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Abstract

Anomalies often occur in real-world information
networks/graphs, such as malevolent users, mali-
cious comments, banned users, and fake news in
social graphs. The latest graph anomaly detection
methods use a novel mechanism called truncated
affinity maximization (TAM) to detect anomaly
nodes without using any label information and
achieve impressive results. TAM maximizes the
affinities among the normal nodes while truncat-
ing the affinities of the anomalous nodes to iden-
tify the anomalies. However, existing TAM-based
methods truncate suspicious nodes according to a
rigid threshold that ignores the specificity and high-
order affinities of different nodes. This inevitably
causes inefficient truncations from both normal
and anomalous nodes, limiting the effectiveness of
anomaly detection. To this end, this paper proposes
a novel truncation model combining contextual and
global affinity to truncate the anomalous nodes.
The core idea of the work is to use contextual trun-
cation to decrease the affinity of anomalous nodes,
while global truncation increases the affinity of nor-
mal nodes. Extensive experiments on massive real-
world datasets show that our method surpasses peer
methods in most graph anomaly detection tasks. In
highlights, compared with previous state-of-the-art
methods, the proposed method has +15% ~ +20%
improvements in two famous real-world datasets,
Amazon and YelpChi. Notably, our method works
well in large datasets, Amazin-all and YelpChi-all,
and achieves the best results, while most previous
models cannot complete the tasks.

1 Introduction

Graph anomaly detection (GAD) aims to identify patterns
that significantly deviate from the majority within a graph.
Depending on the detection task, it can be categorized into
three levels: node-level (Fig.1(a)), edge-level, and subgraph-
level.  With the widespread availability of information
through anonymous accounts on commercial websites and
telecommunications networks, these platforms have become
prime targets for fraudsters and attackers seeking to spread
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Figure 1: The motivation of the work. (a) original graph with an
anomaly. (b) Insufficient Truncation; (c) Indistinguishable Trunca-
tion; (d) Excessive Truncation.

normal

normal

misinformation, cause disruptions, and engage in malicious
activities [Pourhabibi er al., 2020]. Due to its broad practi-
cal applications, node-level graph anomaly detection has gar-
nered significant research interest [Pourhabibi et al., 2020;
Feng et al., 2022; Tang et al., 2022; Fan et al., 2020], partic-
ularly in areas such as financial transaction networks and so-
cial networks. For instance, detecting anomalous accounts is
crucial as they may have fraudulent transactions [Tang er al.,
2022]. Likewise, social networks often contain anomalous
nodes, such as social bots that disseminate rumors and false
information [Feng er al., 2022]. Therefore, effective node-
level graph anomaly detection plays a crucial role in enhanc-
ing the security and reliability of complex networks by mit-
igating fraudulent activities and ensuring data integrity. For
convenience, all references to graph anomaly detection in the
following article will specifically refer to node-level GAD.
Graph neural networks (GNNs) have been widely used in
graph anomaly detection (GAD) by leveraging their ability
to capture complex graph structures. Due to the frequent up-
dates and changes in real-world networks, it is generally dif-
ficult to provide complete label information for GNN mod-
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els. As aresult, traditional supervised learning algorithms are
not well-suited for graph anomaly detection tasks. Existing
self-supervised GNN-based approaches for GAD can be cate-
gorized into reconstruction-based and contrastive-based self-
supervised learning methods, such as DOMINANT [Ding
et al., 2019] and ComGA [Luo et al., 2022], which detect
anomalies by reconstructing adjacency and attribute matri-
ces and identifying nodes with high reconstruction errors, as-
suming that anomalous nodes deviate significantly from nor-
mal patterns. On the other hand, self-supervised learning ap-
proaches, including Cola[Liu ef al., 2021], utilize contrastive
and generative learning objectives to extract meaningful node
representations and identify irregularities based on relational
inconsistencies. While reconstruction-based methods mini-
mize the reconstruction error, resulting in numerous cases in
which non-trivial nodes are misidentified, contrastive-based
learning methods randomly generate the augmented graphs,
which become unstable and do not achieve optimal perfor-
mance in real-world data environments. In recent years, the
truncated affinity maximization (TAM) method [Qiao and
Pang, 2024], based on the homogeneity assumption, has
achieved state-of-the-art results in anomaly detection. This
approach learns node representations for anomaly identifica-
tion by maximizing the truncation affinity between a node and
its neighbors while truncating the affinities of the anomalous
nodes to identify the anomalies.

Existing TAM methods typically truncate suspicious nodes
based on a rigid or predefined threshold, such as one com-
puted using Euclidean distance. However, this approach
overlooks the specificity and high-order affinities of differ-
ent nodes, leading to suboptimal truncation performance. For
instance, as illustrated in Fig.1(b), an insufficient truncation
distance threshold may fail to remove all edges between nor-
mal and anomalous nodes, resulting in incomplete truncation.
Moreover, as shown in Fig.1(c), an indistinguishable trunca-
tion threshold not only fails to effectively separate anoma-
lous edges but may also mistakenly truncate normal edges be-
tween normal nodes, further complicating the detection pro-
cess. Conversely, as depicted in Fig. 1(d), an excessively high
truncation threshold leads to over-truncation, which removes
most of the edges of nodes. This, in turn, results in the affin-
ity of the node being calculated as zero, making it impossible
to detect anomalies. In summary, the use of rigid truncation
thresholds in existing methods significantly hampers the ac-
curate calculation of node affinities, ultimately reducing the
effectiveness of anomaly detection.

To this end, we propose GCTAM, a global and contextual
truncation affinity combined maximization model for unsu-
pervised graph anomaly detection. Specifically, we intro-
duce a contextual affinity truncation module that truncates the
edges between normal and anomalous nodes, effectively re-
ducing anomaly affinity while preserving the affinity of nor-
mal node relationships, which enhances the discriminative
capability of our framework, thereby ensuring robust perfor-
mance in downstream anomaly detection tasks. Secondly, we
design a global affinity truncation module based on the ho-
mogeneity assumption. This model constructs a global affin-
ity truncation graph that enriches edge connectivity between
normal nodes, aiming to increase the affinity of nodes. Doing

so further enhances the performance of the contextual trunca-
tion affinity module. Finally, we introduce shared parameter
graph convolution networks (GCN5) to integrate node repre-
sentations from both the contextual and global affinity trunca-
tion graphs, and the unified representation is better equipped
to distinguish the local affinities of normal nodes from those
of anomalous nodes. Through extensive experimental com-
parisons on seven real-world GAD datasets, empirical results
demonstrate that GCTAM outperforms eight competing mod-
els. Notably, on more challenging datasets, GCTAM achieves
+15% ~ +20% improvements in AUROC and AUPRC com-
pared with the best-performing competitor. The code can be
found at https://github.com/kgccc/GCTAM.
In summary, our contributions are as follows:

* Based on the homogeneity assumption, we introduce a
contextual affinity truncation model to address the chal-
lenges of insufficient, indistinguishable, and excessive
truncation.

We further present a global affinity truncation model that
improves node affinities within the global affinity trun-
cation graph, facilitating the contextual affinity trunca-
tion model to learn more discriminative node represen-
tations for effective anomalous node detection.

We propose the model GCTAM that effectively in-
tegrates the contextual affinity truncation (CAT) and
global affinity truncation (GAT) modules, enhancing
the overall performance through their complementary
strengths. Empirical results on seven real-world GAD
datasets demonstrate that our GCTAM model signifi-
cantly outperforms eight competing models.

2 Related Work

In this section, we briefly introduce reconstruction-based self-
supervised learning, contrastive-based self-supervised learn-
ing, and affinity-based unsupervised learning methods.

2.1 Reconstruction-based Self-Supervised
Learning

Reconstruction-based self-supervised methods usually use
a graph auto-encoder (GAE) focusing on learning a node
representation of a GAD by minimizing errors in recon-
structing node attributes and graph structures. For exam-
ple, DOMINANTI[Ding et al., 2019] pioneered the first gen-
erative GAD method to learn node embeddings by mini-
mizing the reconstruction error of attribute and adjacency
matrices while exploiting attribute and topological features.
AnomalyDAE[Fan et al., 2020] decouples attribute and struc-
tural encoders to efficiently model interactions. ComGA [Luo
et al., 2022] incorporates community detection. ANOMA-
LOUS [Peng er al., 2018] jointly considered CUR decompo-
sition and residual analysis for anomaly detection in attribute
networks. These methods ignore the anomaly-discriminative
property of abnormal nodes in anomaly monitoring, thus lim-
iting their anomaly detection capabilities.

2.2 Contrastive-based Self-Supervised Learning

For contrastive learning-based methods, CoLA [Liu er
al., 2021] addresses challenges with a contrastive learn-
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Figure 2: An overview of the GCTAM framework. The contextual truncation graph G® truncates the edges between normal and anomaly
nodes to decrease the affinity of anomaly nodes. Conversely, the Global Truncation Graph G™ reinforces edges between normal nodes to

increase their affinity.

ing paradigm, using a discriminator to detect inconsisten-
cies between the target node and the neighbor subgraph em-
beddings. ANEMONE [Zheng et al., 2021a] introduces a
patch-level contrastive task for multi-scale anomaly detec-
tion. GRADATE [Duan et al., 2023] improves the frame-
work through graph augmentation and multi-view contrast.
SL-GAD [Zheng et al., 2021b] combines attribute reconstruc-
tion and node-subgraph contrast, while Sub-CR [Zhang et al.,
2022] uses a masked autoencoder and graph diffusion to fuse
attributes with local and global topological information. Al-
though these methods build classification models on the re-
lationship between nodes and context subgraphs, this group
of methods is not designed for the task of anomaly detection,
and their performance depends largely on the relationship be-
tween pre-tasks and anomaly detection.

2.3 Affinity-based Unsupervised Learning

Apart from the two main categories, an anomaly detection
method based on the homogeneity assumption, TAM [Qiao
and Pang, 2024], has achieved the best results by learning the
node representations for our anomaly measurements by max-
imizing the local affinity between a node and its neighbors.
Although TAM achieves the best results, it ignores the speci-
ficity of different nodes by truncating suspicious nodes based
on the rigid Euclidean distance threshold.

3 Method

This section presents GCTAM, a model that integrates con-
textual and global truncated affinity maximization. As shown
in Fig. 2, it consists of two key modules: contextual affinity
truncation (CAT) and global affinity truncation (GAT). CAT
iteratively removes anomalous edges to reduce anomaly affin-
ity while retaining normal ones. GAT constructs a global

affinity graph to enhance normal node affinities, further re-
inforcing CAT’s effectiveness.

3.1 Preliminaries

We tackle unsupervised anomaly detection on an attributed
graph. Supposing that G = (V, A, X) is an attributed graph
with N nodes, where V = {v1,--- , vy} denotes its node set.
Then, we denote the matrix X € RV*? as the attributes’ fea-
ture of all nodes where x; € R? is the d-dimensional attribute
vector of node v;. And A € {0, 1}V *¥ is the adjacency ma-
trix of graph G with A;; = 1 if v; and v; are connected. The
proposed model aims to learn an affinity score, AS(-), such
that AS(v) > AS(v') for any v € V,,,v" € V,, where V,,
and YV, denotes the set of normal and abnormal nodes, re-
spectively. According to the nature of GAD, it is typically
assumed that |V, | > |V,|.

3.2 CAT: Contextual Affinity Truncation

In this paper, we propose a module, CAT, designed to pre-
serve edges between normal nodes while effectively truncat-
ing edges connecting normal and anomalous nodes based on
contextual affinity among their neighbors. By avoiding re-
liance on a fixed Euclidean distance, CAT reduces the risk of
incorrect edge truncation. This approach keeps the affinity
among normal nodes while effectively decreasing the affin-
ity of anomalous nodes. In detail, it consists of two impor-
tant processes: (1) selecting the normal edge to be preserved
based on each node’s cosine similarity with its neighbors, and
(2) truncating the anomaly edges based on contextual affinity.
First, we calculate the cosine similarity between the at-
tribute features X. Then, the result is combined with the orig-
inal adjacent matrix A through the Hadamard Product (®) to
establish a similarity-based graph adjacent matrix S.
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Then, we select top-n nodes similar to each node as its con-
textual candidate nodes and set the edges to 1.0. Meanwhile,
we set the rest of the edges in S to zero and create a contextual

adjacent matrix A, as Eq.(2).
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A 1, Sij S top—n(Si)
E 0, Sij ¢ top-n(Si)

where top-n(S;) refers to top-n largest similarity in S; and
N (v;) is the neighbors of node v;. Thus, it is easy to observe
that the contextual adjacency matrix A consists of the relation
between the nodes and their contextual neighbors.

After, similar to the similarity-based graph adjacent ma-
trix .S, we create an Euclidean Distance-based graph adjacent
matrix E, as Eq.(3).

d
E=E0A Eij= | (@is— k) 3)
k=1

where x; ;, represents the values of nodes v; in the k-th feature
dimension, and d is the dimensionality of the feature space.
The given formulation represents the matrix E is derived by
the Hadamard Product of the distance matrices E and the ad-
jacency matrix A, and the elements of matrix E are calculated
using the Euclidean distance.

Then, we combine the distance matrix E with the similarity
matrix S to compute the contextual affinity matrix C, which
is formulated as follows:

C = (1 — Normalize(E))® S “)

where Normalize(-) is the normalization operation to
transfer the value space of E the same as S. Next, we truncate
the anomaly edges based on the contextual affinity matrix C
and remove anomaly edges more accurately by considering
both Euclidean distance and Cosine similarity.

A?j =0 (01'in7]')

>;Cij ©)
0;j =Cij — ———+
YT V()
Here, o(-) is the binary step function where o(x) = 1 if
x > 0, and o(z) = 0 if x < 0. Besides, NV (v;) denotes the

neighbors of a node v;. Since the term % calculates the
average affinity of node v;, 0;; represents the truncation when
the affinity between v; and v; is lower than the average affin-
ity. Based on the above analysis, the Eq. (5) represents the
further truncation if an edge is not selected in the contextual
adjacent matrix A. Meanwhile, the maximum truncation is
limited to the ratio < S of the total edges of the graph. Here,
[ is a hyperparameter that will be discussed in the experi-
ment. The outcome, A®, is a final truncated adjacency matrix
that effectively filters out edges failing to meet the specified
contextual affinity threshold.

Finally, the proposed contextual affinity truncation mech-
anism, which integrates contextual affinity with Euclidean
distance, enables more precise preservation of normal edges
while effectively truncating anomalous edges to reduce the
affinities of anomalous nodes. The resulting truncated graph
G® is defined as follows:

G® = {V,X,A%®} 6)
3.3 GAT: Global Affinity Truncation

Based on the assumption that similar nodes are more likely to
have normal edge relationships, we designed the global affin-
ity truncation graph. This graph further enhances the con-
textual truncation module by increasing the affinities of nor-
mal nodes. Two key processes are involved to synthesize this
graph effectively: (1) node feature projection, which para-
metrically projects node features to a suitable space, and (2)
global affinity adjacency matrix synthesis, which constructs
adjacency matrices based on pairwise similarity.

First, we applied a multilayer perceptron (MLP) to project
the features of nodes with different feature distributions X
into a unified feature space Z, which is computed by:

Z = MLP(X) (7

To construct the global affinity adjacent matrix, we then

calculate the node-to-node similarity based on the unified fea-

ture space Z. The equation (8) presents the process for calcu-
lating the node similarity:

S=27-7" (8)
where S € RV*¥ is the global affinity matrix and N is the
total number of graph nodes. ~

The global affinity adjacent matrix S is usually dense and
represents a fully connected graph, which is often not mean-
ingful for most applications and can lead to expensive com-
putational costs. Therefore, we apply the k-nearest neighbors
(kNN)-based sparsification on S. Specifically, we retain the
edges with the top-k connection values for each node and set
the rest to zero. Let A* represent the sparse global affinity
matrix, which is defined as:

x L, Slj € top_k(gi)a
v 07 Sl] ¢ top_k(sl)a
where top-k($S;) is the set of top-k values of row vector S;.
At last, by combining the graph-independent node feature
Z and the sparse adjacent matrix A, we have the global affin-
ity truncation graph G* which can be expressed as follows:

(€))

G ={V,X,A%} (10)

3.4 Affinity Combined Maximization

So far, we have obtained the contextual truncation graph G®
and the global affinity truncation graph G*. GCTAM is de-
signed to learn a GNN-based affinity combined maximiza-
tion model that maximizes the affinity of normal nodes while
decreasing the affinity of anomaly nodes. Specifically, the
projection from the graph nodes onto new representations us-
ing GNN layers. In this work, we employ graph convolution
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networks (GCNs) [Kipf and Welling, 2016] due to their com-
putational efficiency. The node representations are computed
as follows:

hy
H® =GNN®(G®) = | :
by (1)
hj
H* =GNN®(G*) = |
hy

where © denotes the shared learnable parameters. Thus, we
can notice that H® and H* represent the node representations
obtained from the contextual truncation graph G® and the
global affinity truncation graph G*, respectively.

Affinity Score Calculation. We calculate the local affinity
of each node to its neighbors to exploit this homophily prop-
erty for unsupervised GAD. The local affinity can be defined
as an averaged affinity to the neighboring nodes:

1 h® . h®;
AS@ ;) = 7 ]’
@)=y 2 meime
v EN® (v;) 18 11T 12)
1 h¥-h*.
AS*(0) = D e
V@l 2 Tl

where N'®(v;) and N*(v;) are the neighbor sets of node
v; in the contextual affinity truncation graph G® and the
global affinity truncation graph G*, respectively. Similarly,
AS® (v;) and AS™* (v;) represent the affinity score of the node
v; in the two types graphs. The larger the affinity, the more
likely the node is normal, while a smaller affinity indicates a
higher probability that the node is anomalous.

Learning Objective. Finally, our optimization objective is
maximizing the node affinities based on the contextual affin-
ity truncation graph G® and global affinity truncation graph
G*. Since we reduce the affinities of anomalous nodes in the
contextual affinity truncation graph, we enhance the affinities
of normal nodes in the global affinity truncation graph. By
maximizing the node affinities, we can effectively distinguish
between normal and anomalous nodes. The optimization ob-
jective function is formulated as follows:

N
L= m@in (—z; (AS® (v;) +AS*(vi))> (13)

By optimizing the above equation, the local affinity of each
node can be maximized based on the learned node representa-
tions, H® and H*, derived from the contextual affinity trun-
cation graph G® and the global affinity truncation graph G*.

4 Experiment

4.1 Experiment Settings

Datasets. We conduct the experiments on seven widely used
publicly available real-world GAD datasets from diverse so-
cial networks, and citation networks, including Amazon [Dou

et al., 2020], YelpChi [Kumar et al., 2019], ACM [Tang et
al., 2008], Facebook [Xu et al., 2022], and Reddit. The ACM
dataset contains two types of injected anomalies, contextual
and structural anomalies [Liu er al., 2021; Ding et al., 2019],
that are nodes with significantly deviated graph structure and
node attributes, respectively. The other six datasets contain
real anomalies. The statistics of all datasets are shown in Ta-
ble 1.

Dataset Type R/l Nodes Edges Attributes Anomalies(Rate)
Amazon Co-review R 10244 175,608 25 693(6.66%)
YelpChi Co-review R 24,741 49315 32 1,217(4.91%)
ACM Citation Networks I 16,484 71,980 8,337 597(3.63%)
Facebook  Social Networks R 1,081 55,104 576 27(2.49%)
Reddit Social Networks R 10,984 168,016 64 366(3.33%)
Amazon-all Co-review R 11,944 4,398,392 25 821(6.87%)
YelpChi-all Co-review R 45,941 3,846,979 32 6,674(14.52%)

Table 1: The statistics of seven datasets. The R/I represents the
datasets with Injected/Real anomalies.

Baselines. GCTAM is compared with a total of eight state-
of-the-art (SOTA) methods. The three contrastive-based
self-supervised methods are CoLA [Liu er al., 2021], SL-
GAD [Zheng et al., 2021c], and HCM-A [Huang et al., 20211,
while four are reconstruction-based self-supervised methods,
namely DOMINANT [Ding et al., 2019], iForest [Liu et al.,
2012], ANOMALOUS [Peng et al., 2018] and ComGA [Luo
et al., 2022]. One semi-supervised model, GGAD [Qiao
et al., 2024]. Additionally, GCTAM is compared with the
affinity-based SOTA method, TAM [Qiao and Pang, 2024].
Evaluation Settings. Following [Qiao and Pang, 2024;
Chai et al., 2022; Pang et al., 2021; Wang et al., 2022;
Zhou et al., 2022], two popular and complementary evalua-
tion metrics for anomaly detection, Area Under the Receiver
Operating Characteristic Curve (AUROC) and Area Under
the precision-recall curve (AUPRC), are used. Higher AU-
ROC/AUPRC indicates better performance. The reported av-
erage and standard deviation of AUROC and AUPRC results
are averaged over 5 runs with different random seeds.

4.2 Main Results

The AUROC and AUPRC results for the seven real-world
GAD datasets are reported in Table 2. For most of the
datasets, GCTAM consistently outperforms all competing
methods in both AUROC and AUPRC. However, it achieved
weaker performance than CoLA and TAM, which may be
caused by the low homophily distribution of normal nodes
and anomaly nodes in the Reddit dataset. Moreover, we
observe that the TAM model achieves the second-best per-
formance among all compared methods, highlighting that
the truncated affinity maximization approach is better suited
for node-level graph anomaly detection than other meth-
ods. Notably, on the challenging Amazon dataset, GCTAM
achieves a substantial improvement of +11.26 in AUROC and
+24.35 in AUPRC over GGAD, the best-performing competi-
tor. Similarly, on the Yelp dataset, GCTAM demonstrates a
remarkable enhancement of +16.20 in AUROC and +3.64 in
AUPRC over GGAD. Moreover, for the large-scale Amazon-
all dataset, GCTAM outperforms TAM by +4.13 in AUROC
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Metric Method Amazon  YelpChi ACM Facebook  Reddit = Amazon-all YelpChi-all

iForest (2012) 56.21+0.8 41.20+4.0 51.18+1.8 53.82+1.5 43.63+2.0 - -
ANOMALOUS (2018) | 44.57+0.3 49.56+0.3 68.56+6.3 90.21+0.5 53.87+1.2 - -
DOMINANT (2019) | 59.96+0.4 41.33+1.0 85.69+2.0 56.77+0.2 55.55+1.1 - -

CoLA (2021) 58.98+0.8 46.36+0.1 82.33+0.1 84.34+1.1 60.28+0.7 74.36+1.2 50.77+0.9
AUROC SL-GAD (2021) 59.37+1.1 33.1243.5 84.79+0.5 79.36+0.5 56.77+0.5 - -
HCM-A (2022) 39.56+1.4 4593+0.5 80.60+0.4 73.87+3.2 45.93%1.1 - -
ComGA (2022) 58.95+0.8 43.91+0.0 82.21+£2.5 60.55+0.0 54.53+0.3 - -

TAM (2023) 70.64+1.0 56.43+0.7 88.78+2.4 91.44+0.8 60.23+04  84.76+0.7 58.18+0.5

GGAD (2024)* 73.1240.8 62.80£0.9 36.91+2.1 70.66£3.6 60.07+0.8  82.30+1.1 55.34+1.2

GCTAM(ours) 84.38+1.4 79.00+0.5 90.77+1.5 92.38+0.3 59.21+0.6  88.89+0.6 59.57+0.4

A 111.26 116.20 11.99 10.94 14.13 11.39

iForest (2012) 13.71£0.2  4.09+0.0  3.7240.1  3.16£0.3  2.69+0.1 - -
ANOMALOUS (2018) | 5.58+0.1  5.19+0.2  6.35+0.6 18.98+04  3.75+0.4 - -
DOMINANT (2019) 14.24+0.2  3.95+2.0 44.02+3.6 3.14+4.1 3.56+0.2 - -

CoLA (2021) 6.7740.1  4.48+0.2 32.35+1.7 21.06+1.7 4.49+0.2 20.12+0.4 8.48 £0.7
AUPRC SL-GAD (2021) 6.34+0.5  3.50+0.0 37.84+1.1 13.16£2.0 4.06+0.4 - -
HCM-A (2022) 527415 28712 3413204 7.13x04  2.87+0.5 - -
ComGA (2022) 11.53+0.5 4.23+0.0 28.73x1.2 3.54+0.1  3.74+0.1 - -

TAM (2023) 26.34+0.8 7.78+0.9 51.24+1.8 22.33%£1.6 4.46+0.1 43.46+0.9 18.86+0.6

GGAD (2024)* 19.10£0.8 12.40+1.5 3.00£0.7 6.47+1.1  4.05%0.7 42.19+0.8 17.79+1.5

GCTAM(ours) 50.69+8.1 16.04+1.0 52.10+0.7 22.81+0.6 4.17+0.1 67.18+4.8 20.13+0.7

A 124.35 13.64 10.86 10.48 123.72 11.27

Table 2: AUROC and AUPRC results on seven real-world GAD datasets with injected/real anomalies. The best performance per row is
boldfaced, with the second-best underlined. — indicates that the result is not available in the TAM. A represents the improvement (1) or

degradation (|) compared to the current best baseline method.

and +23.72 in AUPRC. This result indicates the superior ca-
pabilities of integrating global and contextual information of
graphs, particularly on challenging and large-scale datasets,
underscoring its potential as a robust solution for Affinity-
based anomaly detection tasks.

Datasets w/o G®&G* w/G® w/G* GCTAM
Amazon 83.86 83.90 84.07 84.38
YelpChi 69.73 73.07 7743  79.00
ACM 84.30 89.06 88.70  90.77
Facebook 89.03 91.55 89.67 92.38
Reddit 57.09 58.95 57.21 59.21
Amazon-all 87.32 88.14 88.41 88.89
YelpChi-all 58.10 5842 59.02  59.57

Table 3: The evaluation of CAT G® and GAT G* module over the
metric AUROC.

4.3 Ablation Study

In ablation experiments, we evaluate the effectiveness of GC-
TAM with metric AUROC by excluding the CAT and GAT
modules, respectively. For clarity, the GCTAM with or with-
out two modules, which is represented by G® and G*, is de-
noted as w and w/o0. As shown in Table 3, GCTAM with two
modules achieves the best performance across all datasets. It
is worth mentioning that removing either the CAT or GAT

module reduces the performance of the model to varying
degrees. Specifically, on the ACM, Facebook, and Reddit
datasets, the use of the contextual truncation graph results
in a significant improvement in AUROC. This demonstrates
that the proposed contextual affinity truncation effectively re-
duces anomaly affinity by successfully truncating anomalous
edges. Meanwhile, on the Amazon and YelpChi datasets, a
significant improvement in AUROC is observed after apply-
ing the global affinity truncation. The main reason is that
our global affinity truncation enhances the connections be-
tween normal nodes, thereby increasing their affinity scores.
In summary, these findings demonstrate that the combination
of CAT and GAT modules significantly enhances the perfor-
mance of affinity-based anomaly detection, further boosting
the overall performance of the GCTAM.

4.4 Parameter Analysis

In this subsection, we explore the sensitivity of two important
hyper-parameters in GCTAM: edge truncation ratio /3 and the
number of global affinity truncation graph neighbors k. The
parameter 5 determines the max number of truncated edges
ratio from the original graph, and the parameter k£ determines
the number of neighbor nodes to be used in global affinity ad-
jacent matrix A* based on k-nearest-neighbor topk(-) (kNN).

Edge truncation ratio $ analysis. As shown in the Fig
3, all datasets were searched for the edge truncation ratio /3,
in the range of 0-0.95. From the figure, we can find that dif-
ferent datasets have different sensitivities to the edge trunca-
tion ratio 3. Specifically, for the Amazon dataset, the num-
ber of anomalous edges is high, and a larger truncation ratio
B is needed to ensure that the characterization obtained by
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Figure 3: Edge Truncation Ratio VS AUROC and AUPRC

the model from the truncated graph G® is more conducive to
distinguishing anomalous nodes. For the YelpChi dataset, the
number of anomalous edges is small, and a better characteri-
zation to distinguish anomalous nodes can be obtained based
on a smaller edge truncation ratio (3. Therefore, choosing the
appropriate edge truncation ratio 3 for different datasets is
crucial for affinity-based anomaly node detection.

Amazon YelpChi

84.38 55.69 79.00 21.040

83.90 53.78 78.11 18.892
8 2 3 g
& 83.41 51.87& & 77.22 16.745a
o) =} D o}
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Figure 4: Number of Neighbors k VS AUROC and AUPRC

5 101520253035
Number of Neighbors k

The number of neighbors k analysis. As shown in Fig.4,
we explore the sensitivity of the hyper-parameter number of
neighbors k£ in GCTAM. The results indicate that selecting
an appropriate k value can significantly enhance the AU-
ROC and AUPRC of GCTAM across various datasets. As
is demonstrated in Fig.4, the best selection for each dataset is
different, i.e., k = 20 for Amazon and & = 50 for YelpChi.
It is commonly observed that selecting a value of & that is
either too large or too small can lead to suboptimal perfor-
mance. We hypothesize that an excessively small £ may re-
strict the inclusion of beneficial neighbors, while an overly
large k£ might introduce redundant connections, thereby de-
grading the overall performance.

4.5 Affinity Truncation Score Analysis

To quantitatively assess the quality of node affinity distri-
butions generated by TAM and GCTAM methods, we in-
troduce a novel evaluation metric termed affinity truncation
score (Syuncation)- This metric quantifies the discriminative
capability of the model by measuring the percentage of nor-
mal nodes that maintain higher affinity values compared to
anomalous nodes in the learned affinity space. The affinity
truncation score is formally defined as follows:

SISVl i p(AS(v) > AS(v)))
|Vn| : |Va|

where AS(-) represent the affinity score as defined in

(14)
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Figure 5: Affinity Truncation Score Compare

Eq. (12), |V,| and |V,| denote the total number of normal
and anomalous nodes.

As illustrated in Fig. 5, we conduct a comprehensive com-
parison of node affinity distributions between normal and
anomalous nodes in both TAM and GCTAM representation
spaces. The experimental results demonstrate that GCTAM
significantly outperforms TAM in achieving separable node
affinity distributions between normal and abnormal nodes.
Specifically, on the YelpChi dataset, GCTAM achieves a
high-affinity truncation score of 42.84, which is much higher
than that of TAM of 18.29. Furthermore, on the Amazon
dataset, GCTAM attains an affinity truncation score of 55.52,
outperforming TAM’s score of 46.52 by a margin of 9 points.
These findings highlight the effectiveness of GCTAM in con-
structing a more discriminative affinity space, particularly in
scenarios with challenging anomaly detection tasks. This fur-
ther demonstrates the superiority of the proposed global and
contextual truncated affinity combined maximization model.

5 Conclusion

In this paper, we propose a novel framework, Global and
Contextual Truncated Affinity Maximization (GCTAM), for
unsupervised graph anomaly detection, leveraging the ho-
mogeneity assumption to optimize node affinity. GCTAM
jointly optimizes the proposed affinity score in an end-to-
end manner on both the contextual affinity truncation and
the global affinity truncation modules. This approach effec-
tively eliminates anomalous edges to reduce anomaly affin-
ity while simultaneously enhancing normal edges to increase
the affinity of normal nodes. Extensive experimental eval-
uations on seven real-world GAD datasets demonstrate that
GCTAM outperforms eight competing models. Notably, on
challenging datasets Amazon and YelpChi, GCTAM achieves
AUROC and AUPRC improvements of +15% ~ +20% com-
pared with the previous state-of-the-art methods. The code
can be found at https://github.com/kgccc/GCTAM.

In the future, we will study some adaptations that will work
well in some strong heterophily datasets.


https://github.com/kgccc/GCTAM
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