang et al., 2020] 329G 88.6 774
HRFormer [Yuan et al., 2021] 29.1G 91.0 83.6
ViTPose [Xu et al., 2022] 179G  90.7 832
ViTPose [Xu et al., 2022] 59.8G 91.4 85.2
PCT [Geng et al., 2023] 15.2G 912 847
Baseline 25.2G 90.8 86.3
Ours 25.2G 90.0 83.8

Flops  APso APrs
355G 92.0 843
221G 903 825

Table 3: Comparison of pose estimation performance on MS-COCO
test set using various methods.

Well-lit HPE. To evaluate the model performance in well-
lit conditions, we conduct experiments on the widely-used
MS-COCO dataset. As summarized in Table 3, our base-
line model, without RHR stream, achieves competitive per-
formance with SOTA methods. However, incorporating the
RHR stream leads to a slight performance decline, primar-
ily due to the presence of overexposure and high-frequency
noise in well-lit images. Although training on both low-light
and well-lit images benefits performance in well-lit scenar-
i0s, it compromises robustness under low-light conditions. In
contrast, our method preserves low-light robustness while en-
suring reliable performance in well-lit environments.

5.4 Ablation Study

Effect of RHR stream. To assess the impact of the RHR
stream on pose estimation, we conduct experiments under dif-
ferent mean pixel intensities (CLL, DLL, ELL, FLL). The re-
sults tabulated in Table 4 demonstrate that incorporating the
RHR stream significantly improves pose estimation accuracy
across varying pixel intensities. This enhancement is particu-
larly evident under Formidably Low Light (FLL) conditions.

Low-light ~Restored Estimated

Fast Fourier Transform

High-frequency loss High-frequency disorder

Low-light Restored  Estimated

Fast Fourier Transform

Image

Amplitude Spectrum

Figure 6: Two forms of high-frequency degradation in low-light con-
ditions: high-frequency loss and high-frequency disorder.

As shown in the Figure 6, through sample spectrum analy-
sis, we found that the RHR stream can effectively restore the
loss of high-frequency information and the disorder of high-
frequency information.

Performance on different mean pixel intensities. Pixel
intensity in an image generally leads to a more pronounced
degradation of high-frequency features and an increase in
noise. However, contrary to intuition, Table 4 shows that
weaker illumination does not necessarily result in larger er-
rors in pose estimation. In low-light images, despite reduced
illumination, higher ground reflectivity aids in distinguish-
ing the ground from the human body, resulting in a higher
PCK@10 value in FLL images compared to ELL. To further
test this, we applied gamma correction to adjust the intensity
of FLL images (Envr) to match ELL (Envg). As shown
in Table 5, higher ground reflectance improves pose estima-
tion under the same lighting conditions. This indicates that
in low-light settings, ground reflectivity plays a critical role,
unlike in well-lit environments.

Effect of VPE stream architecture variants. Table 6
shows that increasing the number of transformer blocks en-
hances pose estimation performance, with the model using
11 blocks achieving the highest accuracy. This indicates that
deeper architectures offer improved representation power for
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Figure 7: Qualitative results of our approach and comparison method on samples from ExLPose dataset.
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Table 4: Performance across different mean pixel intensities on the
LLIP dataset.

MPGPE | PCK@101 PCK@507
10.68 57.81 99.84
12.24 57.07 98.11

Envgp
Envg

Table 5: Pose estimation results under low and high ground reflec-
tivity conditions with identical pixel intensity.

pose estimation.

Metrics 5 Block 7 Block 9 Block 11 Block
MPIJPE | 15.92 18.08 17.39 12.00
PCK@101  45.47 35.71 37.92 59.64
PCK@501 96.41 98.01 95.80 98.40

Table 6: Effect of the number of transformer block in VPE.

Effect of training paradigms. In addition to using end-
to-end learning, we also test a two-stage training paradigm,
where we first train the RHR stream and then use the high-
frequency restored images to train the VPE stream. As tabu-
lated in Table 7, the two-stage scheme achieves comparable
performance with the end-to-end scheme in both well-lit and
low-light conditions. However, in complex backgrounds, the
performance of the two-stage scheme will significantly de-
grades as the severe interference of high-frequency informa-
tion and noise in the background, as illustrated in Figure 8. In
contrast, the end-to-end scheme prioritizes retaining the over-
all structure of the human body. Additionally, the inference
time for the two-stage scheme per frame is 0.70 ms, whereas
end-to-end is only 0.057 ms. Therefore, for all-weather HPE

GT GT

T-Stage E-to-E E-to-E

T-Stage

Figure 8: Qualitative results of challenging samples with different
training paradigms.

tasks, the end-to-end end-to-end is evidently superior to the
two-stage method.

well E-to-E  T-Stage low E-to-E  T-Stage
MPJPE | 12.00 11.81 | AP@501 90.00  87.50
PCK@101T 59.64 6045 | AP@7517 83.80 80.50
PCK@501T 9840 97.86

Table 7: Effect of training paradigm. The well/low refers to the
results in well-lit/low-light conditions. E-to-E and T-Stage refer to
the end-to-end scheme and two-stage scheme.

6 Conclusion

We address the challenge of HPE in low-light conditions
by introducing a new dataset, LLIP, and a novel reference-
free HPE framework, MHFCL. MHFCL incorporates a RHR
stream and a VPE stream, and enhances the strength of high-
frequency features related to human body parts through a
multi-grained feature consistency learning mechanism. Our
results demonstrate that the proposed framework significantly
enhances the accuracy of pose estimation in low-light condi-
tions, without requiring well-lit images as reference informa-
tion. Additionally, the proposed method achieves competi-
tive results on well-lit images from the COCO dataset. This
study demonstrates the efficacy of integrating high-frequency
restoration with pose estimation to address the complexities
of HPE under challenging lighting conditions. By eliminat-
ing the need for customized data collection equipments, our
framework offers a valuable solution for practical applica-
tions.
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