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Abstract

Temporal interaction graphs (TIGs), defined by se-
quences of timestamped interaction events, have
become ubiquitous in real-world applications due to
their capability to model complex dynamic system
behaviors. As a result, temporal interaction graph
representation learning (TIGRL) has garnered sig-
nificant attention in recent years. TIGRL aims to
embed nodes in TIGs into low-dimensional represen-
tations that effectively preserve both structural and
temporal information, thereby enhancing the perfor-
mance of downstream tasks such as classification,
prediction, and clustering within constantly evolv-
ing data environments. In this paper, we begin by
introducing the foundational concepts of TIGs and
emphasizing the critical role of temporal dependen-
cies. We then propose a comprehensive taxonomy
of state-of-the-art TIGRL methods, systematically
categorizing them based on the types of information
utilized during the learning process to address the
unique challenges inherent to TIGs. To facilitate fur-
ther research and practical applications, we curate
the source of datasets and benchmarks, providing
valuable resources for empirical investigations. Fi-
nally, we examine key open challenges and explore
promising research directions in TIGRL, laying the
groundwork for future advancements that have the
potential to shape the evolution of this field.

1 Introduction

Temporal Interaction Graphs (TIGs), also known as dynamic
networks, are a powerful data structure for modeling sequences
of timestamped interaction events (i.e., edges) among entities
(i.e., nodes). These graphs have been widely employed to
capture the evolving nature of real-world systems such as
e-commerce platforms, social networks, and recommenda-
tion engines. For example, as depicted in Fig. 1, a social
network can be modeled as a TIG, where nodes represent
users and edges denote interactions occurring at specific times-
tamps. Unlike static graphs, TIGs evolve over time and can
capture complex temporal dynamics and dependencies, mak-
ing them indispensable in data mining and machine learning
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Figure 1: The overview of TIG.

applications—including recommendation systems, chemical
synthesis modeling, and social network analysis.

As the adoption of TIGs grows, the need for learning ef-
fective embeddings to enhance downstream tasks (e.g., link
prediction, node classification, and node clustering) has be-
come increasingly crucial. Traditionally, to extract useful
information from a TIG, temporal data is either discarded or
transformed into a sequence of static graph snapshots, which
may generate potential features but often overlook fine-grained
regularities in the network’s evolution. To overcome this
limitation, temporal interaction graph representation learn-
ing (TIGRL) has recently attracted considerable attention.
TIGRL aims to learn mappings from the input space to a
low-dimensional representation while preserving both tem-
poral dynamics and structural evolution. However, methods
developed for static graphs or snapshot-based temporal graphs
are not directly applicable to TIGs because of their inherently
dynamic nature and irregular temporal granularity. The chal-
lenges in learning representations for TIGs are multifaceted.
First, TIGs exhibit dependencies in both spatial and temporal
dimensions. Their topology varies considerably over time,
and the evolution patterns are often intricate and non-linear;
hence, TIGRL methods must simultaneously capture static
structural relationships and temporal changes. Second, many
real-world systems experience rapid and unpredictable dynam-
ics, necessitating fine-grained representations that account for
both short-term fluctuations and long-term trends. In contrast,
snapshot-based approaches tend to preserve temporal order
while oversimplifying temporal details, thereby rendering fine-
grained modeling infeasible. Moreover, these methods must
also satisfy real-time reasoning requirements with computa-
tional efficiency. Finally, the domain-specific nature of TIGs
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introduces additional challenges: incorporating auxiliary in-
formation (e.g., node and edge attributes) often requires spe-
cialized domain knowledge, and the large-scale, continuously
evolving characteristics of TIGs raise issues of scalability,
storage, and parallel training.

Several surveys have investigated learning on TIGs; how-
ever, they have primarily focused on specific aspects. For ex-
ample, some surveys offer a general overview of TIGs and clas-
sify models based on encoder—decoder architectures [Kazemi
et al., 2020], while others emphasize the distinctions be-
tween TIGs and static graphs by categorizing models accord-
ing to temporal modeling techniques [Longa et al., 2023;
Zheng et al., 2025]. Additionally, certain works focus on
specialized downstream tasks such as temporal link pre-
diction [Qin and Yeung, 2023] or temporal graph genera-
tion [Gupta and Bedathur, 2022]. These efforts, while valuable,
have limitations: (1) outdated coverage of recent advance-
ments, (2) insufficient categorization of TIG methodologies,
(3) limited discussion of datasets and benchmarks, and (4)
inadequate attention to emerging applications and challenges.

To address these gaps, this paper provides a comprehensive
review of recent advancements in TIGRL. In particular, our
contributions are as follows:

* A Novel Taxonomy. We introduce a structured taxon-
omy that categorizes existing works based on the types
of information utilized during the learning process, pro-
viding a systematic framework for navigating the field.
An overview of these approaches is presented in Fig. 2.

A Comprehensive Review. Leveraging the proposed
taxonomy, we conduct a thorough analysis of recent ad-
vancements in TIGRL, offering an in-depth summary
of representative methods along with their respective
strengths and limitations. Furthermore, we curate pub-
licly available datasets and benchmarks to facilitate on-
going research and practical applications.

Future Directions. We highlight persisting challenges in
the field and propose potential research avenues, includ-
ing emerging topics such as prompt-based technologies
and the integration of foundational models.

2 Preliminary

In this section, we introduce the fundamental concepts and
notation used throughout the paper.

Definitions. A Temporal Interaction Graph (TIG) is a
dynamic graph that models sequences of interaction events,
each occurring at a specific timestamp, while also accounting
for the insertion and deletion of nodes and edges. Formally, a
TIG observed over a time interval I is defined as a tuple Gr =
(Vi, Er), where Vi = {v1, va, ..., vn} represents the set of
nodes observed during I'. Er = {(v;, v;, wij,te) | vi,v; €
Vr, w; € R, ¢, € I'} denotes the set of edges, where
each edge (v;, v;) is associated with a real-valued weight w;;
and a timestamp t.. This definition captures the dynamic
nature of the graph’s topology, where the intervals between
successive timestamps can be irregular, allowing for a detailed
yet efficient representation of temporal interactions.
Remark. It is important to highlight a subclass of temporal
graphs in which the graph structure remains static while node

attributes evolve over time. These graphs, often referred to
as spatio-temporal graphs, are outside the scope of this paper.
Additionally, in the literature, TIGs [Chen erf al., 2023] are
sometimes referred to as continuous-time dynamic graphs or
event-based temporal graphs. TIGs can be easily converted
into discrete-time dynamic graphs [Jiao ez al., 2024], which we
consider a special case. However, as demonstrated in [Souza
et al., 2022], TIGs are more general and expressive, and thus
will not be discussed.

3 Proposed Taxonomy

The dynamic nature of TIGs, characterized by continuously
evolving node behaviors and interaction patterns, creates
intricate structural relationships and diverse temporal de-
pendencies that complicate representation learning. To ad-
dress these challenges, we introduce a taxonomy classify-
ing existing TIGRL methods into three paradigms based on
their core information utilization strategies: (1) Structure-
Oriented Approaches, which prioritize evolving topological
preservation through structural elements like node proximity,
subgraph dynamics, and multi-scale motifs; (2) Temporal-
Oriented Approaches, which model time-dependent interac-
tions through chronological sequences, temporal event inter-
vals, and trajectory evolution encoding; and (3) Application-
Oriented Approaches, which adapt learning frameworks to
domain-specific objectives such as recommendation systems
or anomaly detection. We conduct a comprehensive method-
ological comparison in Table 1, including paradigm character-
istics, model techniques, task applicability, and sources.

3.1 Structure-Oriented Approaches

Structure-oriented approaches in TIGRL focus on preserving
the evolving graph topology and capturing dynamic struc-
tural patterns. These methods are designed to handle con-
tinuously changing neighborhood configurations. Broadly,
current methodologies are divided into two paradigms: (1)
temporal random walk-based approaches and (2) temporal
neighborhood-based approaches.

Temporal Random Walk-Based

Temporal random walk-based approaches capture spatiotem-
poral patterns by generating node sequences constrained by
chronological order. A temporal random walk W is defined
as a sequence W = [(vo, to), (v1,t1),-- ., (UK, tx)], where
timestamps follow certain constraints, ensuring that each tran-
sition (v;, v;11, ti+1) represents a valid temporal edge in the
TIG. The node representation k!, is computed by aggregating
multiple walk instances:

t 1 -
hiy = 57 > Fenc(W2), 0]
=1

where M is the number of walks, and fg,.(-) is an encoding
function implemented through sequential models like recurrent
neural networks (RNNs) or transformers. Early approaches,
such as CTDNE [Nguyen et al., 2018], prioritize temporal
coherence during walk generation, ensuring the preservation
of the chronological order of interactions. CAWs [Wang et al.,
2021] refine this approach by incorporating causal anonymiza-
tion, which enhances structural induction and captures tempo-
ral causality. NeurTWs [Jin ez al., 2022] apply neural message
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Figure 2: A taxonomy of Temporal Interaction Graph Representation Learning (TIGRL).

passing to anonymized walk sequences, while TPNet [Lu ef al.,
2024] integrates temporal decay effects into the walk matrices,
allowing for adaptive neighborhood weighting.

Despite their theoretical advantages in capturing temporal
dependencies, these methods face practical limitations in com-
putational efficiency due to the combinatorial explosion of
valid temporal walks, particularly in dense graphs with long
interaction histories. The inherent trade-off between walk
length and temporal resolution further complicates parameter
tuning, suggesting opportunities for future research in adaptive
walk sampling strategies.

Temporal Neighborhood-Based

Temporal neighborhood-based approaches derive node rep-
resentations by aggregating information from dynamically
evolving neighborhoods within defined time windows. The
fundamental formulation for a node u’s embedding h!, at time
t integrates weighted neighborhood features and temporal-
edge attributes:

hz = fenc

E N E
Qg xi ) xi, )

1eENY

)]

where A/ denotes the temporal neighborhood, av,; adaptively
weights neighbor i’s influence, 22 represents node-level fea-
tures or relational metrics, and xfﬂ encodes temporal interac-
tion properties. The encoder fe,.(-) distills these into low-
dimensional node embedding. TGAT [Xu et al., 2020] fuses
temporal decay with attention mechanisms, DyGFormer [Yu
et al., 2023] tokenizes historical interactions for transformer-
based sequence modeling, and CNE-N [Cheng et al., 2024]
prioritizes co-neighbors for efficient dynamic link prediction.
SEAN [Zhang et al., 2024b] and RepeatMixer [Zou et al.,
2024] further refine a,; via adaptive neighborhood scaling
and periodic pattern detection.

Despite excelling in temporal link prediction through neigh-
borhood similarity modeling, these methods struggle with
node-centric tasks like classification due to their relational
bias and reliance on fixed time windows. This design trade-
off enhances computational efficiency but limits long-term
dependency modeling, balancing temporal granularity against
representational complexity.

3.2 Temporal-Oriented Approaches

Beyond topology, the temporal dimension is critical in TIGRL.
Temporal-oriented approaches specifically address the chal-
lenges associated with irregular time intervals and the non-
linear evolution of graph structures. Unlike conventional static
graph embedding techniques that often disregard temporal
variance through uniform projections, these methods embrace
the irregularity of temporal signals. To achieve this, temporal-
oriented approaches are further categorized into: (1) Time-
Domain Approaches and (2) Frequency-Domain Approaches.

Time Domain

Based on the technique employed to model temporal depen-
dencies, we categorize these approaches into three primary
classes: recurrent neural network-based (RNN-based), tem-
poral point process-based (TPP-based), and memory-based.
Each category offers distinct advantages in capturing temporal
patterns across diverse application scenarios.

RNN-based. RNN-based approaches for temporal interac-
tion graphs dynamically update node representations through
sequential processing of interactions, synthesizing historical
states and neighborhood context using recurrent architectures.
The core mechanism can be expressed through a unified frame-
work where a node’s hidden state h!, evolves via:

hl =RNN | AL, Z i - hE | (3)

PN

combining a node’s memory h!, with aggregated neighbor-
hood information from temporal neighbors A, where atten-
tion weights av,,; modulate influence distribution. JODIE [Li et
al., 2019] implements dual RNNSs that bidirectionally update
user and item embeddings, capturing mutual evolution patterns
between interacting entities. RTRGN [Chen et al., 2024b]
enhances this foundation by integrating historical neighbor
states with current interactions via a Time Revision module
(directly corresponding to the neighborhood aggregation term)
and refining attention weights a,; through a bias-correcting
mechanism during recursive aggregation.
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Taxonomy Methods Learning Paradigms Inference Setting  Technique Task Sources Code
CTDNE Supervised Learning Transductive Temporal Walks Node, Link WWW 2018 link
HNIP Supervised Learning Transductive Temporal Walks Node, Link, Graph AAAI 2020 -
TGAT Supervised Learning Inductive GAT and GNNs Node, Link ICLR 2020 link
CAWs Supervised Learning Inductive Temporal Walks and GNNs Link ICLR 2021 link
NeurTWs Unsupervised Learning  Inductive Temporal Walks and GNN Node, Link NeurIPS 2022 link
Structure-Oriented PINT Supervised Learning Inductive Temporal Walks and GNNs Node, Link NeurIPS 2022 link
Approaches GraphMixer ~ Supervised Learning Inductive MLP and GNNs Node, Link ICLR 2023 link
DyGFormer  Supervised Learning Inductive Transformer and GNNs Node, Link NeurlIPS 2023 link
TPNet Supervised Learning Inductive Temporal Walks and GNNs Link NeurIPS 2024 link
CNE-N Supervised Learning Inductive Hashtable-based Memory and GNNs  Link SIGKDD 2024  link
SEAN Supervised Learning Inductive RNN and GNNs Node, Link SIGKDD 2024 -
RepeatMixer ~ Supervised Learning Inductive MLP and GNNs Link SIGKDD 2024  link
HTNE Supervised Learning Transductive Hawkes process Node, Link, Graph SIGKDD 2018 -
JODIE Supervised Learning Inductive GNNs and RNNs Node, Link SIGKDD 2019  link
DyREP Supervised Learning Inductive TPPs and GAT Node, Link ICLR 2019 link
M2DNE Supervised Learning Transductive TPPs and GNNs Node, Link, Graph CIKM 2019 link
DyGNN Supervised Learning Inductive RNN and GNNs Node, Link SIGIR 2020 link
TGN Supervised Learning Inductive Memory and GNNs Node, Link ICML 2020 link
NAT Supervised Learning Inductive RNNs and GNNs Node, Link LOG 2022 link
Temporal-Oriented ~ TREND Supervised Learning Inductive TPPs and GNNs Node, Link WWW 2022 link
Approaches TIGER Supervised Learning Inductive Memory and GNNs Link WWW 2023 link
FreeDyG Supervised Learning Inductive Frequency MLP and GNNs Node, Link ICLR 2024 link
PRES Supervised Learning Inductive Memory and GNNs Node, Link ICLR 2024 link
RTRGN Supervised Learning Inductive RNNs and GNNs Link NeurIPS 2024 -
EasyDGL Supervised Learning Inductive TPPs and GNNs Node, Link TPAMI 2024 link
MemMap Supervised Learning Inductive Memory and GNNs Node, Link SIGKDD 2024  link
MSPipe Supervised Learning Inductive Memory and GNNs Node, Link SIGKDD 2024  link
BandRank Supervised Learning Inductive Band-pass Disentangle with GNNs Node, Link WWW 2025 -
TagGen Supervised Learning Inductive Temporal Walks and GAT Link, Detection SIGKDD 2020  link
APAN Supervised Learning Inductive GNNs and RNNs Node, Link SIGMOD 2021  link
TGSRec Supervised Learning Inductive Transformer and GNNs Recommendation CIKM 2021 link
DGSR Supervised Learning Inductive Collaborative Signals with GNNs Recommendation TKDE 2022 link
CDGP Unsupervised Learning  Inductive Memory and GNNs Node, Detection SIGKDD 2023 link
Application-Oriented SAD Unsupe_rvised Leqming lnduct@ve Memory and GNNs Node, Detectiqn 1JCAI 2023 link
Approaches PTGCN Superv¥sed Learnmg Inducl}ve GCN and QAT ) ] Recommendaqon TOIS 2023 link
PP TCGC Supervised Learning Inductive Collaborative Information with GNNs  Recommendation TOIS 2024 -
NeuFilter Supervised Learning Inductive Kalman Filtering and GNNs Recommendation WSDM 2024 link
TGCLA4ASR Unsupervised Learning  Inductive GCL and GCN Recommendation AAAI 2024 -
TGC Unsupervised Learning  Inductive Graph Clustering with GNNs Node, Graph, Detection ICLR 2024 link
GeneralDyG ~ Supervised Learning Inductive Transformer and GNNs Node, Detection AAAI 2025 link
DyG-MF Unsupervised Learning  Inductive Matrix Factorization and GNNs Node, Graph, Detection = WWW 2025 link

Table 1: A summary of TIGRL models, ordered by their release time. Acronyms in Task: Node refers to node-level tasks; Link refers to
link-level tasks; Graph refers to graph-level tasks; Recommendation refers to Graph Sequence Recommendation; Detection refers to Anomaly
Detection or Community Detection.

While these methods effectively preserve temporal depen-
dencies through RNN mechanisms, they inherit challenges
including computational demands from sequential processing
and scalability limitations for large sparse graphs.
TPP-based. TPP modeling in TIGs focuses on continuous-
time interactions, using conditional intensity functions to cap-
ture both historical influence decay and spontaneous events.
The Hawkes process, a variant of TPP, formalizes this dynamic
through the equation:

At) = p(t) + / k(t — s)dn(s), 4

— 00

where p(t) represents baseline interactions, and k(¢ — s) en-
codes temporal dependencies between events. DyRep [Trivedi
et al., 2019] exemplifies a deep architectural approach by cou-
pling dual-intensity functions with a time-aware RNN. Here,
A(t) governs the dynamics of interactions, while temporal at-
tention computes x(t — s) as exp(—J(t — s)), emphasizing re-
cent events. HTNE [Zuo et al., 2018] extends this paradigm by
modeling neighborhood sequences as Hawkes processes, with
trainable exponential kernels that capture historical neighbor
influences. TREND [Wen and Fang, 2022] advances the frame-
work by decoupling intensity into event-level and node-level
components, using coupled graph neural networks (GNNs) to

model both localized interactions and global trend propagation.
EasyDGL [Chen et al., 2024a] introduces curriculum learning,
adaptively weighting p(t) to prioritize recent events during
training through TPP-based attention gates.

These methods share common strengths, such as handling

asynchronous events and modeling temporal decay patterns.
However, challenges remain in scaling to large graphs and
addressing sparse interaction scenarios.
Memory-based. Memory-based approaches in temporal in-
teraction graphs focus on updating node embeddings dynami-
cally to capture temporal dependencies via event-driven mem-
ory updates. These methods follow a unified computational
paradigm, consisting of three key components: message gen-
eration, memory update, and embedding computation. The
process is mathematically represented as:

m! =msg(s!, s el 1),
st =mem(st, ,ml), &)
h! = emb(s!,, ),

where s!, ,s! are the memory states of nodes u and v be-
fore time ¢, mﬁ is the message generated from the event efw,
Nlrepresents the temporal neighbors of u up to time ¢, and h!

is the dynamic embedding of node u at time ¢. The functions
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msg(-), mem(-), emb(-) are learnable modules that generate
the message, update memory, and compute the embedding,
respectively. TGN [Rossi ef al., 2020] introduces RNN-based
memory updates triggered by streaming events. NAT [Luo
and Li, 2022] improves computational efficiency with GPU-
friendly dictionary structures for neighborhood representation.
TIGER [Zhang e al., 2023] addresses long-term dependency
loss by incorporating dual memory modules, while PRES [Su
et al., 2024] uses Gaussian mixture models for memory correc-
tion through time-series gradient analysis. MSPipe [Sheng et
al., 2024] advances parallel training by introducing controlled
memory staleness, helping mitigate the temporal dependency
bottleneck.

These methods excel at preserving temporal patterns
through continuous memory updates and enabling real-time
inference. However, they also share common challenges, in-
cluding high memory storage requirements for long interac-
tion histories, sensitivity to the event processing order, and
potential error accumulation in memory states. A key design
trade-off in this domain remains balancing memory fidelity
with computational efficiency.

Frequency Domain

The frequency domain decomposes temporal signals into con-
stituent frequency components through mathematical transfor-
mations like Fourier analysis, providing a powerful paradigm
to capture periodic patterns and long-range dependencies that
are challenging to model in time-domain approaches. Building
on this foundation, recent advances in TIGRL have developed
innovative frequency-enhanced architectures. FreeDyG [Tian
et al., 2024] employs a frequency-enhanced MLP-Mixer layer
that first transforms node embeddings into the frequency space
via Fast Fourier Transform (FFT), then applies learnable
complex-valued filters to amplify task-relevant frequencies
before reconstructing time-domain features through inverse
FFT. This dual-domain architecture effectively captures pe-
riodic interaction patterns and temporal shift phenomena in
dynamic graphs. BandRank [Li er al., 2025b] addresses fre-
quency aliasing through parallel frequency-specific MLPs that
extract multi-scale temporal features ranging from long-term
evolutionary trends to short-term fluctuations, complemented
by a harmonic ranking loss that mitigates gradient vanishing
in listwise optimization.

While these methods demonstrate superior performance in
capturing cyclical patterns compared to conventional time-
domain approaches, they introduce computational overhead
from frequency transformations and require careful han-
dling of phase information during inverse transforms. The
frequency-domain paradigm shows particular promise for ap-
plications with inherent periodicity like social network dynam-
ics and traffic prediction, though its effectiveness on irregular
temporal patterns warrants further investigation.

3.3 Application-Oriented Approaches

TIGRL has also been closely integrated with some specific
applications, e.g., nodes, links, graphs that do not vary enough
to fit a specific application. Application-oriented approaches
need to be carefully considered in how to incorporate auxil-
iary information—such as domain knowledge or contextual
attributes—to enhance representation learning for targeted

tasks. Application-oriented approaches are further categorized
into: (1) Sequence recommendation, (2) Anomaly Detection,
and (3) Community Detection.

Sequence Recommendation

The integration of TIGs into sequence recommendation sys-
tems has modeling of dynamic user-item interactions and con-
textual attributes. Unlike static graphs, temporal graphs en-
code time-stamped interactions (e.g., purchases) and auxiliary
relationships (e.g., social ties), enabling fine-grained analy-
sis of behavioral shifts, interest evolution, and activity bursts.
By transforming recommendation tasks into temporal link
prediction problems, methods like TIGRL effectively reduce
dimensionality while preserving heterogeneous features and
temporal dependencies. Recent advances address these chal-
lenges through diverse approaches: TGSRec [Fan et al., 2021]
employs Transformer-based continuous-time representations
to handle sparse, irregular data, while DGSR [Zhang et al.,
2022] integrates temporal attention with graph convolution for
dynamic preference modeling. PTGCN [Huang et al., 2023]
enhances adaptability through positional encoding and time-
aware features, whereas TCGC [Tang et al., 2024] jointly mod-
els interaction evolution via collaborative filtering and graph
co-evolution. The TGCL4SR [Zhang er al., 2024a] frame-
work further advances temporal pattern extraction through
contrastive learning, demonstrating robust noise resistance and
multi-scale behavioral analysis. Collectively, these methods
address critical challenges including data sparsity, temporal
dynamics, and noise in recommendation systems.

Anomaly Detection

Anomaly Detection identifies deviations from normal behav-
ioral patterns in TIGs by leveraging their temporal dynamics
and structural evolution. Unlike static methods, TIG-based
approaches exploit time-dependent node/edge variations to
detect subtle anomalies like fraudulent transactions in finan-
cial networks or malicious activities in social platforms. A
common framework integrates temporal graph encoders with
anomaly scoring modules, where node representations are
dynamically updated to reflect evolving interactions, and devi-
ations are measured through reconstruction errors or outlier
scoring. SAD [Tian er al., 2023] advances semi-supervised
detection via contrastive learning on temporal subgraphs, re-
ducing dependency on labeled anomalies. GeneralDyG [Yang
et al., 2025] enhances generalizability through temporal ego-
graph sampling and hybrid GNN-Transformer architectures,
addressing feature diversity across domains. While these meth-
ods excel in capturing temporal irregularities, they often face
challenges in balancing detection sensitivity with computa-
tional efficiency, particularly in streaming scenarios. Key
limitations include limited robustness to adversarial temporal
perturbations and reliance on predefined temporal windows.

Community Detection

Community detection in TIGs analyzes topological patterns
and temporal dependencies to uncover evolving network struc-
tures, capturing dynamic behaviors like community splitting,
merging, and membership migration through continuous inter-
action updates. Unlike static methods, TIG-based approaches
enable incremental updates that balance efficiency with tem-
poral coherence while adapting to structural shifts. Recent
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technical advances employ diverse strategies: CDGP [Ji et
al., 2023] dynamically integrates temporal-structural signals
via graph propagation for evolution tracking, while TGC [Liu
et al., 2024] adjusts deep clustering techniques to suit the
interaction sequence-based batch-processing pattern of TIG.
DyG-MF [Li et al., 2025a] reformulates dynamic matrix factor-
ization using temporal latent factors to detect gradual commu-
nity changes. Despite progress, these methods struggle with
abrupt structural shifts due to temporal pattern over smoothing
in long sequences, computational bottlenecks from continuous
updates, and sensitivity to interaction sparsity. Current solu-
tions partially address these through hybrid architectures like
residual compression and multi-task learning frameworks, yet
fundamental trade-offs persist between temporal resolution
and scalability.

4 Frontier Technology for TIG

This section presents frontier technologies for TIG, including
generative learning, prompt learning, and foundational models,
which are pivotal advancements shaping the future of TIGRL.

4.1 Generative Learning

Generative learning for TIGs focuses on modeling data dis-
tributions to synthesize instances preserving both structural
and temporal dynamics inherent in evolving entity interac-
tions. Traditional frameworks like VAEs, GANs, and diffusion
models have been adapted to TIGs by integrating temporal
mechanisms such as TPP and RNN, enabling the generation of
chronologically valid interaction sequences with accurate topo-
logical patterns. Recent advancements employ hybrid archi-
tectures to address the interplay between temporal coherence
and structural fidelity. For example, TG-GAN [Zhang et al.,
2021] utilizes a continuous-time GAN with recurrent genera-
tors to produce timestamped edge sequences while maintain-
ing chronological constraints, whereas TIGGER [Gupta et al.,
2022] combines TPPs with autoregressive decoders to capture
interaction bursts and long-term dependencies MTM [Liu and
Sariyiice, 2023] introduces higher-order structural motifs (e.g.,
triadic closures) to guide generation, preserving local-global
dynamics through transformer-based temporal embeddings.
These models successfully replicate critical metrics like de-
gree distributions, temporal motif frequencies, and inter-event
intervals in real-world datasets, demonstrating their capac-
ity to generate realistic TIGs despite challenges in modeling
irregularly sampled or continuous-time interactions.

4.2 Prompt Learning

Prompt learning, initially rooted in natural language process-
ing for adapting pre-trained models via task-specific prompts
without modifying core parameters, has been extended to
TIGs to address dynamic and time-sensitive relational patterns.
Unlike static graphs, TIGs require prompts to encapsulate
structural dependencies and temporal dynamics, such as evolv-
ing user-item interactions in e-commerce or social network
communications over time. Recent advancements integrate
temporal encoding mechanisms—Ilike dynamic context-aware
templates and node-time conditional prompts—to align pre-
training objectives with time-dependent tasks. For example,
DyGPrompt [Yu et al., 2024] introduces prompts conditioned
on node attributes and timestamps, dynamically adjusting

temporal neighborhood focus during message propagation,
while TIGPrompt [Chen e al., 2025] employs task-specific
tokens to modulate attention to temporal granularity (e.g.,
short-term vs. long-term dependencies) through joint learning
with positional encodings. By freezing backbone networks
and tuning lightweight prompts, these methods achieve effi-
ciency and scalability for large-scale TIGs with continuous
temporal streams, balancing adaptability with computational
constraints. This paradigm shift underscores the potential of
temporal prompt engineering in bridging static model archi-
tectures with dynamic real-world interaction patterns, offering
insights for both graph mining and broader Al communities.

4.3 Foundation Model

Foundation models have transformed machine learning by
learning transferable representations through large-scale pre-
training, with emerging applications in TIGs that model evolv-
ing relationships in domains like social networks and finan-
cial transactions. These models unify temporal dependencies,
structural evolution, and contextual patterns into a univer-
sal framework through self-supervised learning on massive
dynamic graph datasets. While traditional approaches rely
on task-specific architectures, recent TIG-oriented founda-
tion models integrate temporal-aware attention mechanisms,
continuous-time encoding, and multi-scale aggregation to han-
dle heterogeneous scenarios ranging from recommendation
systems to epidemic prediction. A key innovation involves
adapting large language models (LLMs) for temporal graph
reasoning: methods like LLM4DyG [Zhang et al., 2024c]
encode temporal interactions and node attributes into text
prompts, enabling LL.Ms to predict future states via text-
generation paradigms. Hybrid architectures also combine pre-
trained temporal graph encoders with task-specific adapters,
using techniques like time-decayed attention to prioritize re-
cent interactions while maintaining long-term dependencies.
However, most current solutions repurpose existing frame-
works like transformers rather than building architectures with
native support for TIG inductive biases, creating tension be-
tween computational efficiency and the inherent complexity
of temporal-structural patterns in TIGs.

5 Datasets and Benchmarks

This section introduces commonly used datasets and bench-
marks in TIGRL, which are crucial for validating and compar-
ing algorithms to drive research progress in this field.

Datasets Domain V] |E| || Sizes  Sources
Wikipedia Social 9,227 157,474 152,757  534MB link
Reddit Social 10,984 672,447 669,065  2.2GB link
Enron Social 184 125,235 22,632 35MB link
UcCI Social 899 33,720 58,911 668KB link
ML25M Social 221,588 25,000,095 866,346  647MB link
GDELT Social 16,682 191,290,882 170,522 82.3GB link
MOOC Interaction 7,144 411,749 345,600  40MB link
LastFM Interaction 1,980 1,293,103 1,283,614  37MB link
Social Evolution  Proximity 74 2,099,520 565,932 148MB link
Contact Proximity 692 2,426,279 8,065 160MB link
Flights Transport 13,169 1,927,145 122 32MB link
Bitcoin-OTC Economics 5,881 35,592 35,592 988KB link
Bitcoin-Alpha Economics 3,782 24,186 24,186 492KB link
DGraphFin Economics 4,889,537 4,300,999 1,433 649MB link

Table 2: Dataset statistics


https://zenodo.org/records/7213796#Y1cO6y8r30o
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://grouplens.org/datasets/movielens/25m
https://github.com/amazon-science/tgl/blob/main/down.sh
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://zenodo.org/records/7213796#Y1cO6y8r30o
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://dgraph.xinye.com/dataset
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5.1 Datasets

High-quality datasets form the cornerstone of TIG research
by enabling rigorous algorithm validation and comparative
analysis across diverse scenarios. As summarized in Table 2,
publicly available TIG datasets exhibit significant variations in
scale, ranging from compact networks like UCI (thousands of
nodes/edges) to massive real-world systems such as ML25M
(millions of interactions). This scalability spectrum supports
both granular pattern discovery and large-scale industrial appli-
cations. The datasets span multiple domains including social
dynamics, transportation flows, and economic transactions,
demonstrating TIG’s broad applicability in modeling temporal
relational systems. Notably, these resources primarily capture
structural evolution patterns while lacking rich node/link at-
tributes—a limitation stemming from practical data collection
challenges. This constraint paradoxically encourages research
into generalizable models that infer latent features from tempo-
ral topology changes, potentially enhancing robustness across
application scenarios.

Benchmark Code Year
PyTorch Geometric Temporal  https://github.com/benedekrozemberczki/pytorch_geometric_temporal 2021
TGL https://github.com/amazon-science/tgl 2022
Dynamic Graph Library s://github.com/yule-BUA. i 2023
Temporal Graph Benchmark b.com/st 2024
BenchTemp com/qi /bench J 2024
Dynamic Graph Benchmark https://github.com/gravins/dynamic_graph_benck k 2024
BenchTGNN https://github.com/Yang-yuxin/BenchTGNN 2024

Table 3: Links of benchmarks

5.2 Benchmarks

Open-source benchmarks are essential for advancing temporal
interaction graph research by providing standardized evalua-
tion protocols that facilitate reproducible research and system-
atic performance comparisons. Table 3 catalogs several key
resources: PyTorch Geometric Temporal offers lightweight
temporal GNN implementations optimized for small-scale
prototypes, while TGL overcomes scalability challenges with
distributed training architectures for billion-edge graphs. The
Temporal Graph Benchmark establishes multi-domain eval-
uation standards across more than ten datasets with rigorous
temporal integrity checks, BenchTGNN reveals critical de-
sign patterns in temporal message passing and neighborhood
sampling through ablation studies, and the Dynamic Graph
Benchmark focuses on industrial-grade metrics to monitor
concept drift robustness in streaming scenarios; collectively,
these benchmarks address diverse aspects of temporal graph
learning and provide a comprehensive toolkit for the field.

6 Conclusion and Future Directions

In this survey, we provide a comprehensive overview of re-
cent advancements in TIGRL. We introduce a novel taxonomy
that categorizes existing research from multiple perspectives.
Our analysis reveals that the majority of current efforts focus
on addressing node correlation, capturing temporal patterns,
enhancing robustness to noise, and scaling to large-scale net-
works. Despite these significant advancements, TIGRL faces
several challenges and presents a variety of promising direc-
tions for future research:

More Complex TIGs. The development of TIG learning
is constrained by critical gaps in dataset construction and
evaluation practices. While recent advances have produced

large-scale dynamic graph datasets, their structural and com-
plexity lag far behind static counterparts, as evidenced by
EdgeBank’s [Poursafaei et al., 2022] competitive performance
only using simple historical interaction patterns. This high-
lights the inadequacy of existing benchmarks in distinguishing
sophisticated models, necessitating datasets with multi-scale
hierarchies, realistic evolution dynamics (e.g., edge deletions,
attribute shifts), and specialized graph types like temporal
signed networks and heterogeneous graphs for applications
such as financial fraud detection. Current repositories often
neglect crucial real-world temporal operations and multidi-
mensional features, limiting the comprehensive evaluation of
model robustness. The research community needs to prior-
itize creating annotated TIG benchmarks that integrate het-
erogeneous interaction modalities, temporal granularity, and
domain-specific topological patterns. Such efforts will enable
rigorous validation of spatiotemporal dependency modeling
and advance the practical deployment of TIG models across
industries requiring dynamic relational reasoning.

Explainability and Interpretability. Explainability and in-
terpretability are critical for enhancing trust and transparency
in TIG models, particularly in dynamic, time-sensitive do-
mains such as finance, healthcare, and social networks. These
properties aim to clarify how models infer temporal patterns,
attribute importance to interactions, and rationalize predictions
in evolving graph structures. Recent studies have proposed
tailored methods to address TIG-specific challenges. For in-
stance, the T-GNNExplainer [Xia ef al., 2023] decomposes
temporal reasoning into exploration (identifying influential
temporal paths) and navigation (highlighting key interactions),
enabling stepwise explanations for dynamic graph predictions.
Another approach, TempME [Chen and Ying, 2023], lever-
ages motif discovery to uncover recurring temporal subgraph
patterns that drive model decisions, bridging low-level inter-
actions and high-level predictions. These studies show that
although the interpretability of TIGRL is a relatively new and
less discussed area, there are already some studies attempting
to address this issue.

Unified Evaluation Standards. While benchmarks like TGL
and DyGLib have advanced TIG evaluation, current standards
suffer from critical limitations in protocol design and task
adaptability. The oversimplified evaluation for link predic-
tion tasks, though achieving high performance on specific
datasets, inadequately reflects real-world complexity where
temporal interactions require multi-class classification, re-
gression, or anomaly detection capabilities. This discrep-
ancy stems from insufficient standardization in handling non-
classification tasks, particularly the absence of unified normal-
ization for continuous interaction intensities and inconsistent
negative sampling strategies for anomaly detection. To en-
able fair cross-model comparisons, future frameworks must
implement multi-dimensional metrics incorporating temporal
dynamics and interaction intensity. Crucially, this requires
establishing unified preprocessing pipelines, dynamic evalua-
tion protocols simulating real-world streaming scenarios, and
domain-specific benchmarks mirroring practical deployment
conditions.


https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/amazon-science/tgl
https://github.com/yule-BUAA/DyGLib
https://github.com/shenyangHuang/TGB
https://github.com/qianghuangwhu/benchtemp
https://github.com/gravins/dynamic_graph_benchmark
https://github.com/Yang-yuxin/BenchTGNN
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