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Abstract
Major Depressive Disorder (MDD) is a prevalent
and severe mental disease. Functional Magnetic
Resonance Imaging (fMRI)-based diagnostic meth-
ods, which analyze Functional Connectivity (FC)
to identify abnormal functional connections, have
shown promise as biomarker-based approaches for
diagnosing depression. However, the high costs
of fMRI data result in small sample sizes, hin-
dering the effective identification of abnormal FC
patterns. Moreover, existing methods often over-
look the potential benefits of incorporating domain
knowledge into their models. In this paper, we pro-
pose KnowMDD, a novel knowledge-guided cross
contrastive learning framework for MDD diagno-
sis. By incorporating domain knowledge and em-
ploying data augmentation, KnowMDD addresses
data sparsity while improving robustness and inter-
pretability. Specifically, multiple atlases are used
to construct complementary brain graph represen-
tations. The default mode network, closely as-
sociated with depression, is introduced into the
contrastive learning paradigm for diverse subgraph
augmentations, while an attention mechanism cap-
tures global semantic relationships between brain
regions. Based on them, a cross contrastive learn-
ing is designed to learn robust representations
for accurate diagnosis. Extensive experiments
demonstrate the effectiveness, robustness, and in-
terpretability of KnowMDD, which outperforms
state-of-the-art methods. We also develop a demon-
stration system to show its practical application.

1 Introduction
Major Depressive Disorder (MDD) has become a preva-
lent and serious mental disease, characterized by decreased
energy and interest, persistent sadness, and even suicidal
ideation, plans, and attempts [Li et al., 2021b]. According to
the World Health Organization (WHO) statistics reports, over
300 million people worldwide are affected by MDD [WHO,
2017]. In 2023, more than 75% of patients in low and middle

∗Corresponding author.

income countries remain untreated [WHO, 2023]. Thus, it is
necessary to identify and diagnose MDD in a timely manner.

The diagnosis of depression can be categorized into subjec-
tive and non-subjective methods. Clinically, MDD diagnosis
primarily relies on subjective evaluation by doctors or stan-
dardized tools [Yasin et al., 2021], such as the Patient Health
Questionnaire (PHQ-9) and the Hamilton Depression Scale
(HAMD). However, subjective methods have notable disad-
vantages, that patients may under-report their symptoms and
mental state [Zhu et al., 2022] due to phenomena like “social
masking”. This may significantly increase the risk of misdi-
agnosis or missed diagnosis. In contrast, non-subjective di-
agnostic methods for MDD, such as electroencephalogram
(EEG), magnetic resonance imaging (MRI), and heart rate
variability (HRV) analysis, aim to identify MDD by analyz-
ing the data derived from these technologies. Among them,
functional Magnetic Resonance Imaging (fMRI) has attracted
lots of attention due to its non-invasive characteristics and su-
perior spatial resolution.

In the diagnosis of MDD, fMRI is a valuable tool to ana-
lyze brain activity and connectivity. By employing brain at-
lases to partition the brain into Regions of Interests (ROIs),
fMRI measures Blood Oxygen Level Dependent (BOLD) sig-
nal fluctuations to infer functional connectivity (FC) relation-
ships [Li et al., 2019; Ji et al., 2021]. FC has emerged as an
effective biomarker to identify MDD [Drysdale et al., 2017;
Zhang et al., 2023; Liu et al., 2023; Cui et al., 2023]. Studies
have shown that MDD patients present reduced FC between
the precuneus, superior occipital gyrus, and other ROIs [Stoy-
anov et al., 2022]. Moreover, specific brain networks, like
the Default Mode Network (DMN) and the Central Execu-
tion Network (CEN), show significant FC alterations among
MDD patients [Yan et al., 2019].

Motivation 1: Sample sparsity of fMRI data. The high
cost of fMRI data acquisition leads to small sample sizes of
most datasets, hindering the ability of traditional methods due
to insufficient data. A critical question thus arises: How can
we effectively address data sparsity while capturing abnor-
mal functional connectivity in MDD? To tackle this issue,
several artificial intelligence-based methods have been devel-
oped. Some methods adopt multiple brain atlases to model
brain regions and utilize Graph Neural Networks (GNNs) to
learn robust representations of brain networks [Yao et al.,
2021; Lee et al., 2024]. Others employ self-supervised learn-
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ing approaches, such as generative adversarial networks, au-
toencoders, and contrastive learning, to augment data and en-
hance their learning abilities [Oh et al., 2023; Noman et al.,
2024; Li et al., 2024].

Motivation 2: Incorporation of domain knowledge.
Existing models often overlook the potential benefits of in-
corporating domain knowledge into the model. In neuro-
science, MDD studies frequently focus on the DMN, a large-
scale brain network primarily comprising the dorsal medial
prefrontal cortex, posterior cingulate cortex, precuneus, and
angular gyrus [Buckner et al., 2008]. Previous studies [Yan
et al., 2019] have shown that self-focused rumination of
MDD, characterized by excessive focus and repetitive neg-
ative thinking, is closely associated with the DMN [Hamil-
ton et al., 2015]. This raises a question: Can incorporating
the DMN-specific knowledge into model design better cap-
ture neural activity patterns underlying self-focused rumina-
tion? With the strong correlation between the DMN and de-
pression, we argue that incorporating this knowledge could
improve the understanding and diagnosis of MDD.

To address these challenges, we propose a knowledge-
guided cross contrastive learning framework (KnowMDD)
for MDD diagnosis, which adopts contrastive learning aug-
mentation to alleviate data sparsity and introduces domain-
specific knowledge into the framework to enhance both learn-
ing ability and interpretability. The framework leverages mul-
tiple brain atlases and multimodal information to construct
multi-view brain graph representations. Within these graph
views, the DMN is incorporated into the contrastive learning
paradigm to generate diverse subgraph views for data aug-
mentation while preserving core functional representations.
Additionally, an attention mechanism is employed to learn
global semantic relationship between ROIs. Finally, a cross
contrastive learning strategy is utilized to learn robust repre-
sentations, facilitating accurate and robust MDD diagnosis.

The main contributions of this paper are as follows:

• We propose KnowMDD, a novel framework for MDD
diagnosis. This framework can accurately infer MDD
status while addressing data sparsity and effectively
leveraging domain knowledge.

• We design an effective cross contrastive learning-based
method, which utilizes multiple brain atlases to con-
struct brain graphs and augments graph views while pre-
serving MDD-specific knowledge, enabling the learning
of meaningful and robust representations.

• Extensive experiments validate the effectiveness, superi-
ority, robustness, and interpretability of our KnowMDD.
All the data and code are publicly available in the fol-
lowing repository 1. We also develop a demonstration
system to show its practical application.

2 Related Work
Machine learning techniques have been widely applied to
the MDD diagnosis, using abnormal FCs as biomarkers
for rapid and automatic classification. Traditional methods,

1https://github.com/ZJUDataIntelligence/KnowMDD

such as Support Vector Machines [Woo et al., 2017], Lo-
gistic Regression [Brown and Hamarneh, 2016], and Lin-
ear Discriminant Analysis [Du et al., 2018], have been em-
ployed to capture resting-state FC features, enabling hierar-
chical feature representations from connectome data. Upon
the development in image and object classification, convolu-
tional neural networks (CNNs) have also been used in func-
tional network modeling, e.g. BrainNetCNN [Kawahara et
al., 2017] and various CNN-based models exploring abnor-
mal FC states in brain disorders [Meszlényi et al., 2017;
Kam et al., 2019]. However, due to the irregularity, node dis-
order, and heterogeneous adjacency characteristics of brain
networks, deep learning models often fail to capture the intri-
cate topological and spatial information in these networks.

In the past years, GNNs have shown promise in capturing
structural information within brain networks. For instance, a
hierarchical graph feature embedding method was proposed
to consider both individual brain networks and global net-
works [Jiang et al., 2020]. The STAGIN model leverages
spatiotemporal attention mechanisms to learn dynamic brain
connectome graphs [Kim et al., 2021]. Another approach in-
troduced a multi-scale graph convolutional network that uti-
lizes a multi-atlas framework to co-train graph convolutional
modules [Yao et al., 2021]. Additionally, a multi-atlas fu-
sion method was developed for early and late fusion, com-
bining intra-atlas and inter-atlas relation features [Lee et al.,
2024]. Despite these advancements, due to the small sample
size of public datasets, most of these methods demonstrate
high task dependence and insufficient generalization ability,
limiting their broader applicability.

Recently, self-supervised learning methods have been pro-
posed for MDD diagnosis, leveraging their generalization ca-
pabilities. For example, the GAE-based model [Noman et
al., 2024] and the GC-GAN [Oh et al., 2023] have been pro-
posed to learn topological and functional connectivity pat-
terns. Graph contrastive learning (GCL), by constructing
positive and negative sample pairs, has shown effectiveness
in capturing high-level representations with strong robust-
ness and generalization. Popular methods include MGCL-
ACO [Zhang et al., 2023], which captures spatial similarity
through adaptive channel optimization and contrastive learn-
ing (CL), and multi-modal CL-based method [Li et al., 2024],
which integrates multi-modal data to extract heterogeneous
features. However, these work have paid limited effort to ex-
plore the potential of domain knowledge in the model design.
In this work, we aim to leverage multi-atlas to generate multi-
ple graph views, and employ contrastive learning to augment
graph views while introducing domain-specific knowledge in
the view augmentation process to generate diverse subgraph
views for robust representation learning.

3 Method
In this section, we propose a knowledge-guided cross con-
trastive learning framework for MDD diagnosis, as shown
in Figure 1. First, we construct the brain functional graph
leveraging multiple brain atlases and multimodal informa-
tion. Second, we design a knowledge-guided contrastive
learning to capture global semantic relationships using an at-
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(a) Multi-atlas-based Brain Functional Graph Construction

(b) Knowledge-guided Contrastive Learning

BOLD Signal

MDD

NC

…

…

Pearson

rest-fMRI

atlas

atlas 1

atlas 2

GCN

Attention

DMN-specific knowledge guided 
subgrah generation

DMN 

Pooling

Pooling

atlas 1

atlas 2

⊕
⊕

atlas 1

atlas 2

MLP

global representations cross-contrastive learning

H1

Z1

H2

Z2

Figure 1: Overview of the proposed KnowMDD framework, consisting of two main components: (a) Multi-atlas-based Brain Functional
Graph Construction: Brain functional graphs are constructed using BOLD signals extracted from multiple brain atlases. ROIs are defined
as nodes, with node features representing correlation coefficients and pathological information. Edges model abnormal FC. (b) Knowledge-
guided Contrastive Learning: Random walk encoding and attention encoding are performed on two brain functional graphs based on the
DMN network, generating four feature vectors denoted as [H1, Z1, H2, Z2], which correspond to representations derived from patients’ two
brain networks. These features are then fed into the cross contrastive learning strategy for the final robust representation.

L R
L R

(a) Brain Connectome of AAL

L R
L R

(b) Brain Connectome of Harvard

L R
L R

(c) Brain Connectome of Craddock

Figure 2: The brain connectome differences in FC between MDD and NC using three typical brain atlases (AAL, Harvard, and Craddock).
Red indicates increased FC between pairs of ROIs in MDD compared to NC, while blue indicates decreased FC. Certain ROIs consistently
exhibit enhanced or reduced connectivity across different atlases, whereas others show atlas-dependent variability in connectivity patterns.

tention mechanism and augment core graph views through
incorporating domain-specific knowledge. After that, a cross
contrastive learning strategy is adopted to learn the final ro-
bust representations.

3.1 Multi-atlas-based Brain Functional Graph
Construction

Brain atlases, e.g. AAL [Rolls et al., 2020], Harvard
[Kennedy et al., 1998] and Craddock [Craddock et al., 2012],
segment the brain into distinct ROIs based on functional or
structural perspectives, as shown in Figure 2. Different at-
lases may offer complementary representations of specific ar-
eas or networks. Here, we adopt two atlases, denoted as M1
and M2, to generate robust graph representations.

Each preprocessed fMRI dataset is associated with these
atlases, dividing the brain into Nm ROIs. FC is modeled as
an undirected graph Gm = (V m, Em), where nodes cor-
respond to atlas-defined ROIs. Voxel-level BOLD signals
within ROIs are averaged to obtain the mean BOLD sequence
Bm ∈ RNm×T . For the n-th ROI, the mean BOLD signal
is denoted as Bm

n = [b1, b2, . . . , bT ]
⊤, where T is the total

number of time points in the fMRI scan. FC is determined by
measuring the temporal correlation between the BOLD time
series of ROIs. Two ROIs are considered functionally con-
nected if their oxygen consumption patterns are temporally
synchronized. The strength of FC is quantified by the Pearson
correlation coefficient between their respective time series.

The construction of brain functional graphs is illustrated
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Figure 3: Flowchart of brain functional graphs construction

in Figure 3. The FC matrix FCm ∈ RNm×Nm

is derived
by the Pearson correlation coefficient, where each element
FCm

i,j represents the FC strength between the i-th and j-th
ROIs. To identify abnormal connectivity patterns in MDD,
a paired t-test is performed to compare FC between normal
controls (NC) and MDD, calculating the p-value for each ROI
pair. Connections with a p-value below a predefined threshold
(e.g. 0.05) are considered significantly different, indicating
the potential abnormal FC in MDD.

Additionally, to address the clinical and pathological het-
erogeneity across individuals, demographic information such
as age, gender, and other omics data is encoded into a feature
vector I ⊆ R1×d, where d represents the dimensionality of
pathological features. By merging the correlation coefficients
FCm with pathological features I , we construct integrated
node features X ⊆ RNm×(Nm+d) as shown in Equation 1.
To ensure a consistent dimensionality D across graph node
features, we use a multi-layer perceptron (MLP) to obtain the
node features Hm ⊆ RNm×D.

Xm = MLP(concat(FCm, I)) (1)

Thus, we construct multiple graphs, denoted as [G1, G2],
and fuse multimodal information to augment graph represen-
tations and improve the robustness of downstream analysis.

3.2 Knowledge-guided Contrastive Learning
KnowMDD leverages the functional relevance of DMN and
constructs functional subgraphs. By integrating global se-
mantic relationships and core graph features with domain-
specific knowledge, KnowMDD effectively learns the repre-
sentations of abnormal brain connectivity patterns.

A self-attention module is introduced to model the vary-
ing contribution of ROIs to FC patterns. the FCm is linearly
projected to obtain the query (Q), key (K), and value (V )
matrices, as defined in Equation 2, Where, WQ,WK ,WV ∈
RD×D′

are learnable parameter matrices, where D′ is the
projected feature dimension.

[Qm,Km, Vm] = [FCmWQ
m , FCmWK

m , FCmWV
m ] (2)

The attention weight matrix and the resulting output of the
attention module are calculated as shown in Equation 3.

Am = softmax(
QmK ′

m√
D′

),

Zm = AmVm

(3)

A global mean pooling operation is then applied to aggre-
gate the feature representations as described in Equation 4.

zm = pooling(Zm), zm ⊆ R1×D′
(4)

Subsequently, domain knowledge is utilized to guide the
identification and extraction of a biologically-based sub-
graph. To be specific, we employ a Graph Convolutional Net-
work (GCN) to encode the graph Gm and capture the poten-
tial functional abnormal relationships. The functional graph
integrates abnormal FC features through multiple GCN lay-
ers, with the feature update formula expressed in Equation 5.

K(l+1)
m = σ(D̃

−1/2
ÃD̃

−1/2
K(l)

m W (l)) (5)

Here, Ã is the adjacency matrix without self-loops, D̃ is the
degree matrix, K(l)

m represents the node features at the l-th
layer, Xm is the initial node features, W (l+1) is the learnable
weight matrix, and σ(·) is the non-linear activation function.

Informed by the established association between the DMN
and MDD, ROIs within the DMN and those functionally con-
nected counterparts are selected as core subgraphs. During
random walk encoding, the initial set of DMN nodes V m

DMN
is designated as the starting nodes, and the transition proba-
bility matrix is defined in Equation 6.

pmi,j = emi,j/
∑︂

k⊆Am(i)

emi,k (6)

Here, eai,j represents the connection between nodes i and j,
and Am(i) denotes the adjacency matrix for node i. The
random walk paths are represented as R = {v1, v2, ...vk, },
where v1 ⊆ V m

DMN , and k is the random walk step length.
Multiple random paths are generated from V m

DMN to gener-
ate the core subgraph Gm

sub. An MLP and a pooling layer are
then applied to extract knowledge-guided subgraph features,
as denoted in Equation 7.

hm = pooling(MLP (Gm
sub)), hm ⊆ R1×D′

(7)

By capturing global semantic relationships and integrating
biologically meaningful DMN subgraph embeddings, the pa-
tient’s features under the same atlas [hm, zm] are derived as
described in Equation 7 and Equation 3.

Cross-contrastive learning is leveraged to construct multi-
view, multi-atlas contrastive objectives, capture consistent
discriminative features across atlases, and reduce data noise
and sample scarcity. In a dataset with S patients, the fMRI
data of the i-th patient generates embedding pairs from two
atlases, denoted as si = [hi

1, z
i
1, h

i
2, z

i
2], where hi

1 and hi
2

are subgraph encoded features, and zi1 and zi2 are attention
encoded features. In KnowMDD, features from the same pa-
tient across atlases are treated as positive pairs (e.g. [hi

1, z
i
2]

and [hi
2, z

i
1]), whereas features from different patients (e.g.

[hi
1, z

j
2], i ̸= j) are treated as negative pairs. The contrastive

learning losses for these pair are defined in Equation 8 and
Equation 9.

Lhz
cl = − 1

N

n∑︂
i=1

log
exp(sim(hi

1, z
i
2)/τ)∑︁S

j=1 exp(sim(hi
1, z

j
2)/τ)

(8)
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Method Acc Sen Spec F1
SSGAN [Zhao et al., 2020] 65.16±4.41 68.15±7.96 61.90±6.15 66.96±5.03

GAE-FCNN [Noman et al., 2024] 65.07±5.56 69.74±9.09 60.00±7.16 67.29±6.22
WGAN GP [Li et al., 2021a] 65.12±3.91 67.58±6.82 62.44±5.51 66.79±4.56
GC-GAN [Oh et al., 2023] 66.84±4.25 70.24±7.89 63.14±8.35 68.72±4.57

GCN 64.53±2.20 75.00±4.07 52.80±4.31 63.69±2.26
MGRL [Chu et al., 2022] 64.01±3.11 63.92±6.35 64.13±6.97 64.82±3.66

MISO-DNN [Epalle et al., 2021] 65.92±3.69 63.04±14.06 69.06±12.55 65.00±7.85
MMTGCN [Yao et al., 2021] 66.87±3.15 68.19±9.82 65.4±5.02 67.88±6.43
Lee’s model [Lee et al., 2024] 69.59±3.15 68.99±7.72 70.21±4.31 70.07±4.72
KnowMDD-AAL&Harvard 74.39±1.95 79.19±10.46 69.54±12.52 73.88±1.71

KnowMDD-AAL&Craddock 73.26±1.57 76.07±10.09 70.74±9.61 72.93±1.60
KnowMDD-Harvard&Craddock 74.57±3.13 78.87±7.319 69.50±10.35 74.06±3.26

Table 1: Performance comparison of our KnowMDD with different methods on Site 20. The best performance is highlighted in bold, the
second-best performance is underlined.

Lzh
cl = − 1

N

n∑︂
i=1

log
exp(sim(hi

2, z
i
1)/τ)∑︁S

j=1 exp(sim(hi
2, z

j
1)/τ)

(9)

Here, sim(·) denotes the cosine similarity between two em-
bedding vectors. τ is a temperature hyperparameter that con-
trols the smoothness of the similarity distribution. The final
loss function is defined in Equation 10, where Lbce denotes
the binary classification loss, and λ is a balancing weight.
During training, the parameters of encoders, subgraph pro-
jection and predictors are iteratively updated to minimize L.

L = λ(Lhz
cl + Lzh

cl ) + Lbce (10)

4 Experimental Results
4.1 Experimental Settings
Datasets. The rs-fMRI data used in this study are obtained
from the multi-site public dataset, Rest-meta-MDD [Yan et
al., 2019]. We chose the dataset from Site 20 with the largest
number of depression samples, with 282 MDD/251 NC.
Implementation. The model is optimized using the Adam
optimizer with a batch size of 32, a learning rate of 0.0001,
and a dropout rate of 0.2. In the contrastive loss computation,
the temperature coefficient is fixed at 0.6. In the total loss
function, the weight ratio λ is set to 0.25. Three brain atlases
are utilized: the AAL [Rolls et al., 2020] atlas with 116 ROIs,
the Harvard [Kennedy et al., 1998] atlas with 112 ROIs, and
the Craddock [Craddock et al., 2012] atlas with 200 ROIs.
Evaluation Metrics. The experiment employs 5-fold cross-
validation and uses accuracy (Acc), sensitivity (Sen), speci-
ficity (Spec), and F1 score (F1) for performance evaluation.
Baselines. We consider 9 baselines for comparison, catego-
rized as follows: (a) 4 self-supervised learning methods, in-
cluding SSGAN [Zhao et al., 2020], GAE-FCNN [Noman
et al., 2024], WGAN-GP [Li et al., 2021a] and GC-GAN
[Oh et al., 2023]; and (b) 5 graph learning methods based
on multi-atlas, including the GCN model, MGRL [Chu et al.,
2022], MISO-DNN [Epalle et al., 2021], MMTGCN [Yao et
al., 2021] and Lee’s model [Lee et al., 2024].

4.2 Baseline Comparison
The experimental results are presented in Table 1. We observe
that KnowMDD demonstrates superior performance across
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Figure 4: Ablation study

all evaluation metrics, particularly in sensitivity. This im-
provement is attributed to the multi-atlas cross-contrastive
learning framework, which leverages domain knowledge and
global semantic relationships. KnowMDD can capture the
deep features and alleviate the limitations of single-atlas per-
spectives. Additionally, KnowMDD shows strong perfor-
mance in multi-atlas fusion experiments, with the combina-
tion of Harvard and Craddock atlases achieving the best per-
formance. This demonstrates the effectiveness of combin-
ing multi-atlas graph learning and self-supervised learning to
address the challenges of limited data samples. Meanwhile,
KnowMDD excels in sensitivity but its improvement in speci-
ficity is comparatively modest. This may be due to the addi-
tion of contrastive learning, which makes the model more fo-
cused on abnormal functional connectivity features, thereby
enhancing its sensitivity but limiting specificity gains.

4.3 Ablation Study
To evaluate the contribution of each component, we conduct
an ablation study on KnowMDD and its variants. Six variants
are compared: GCN uses GCNs to encode and concatenate
features from two atlases, GCN+Info adds the patient patho-
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logical information as node features, GCN+Info+Attn in-
troduces an attention mechanism, KnowMDD-DMN&Info
excludes both DMN-based subgraph generation and patho-
logical information, KnowMDD-DMN removes the DMN-
based subgraph generation, and KnowMDD-Info excludes
the pathological information. As shown in Figure 4, each
component effectively improves MDD diagnosis. Adding pa-
tient information to GCN improves 3.06% accuracy, while
its removal from KnowMDD leads to a 3.8% decrease, high-
lighting the importance of clinical heterogeneity. Excluding
the DMN subgraph sampling module also decreases accuracy.
Notably, when both domain knowledge components are re-
moved, KnowMDD performs worse than GCN, demonstrat-
ing the significant value of domain knowledge.

4.4 Robustness Study
To further evaluate the robustness and generalizability of
KnowMDD, we conduct experiments on data from three other
sites with the next largest sample sizes (Site 1, 21, and 25),
including 74 MDD/74 NC, 86 MDD/70 NC, and 89 MDD/63
NC, respectively. As shown in Table 2, results demonstrate
KnowMDD’s robustness and effectiveness across datasets
from diverse sources, validating its generalizability.

Site 1
Method Acc Sen Spec F1
MGRL 62.87±6.55 66.43±6.69 60.88±11.91 62.66±6.51
MISO-DNN 64.21±7.86 53.70±38.58 66.98±36.59 53.55±16.54
MMTGCN 60.83±7.97 58.24±15.47 67.56±19.58 60.50±7.98
Lee’s model 60.73±11.56 59.47±14.02 61.94±16.64 60.09±12.04
KnowMDD-A&H 66.97±7.13 56.93±7.67 79.55±16.84 66.53±7.34
KnowMDD-A&C 64.25±5.05 69.85±10.41 58.55±9.23 63.55±4.86
KnowMDD-H&C 64.92±8.91 68.96±10.57 60.74±7.96 64.51±8.98

Site 21
Method Acc Sen Spec F1
MGRL 63.81±2.99 75.50±14.27 50.81±13.37 61.41±2.32
MISO-DNN 64.54±10.11 76.54±18.14 50.04±6.05 62.47±9.20
MMTGCN 62.83±8.62 70.58±15.79 57.31±16.15 62.09±9.48
Lee’s model 63.61±9.46 63.13±12.77 64.31±11.07 63.17±9.79
KnowMDD-A&H 64.58±7.93 83.16±4.29 37.94±12.26 59.62±9.06
KnowMDD-A&C 68.41±6.91 71.05±11.52 64.72±6.25 72.17±6.72
KnowMDD-H&C 68.39±10.00 70.65±13.65 65.38±8.08 67.86±9.95

Site 25
Method Acc Sen Spec F1
MGRL 65.18±8.83 86.93±7.45 36.97±19.64 58.97±11.31
MISO-DNN 60.83±7.97 58.24±15.47 67.56±19.58 60.50±7.98
MMTGCN 64.11±6.17 78.76±11.09 46.49±8.84 61.87±7.22
Lee’s model 63.87±9.28 66.84±8.92 59.72±16.69 68.48±6.21
KnowMDD-A&H 67.10±4.71 66.64±8.98 68.05±11.28 70.17±3.87
KnowMDD-A&C 67.72±10.04 76.16±16.65 56.23±12.89 65.59±9.74
KnowMDD-H&C 68.47±16.75 93.74±7.74 37.57±26.79 61.72±20.83

Table 2: Baseline comparison across different datasets.

4.5 Transferability Study
We further evaluate the transferability of KnowMDD by di-
rectly applying the model trained on Site 20 to datasets from
Site 21 and Site 25, which having different data distribution.
From Table 3, KnowMDD achieves accuracies of 64.10% and
67.11% on datasets with different population distributions.
This strong performance is attributed to the integration of
pathological information and contrastive learning, which sig-
nificantly mitigates noise in small datasets and demonstrates
adaptability to heterogeneous populations.

Sites Atlas Acc Sen Spec F1

S21
AAL&Harvard 64.10 74.42 51.43 62.91

AAL&Craddock 63.46 73.26 51.43 62.33
Harvard&Craddock 64.10 60.47 68.57 64.08

S25
AAL&Harvard 67.11 84.27 42.86 63.46

AAL&Craddock 67.11 79.78 49.21 64.66
Harvard&Craddock 65.13 50.56 85.71 65.01

Table 3: Transferability performance of KnowMDD.

4.6 Hyperparameters Analysis
We analyze the impact of hyperparameters in KnowMDD, in-
cluding the step size of random walks k and learning rate
lr. We vary k from 2 to 8, with the results shown in Fig-
ure 5(a). Results reveal that the optimal k differs across atlas
fusions: k = 6 for AAL&Harvard and Harvard&Craddock,
while k = 3 for AAL&Craddock. Similarly, the learning
rate lr is analyzed by different values, as shown in Figure
5(b). The results indicate that the highest accuracy is achieved
when lr = 0.001. Increasing the lr to 0.01 or decreasing it to
0.0001 leads to a significant decline in performance.

2 3 4 5 6 7 872

73

74

75

AAL&Harvard
AAL&Craddock
Harvard&Craddock

(a) step size of random walks k
0.1 0.01 0.001 0.0001 0.0000150

55

60

65

70

75

AAL&Harvard
AAL&Craddock
Harvard&Craddock

(b) learning rate lr

Figure 5: Hyperparameters study for KnowMDD

4.7 Discussion
Significance analysis of ROIs in DMN. Analyzing FC dif-
ferences between individuals with MDD and NC is critical
for identifying potential biomarkers for MDD diagnosis. Us-
ing the AAL, Harvard, and Craddock atlases, we compare FC
differences between ROIs with higher p-values, as shown in
Figure 6. The chord diagram highlights significant FC dif-
ferences, with numerous arcs connecting DMN ROIs to other
regions, indicating the DMN’s importance in MDD diagno-
sis. ROIs such as PCUN, Angular, and PHG in the AAL at-
las, as well as L-AG, R-AG, L-apPHG, and L-aMTG in the
Harvard atlas, show strong connections. These findings sug-
gest MDD is characterized by abnormal FC within the DMN,
especially in regions related to memory, emotion regulation,
and self-reflection (e.g., PCUN, Angular, PHG, and MTG).
Significance analysis of attention module. We visualize the
top 20% ROIs with the highest attention weights in the Har-
vard&Craddoc atlases, as shown in Figure 7. Compared to the
FC changes in Figure 2, the attention module assigns higher
weights to most abnormal connections, revealing the varying
functional significance of brain regions in depression. Be-
sides, differences in activation patterns are observed between
the left and right hemispheres. Certain areas exhibit sym-
metric activation, while others show asymmetry, potentially
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(c) Chord Diagram of Craddock

Figure 6: FC differences between ROIs with higher p-values, under the AAL, Harvard, and Craddock atlas. Red arcs represent increased FC,
and blue arcs represent reduced FC. This highlights abnormal FC within DMN, emphasizing its importance in MDD diagnosis.

(a) Harvard (b) Craddock

Figure 7: Visualization of top 20% ROIs with the highest attention weights, highlighting the differing functional significance of ROIs in MDD
diagnosis and reflecting the lateralization of brain functions.

reflecting brain functional lateralization. These findings un-
derscore the critical role of the attention mechanism.

4.8 Demonstration System
To explore KnowMDD’s usability, we develop a demonstra-
tion system for MDD diagnosis, as shown in Figure 8. Users
can upload fMRI data via the “upload” button and process
BOLD sequences via the “BOLD upload” button. By click-
ing the “Prediction” button and selecting an atlas from the
dropdown menu, users can view FC differences between the
patient and the average of NC, along with the final predic-
tion result and a detailed diagnostic analysis. This system has
been trialed in local hospitals as a diagnostic reference tool.

5 Conclusion
In this paper, we propose a novel method KnowMDD for ma-
jor depressive disorder diagnosis. This is a knowledge-guided
cross-contrastive learning model that employ contrastive
learning paradigm incorporating domain-specific knowledge,
to alleviate data sparsity and improve robustness and inter-
pretability. Multiple atlases are used for multi-view graph
representation learning. By embedding domain-specific
knowledge, multimodal information is used to alleviate clin-
ical heterogeneity, and the DMN is incorporated into the

Figure 8: The demonstration system for MDD diagnosis

contrastive learning paradigm to generate diverse subgraph
views for data augmentation. KnowMDD offers a more sci-
entifically grounded MDD diagnosis. Extensive experiments
demonstrate the effectiveness, robustness, and interpretabil-
ity of our method. We also develop a demonstration system
to show the practical application, making a promising step
toward the real-world deployment of accurate and reliable
MDD diagnostic tools.
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Buza, and Zoltán Vidnyánszky. Resting state fmri
functional connectivity-based classification using a
convolutional neural network architecture. Frontiers in
neuroinformatics, 11:61, 2017.

[Noman et al., 2024] Fuad Noman, Chee-Ming Ting, Hak-
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