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Abstract

Large Language Models (LLMs) have recently
shown promise in Time Series Forecasting (TSF)
by effectively capturing intricate time-domain de-
pendencies. However, our preliminary experi-
ments reveal that standard LLM-based approaches
often fail to capture global correlations, limit-
ing predictive performance. We found that em-
bedding frequency-domain signals smooths weight
distributions and enhances structured correlations
by clearly separating global trends (low-frequency
components) from local variations (high-frequency
components). Building on these insights, we pro-
pose FreqLLM, a novel framework that integrates
frequency-domain semantic alignment into LLMs
to refine prompts for improved time series analysis.
By bridging the gap between frequency signals and
textual embeddings, FreqLLM effectively captures
multi-scale temporal patterns and provides more
robust forecasting results. Extensive experiments
on benchmark datasets demonstrate that FreqLLM
outperforms state-of-the-art TSF methods in both
accuracy and generalization. The code is available
at https://github.com/biya0105/FreqLLM.

1 Introduction

Time series forecasting (TSF) finds extensive applications
across various domains, including energy [Koprinska et al.,
2018], weather [Dimri et al., 20201, traffic [He et al., 2022al,
and economics [Ariyo er al., 2014]. Recently, the powerful
pattern recognition capabilities of Large Language Models
(LLMs)—which enable the learning of robust embeddings
from rich semantic information [Liang et al., 2024]—have
sparked growing interest in applying LLMs to TSE. However,
existing methods often overlook the crucial role of frequency-
domain information in revealing the periodicity and regularity
of time series, leading to an incomplete understanding of the
internal correlations within the sequence.

To investigate this limitation, we conducted experiments
examining how the embeddings generated by LLMs from
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time series data relate to the resulting predictions (see Section
2). These embeddings represent the LLMs’ reinterpretation
of the data, and their correlation with prediction outcomes
sheds light on the model’s ability to capture relevant patterns.
As illustrated in Figure 1(a), when only time-domain signals
are used as input, the embeddings exhibit diagonal correla-
tions over just a few time steps. This indicates that the pre-
dictions are influenced by a small subset of embeddings, re-
vealing the model’s inability to capture broader global cor-
relations. Additionally, certain regions display lower weight
values, suggesting the presence of redundant information that
diminishes the relevance of these embeddings to the predic-
tions. This points to the need for an approach that better cap-
tures global patterns while reducing redundancy.

While frequency-domain signals have proven effective in
capturing global features of time series (e.g., periodicity
and regularity) in non-LLM-based TSF models [Zhou et al.,
2022; Yi et al., 2024; Liu and Chen, 2024], their role in LLM-
based TSF remains underexplored. Motivated by the lim-
itations observed above, we conducted a preliminary study
integrating frequency-domain signals into LLM-based TSF
models. Our analysis shows that incorporating these sig-
nals into both the prompt and sequence inputs yields curvi-
linear correlations (see Figure 1(d)) spanning longer time
steps—enabling the model to consider a broader informa-
tion range at each prediction step. Furthermore, the global
weight distribution becomes more uniform, alleviating the
redundancy found in purely time-domain embeddings and
providing a stronger global perspective. These findings un-
derscore the benefits of leveraging frequency-domain signals
across both prompt and sequence inputs, thereby enhancing
the LLM’s ability to interpret and forecast time series data
more accurately.

Although incorporating frequency-domain signals into
both the prompt and sequence data sections significantly en-
hances a model’s ability to capture key patterns and global
features, it also introduces several challenges. One funda-
mental issue is the mismatch between LLMs—operating on
discrete tokens—and the continuous nature of both time-
domain and frequency-domain signals [Jin et al., 2024; Pan et
al., 2024], which complicates their processing and interpre-
tation. Moreover, the pre-trained knowledge and reasoning
capabilities of LLMs are not inherently tailored to these intri-
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Figure 1: Visualization of the learned patterns in LLM-based TSF methods. The intensity of the color represents the strength of the correlation,
with highlighted regions indicating key correlation patterns in the learned embeddings. (a) prompt & sequence: time-domain. (b) prompt:
frequency-domain, sequence: time-domain. (c) prompt: time-domain, sequence: frequency-domain. (d) prompt & sequence: frequency-

domain.

cate signal patterns, posing ongoing difficulties in achieving
accurate and generalizable performance across TSF tasks.

In response to these challenges, we present FreqLLM,
a novel framework that seamlessly integrates frequency-
domain information into LLMs for TSF, thus capturing global
time series patterns to complement local pattern modeling in
the time domain. FreqLLM is composed of three key mod-
ules: (i) Dual-Scale Frequency-Domain Encoding: This mod-
ule encodes both global and local frequency-domain signals,
ensuring that embeddings capture comprehensive informa-
tion. By focusing on broader frequency trends as well as
local patterns near prediction time points, it preserves both
extended and immediate context. (ii) To enhance the LLM’s
contextual understanding of frequency-domain information,
we develop prompts that align with the model’s pre-trained
semantic knowledge. By integrating task-specific TSF se-
mantics with pre-trained word embeddings, we generate Se-
mantic Exemplars that serve as prompts. These prompts
closely align with the frequency-domain embeddings, helping
the model more effectively interpret global and local trends
in the data. (iii) This module bridges the gap between time-
domain and frequency-domain data by reprogramming these
signals into embeddings optimized for the LLM’s semantic
interpretation. By embedding numerical scales and variations
from both domains, the model can reason across global and
local scales with greater accuracy. To summarize, our main
contributions are as follows:

* Investigating the Role of Frequency-Domain Signals in
LLM-based TSF: We show that relying solely on time-
domain signals in LLM-based TSF leads to diagonal cor-
relations, capturing limited local patterns. In contrast,
incorporating frequency-domain signals produces curvi-
linear correlations, enabling broader global trend mod-
eling and improving forecasting accuracy.

¢ Introducing FreqLLM: We propose a novel framework

that integrates dual-scale frequency-domain embeddings
with pre-trained word embeddings. By reprogramming

both time-domain and frequency-domain signals into
optimized representations, FreqLLM significantly en-
hances the ability to capture global patterns and boosts
forecast precision.

* Empirical Validation: Extensive experiments on multi-
ple benchmark datasets demonstrate FreqLLM’s supe-
rior performance compared to existing methods, under-
scoring the importance of frequency-domain informa-
tion in LLM-based TSF.

2  Frequency-Domain Signal Learning
Patterns Analysis

We constructed four variant models based on the fundamental
LLM-based TSF framework [Zhou et al., 2023] to visualize
learned model weights. We incorporated a soft prompt com-
ponent to explore how different prompt and sequence inputs
affect the model [Pan er al., 2024]. As illustrated in Figure 1,
we categorize inputs into time-domain and frequency-domain
data: the former uses the original sequence, while the latter
transforms the input into the frequency-domain and concate-
nates real and imaginary parts of the spectrum as a substitute.
We then train the models and visualize their final linear layer
weights, which most directly reflect the relationship between
the LLM’s embeddings and its predictions.

Our experiments use the Traffic dataset with an input win-
dow of 512 and a prediction length of 96, maintaining all
other settings from the original paper. In Figure 1, the ver-
tical axis represents the 96 forecast values, and the horizontal
axis denotes the embedding dimensions output by the LLM
(we display the first 128 dimensions for illustration; subse-
quent values follow a similar pattern).

Figure 1(a): Both the prompt and sequence sections rely
on time-domain data. The learned weights form notable
diagonal correlations, suggesting the model primarily cap-
tures relationships between adjacent time points. However,
these diagonals are uneven, with some regions displaying
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lower weight values—indicative of redundant information
that weakens the embeddings’ connection to the predictions.

Figure 1(b): The prompt uses frequency-domain data,
while the sequence still uses time-domain data. Diagonal cor-
relations persist but are more uniform, with fewer low-weight
regions. This points to a stronger link between the embed-
dings and the prediction results.

Figure 1(c): The prompt relies on time-domain data,
whereas the sequence adopts frequency-domain data. The di-
agonal correlations evolve into arc-like patterns, connecting
a broader range of time points and offering a stronger global
perspective. However, some areas of lower weight remain, in-
dicating that while global correlations improve, the model’s
perspective is not yet fully optimized.

Figure 1(d): Both the prompt and sequence sections use
frequency-domain data. The weight patterns display compre-
hensive arc-like correlations spanning nearly the entire em-
bedding space, indicating that the model gains its most exten-
sive global view under this configuration.

3 Methodology

As shown in Figure 2, FreqLLM comprises three key compo-
nents. The Dual-Scale Frequency Encoding module captures
both global and local frequency-domain information, ensur-
ing comprehensive embeddings. The Semantic Alignment
module generates task-specific Semantic Exemplars as soft
prompts, enhancing the LLM’s understanding of frequency-
domain patterns. Finally, the Integration and Alignment mod-
ule bridges time- and frequency-domain representations, op-
timizing them for the LLM’s semantic space to improve pre-
diction accuracy. In this paper, we use GPT-2 [Radford er al.,
2019] as the backbone model and don’t fine-tune the model
during either training or inference, following similar practices
in prior works [Pan et al., 2024; Liu et al., 2024al.

3.1 Problem Formulation

We first formalize the TSF task based on LLMs: Given
a time series X € RM*T| representing N different uni-
variate variables over 7' time steps, the goal is to input X
and its frequency-domain representation Xy into an LLM-
based predictive module LLM(-), which processes both time-
domain and frequency-domain information. The LLM gen-
erates forecasts for the subsequent L time steps, denoted as
Y = LLM(X, X;),Y € R¥*L. The objective is to mini-
mize the Mean Squared Error (MSE) between the predicted
values Y and the actual values Y, defined as:

L

1 5

min = > |[¥i = Yilf3 (1)
=1

3.2 Input Embedding

For multivariate time series, different variables exhibit dis-
tinct patterns. Directly mixing them and projecting into a
unified space makes learning challenging. Thus, we divide
the multivariate time series into N univariate time series and
process each of them separately [Nie et al., 2023]. Each se-
quence X; € R'*7 is independently normalized using Re-
versible Instance Normalization (RevIN) to ensure zero mean

and unit variance, reducing distribution shift [Kim et al.,
2021]. For ease of reading, we will use X to represent X;
for each channel in the following text.

3.3 Dual-Scale Frequency-Domain Encoding

In the process of transforming time-domain signals into
frequency-domain embeddings, we utilize both global and lo-
cal frequency-domain signals to guide the encoding process.
In TSF, both the global and short-term signals of a sequence
are important: global signals reflect long-term trends or pe-
riodic information, while short-term signals capture changes
over a shorter period. In our model, we encode both global
and local frequency-domain signals, ensuring that the fre-
quency information of the entire time window is extracted
while enhancing the understanding of recent changes. The
detailed process of this part is illustrated in Figure 2(A).

For global signals, we first apply a Fast Fourier Transform
(FFT) to the normalized time series X, obtaining the global
frequency-domain signals. However, not all frequency-
domain information is useful. Noise in time series data leads
to long-tailed frequency distributions in the frequency domain
[Wang et al., 2024]. Therefore, after performing the FFT, we
apply a linear layer to filter out the useful frequency informa-
tion. The specific formula is as follows:

fgtobat = Linear(FFT (X)), 2)

where fg100a is the global frequency-domain embedding.

For local signals, we adopt a target attention mechanism to
extract them. The attention mechanism [Vaswani et al., 2017]
can dynamically handle relationships between different time
steps and focus on important time steps, making it widely ap-
plied in time series forecasting. Target attention, developed
from the basic attention mechanism, is widely used in recom-
mendation systems [Chen ef al., 2021]. Specifically, target
attention emphasizes the relationship between specific time
steps and global signals, allowing it to highlight the relation-
ship between local and global signals. In detail, as shown in
Figure 2(a), we divide X using a sliding window and apply
FFT and frequency extraction on each small window, yield-
ing X. The most recent window is used as the query matrices
@, containing the local information closest to the prediction
point. The remaining windows serve as the key matrices K
and value matrices V' of the target attention. Finally, a linear
layer is employed to help the model extract the most impor-
tant and useful parts of the local frequency information during
training. The specific formula is as follows:

X=FFT(SlidingWindow(X)),
Q=Select(Linear(X)),
K, V=Linear(X),
flocal:Softmaz(Q-f(T)V,

3)

where fi,cq; 18 the global frequency-domain embedding.

After obtaining the global and local frequency-domain sig-
nals, we concatenate the two to generate the final frequency-
domain embedding fy,.:

ffre = Ooncat(fglobal; floca,l)~ 4
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Figure 2: The framework of FreqLLM. We provide a detailed description of certain components: (A) Dual-Scale Frequency-Domain Encod-
ing, (B) Frequency-Domain Semantic Alignment, (C) Dual-Domain Reprogramming, and (D) Output Projection.

3.4 Frequency-Domain Semantic Alignment

The prompt is an effective method for activating LLMs to
perform better on specific domain tasks [Yin et al., 2023].
In time series analysis, most works focus on template-based
and fixed prompts [Xue and Salim, 2023; Jin et al., 20241,
but this overlooks the lack of human semantics in time series
data, making it difficult for the LLM to understand both the
sequence and the prompt. Some works use soft prompts, gen-
erating task-specific, trainable vectors to guide the LLM [Sun
et al., 2024; Pan et al., 2024]. However, these methods focus
on time-domain signals, neglecting the instability and local
fluctuations in time series data. In contrast, our model gener-
ates soft prompts from frequency-domain signals to provide
a broader perspective and address these challenges.
Specifically, we compress the pre-trained word embed-
dings from the backbone E € RV*P, and employ a simple

linear probe to generate semantic exemplars £/ € RV'*D,
where V’ < V. This linear probing aims to filter out word
vectors irrelevant to TSF tasks and consolidate relevant ones,
thereby reducing computational costs and concentrating se-
mantic information. Next, we calculate the similarity score
between the frequency-domain embedding fg. and the se-
mantic exemplars E’, which serves as the basis for selecting
the exemplars as prompts. The formula is as follows:

E’'=Linear(E),

&)

N fre' n
e )= [

where e/, € E’. Based on the similarity scores, we select
K semantic exemplars E;, that best represent the frequency
domain information. These K exemplars are concatenated to
form the final prompt:

Prompt = Concat(Ey, , Ey,, -, Ey., ). (6)

3.5 Dual-Domain Reprogramming

In this section, we reprogram time-domain and frequency-
domain signals into semantic exemplars, aligning sequence
patterns with natural language structures. This alignment
enables the LLM to deliver accurate and generalizable per-
formance across different domains in time series forecast-
ing [Jin er al., 2024]. As discussed earlier, incorporating
frequency-domain signals is crucial for capturing both global
and local sequence dynamics, while time-domain signals help
the LLM understand the sequence’s range and average lev-
els. However, since LLMs process discrete tokens and time-
domain/frequency-domain signals are continuous, this cre-
ates a mismatch in data representation. To address this, we
apply a multi-head cross attention mechanism, reprogram-
ming the signals into a format that the LLM can more easily
interpret through semantic exemplars.

We divide the signals into overlapping or non-overlapping
patches [Nie ef al., 2023], each with a length L,. There-

where S represents the horizontal sliding stride. A snnple
linear layer is then used to map the dimensions to d,,. Af-
ter applying the same operation to both signals, we obtain the
patched time-domain and frequency-domain signals, denoted
as Xiime and Xp., respectively.

Next, we reprogram the signals into the semantic exem-
plar space. In constructing the exemplar-aligned prompts, we
have obtained a series of semantic exemplars £’, which retain
time series-related word embeddings while reducing seman-
tic dispersion. We use these exemplars to reformat the sig-
nals into a more LLM-friendly structure. To achieve this, we
apply a multi-head cross-attention mechanism (Figure 2(c)).
Specifically, for each head m = {1 , M}, we define the

query matrix Qm, key matrix K, and Value matrix V,, as

fore, the total number of input patches is P = L
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follows: .
Qm :Xsingal Wf;f )

P K
Km=E 'WWL’ (7)

Viu=E WY,

m

where W € RI=xd WK WV e RPX4 X0 is Xime OF
Xire, 13 is the hidden dimension of the backbone model, and
d= |t

The 7?eprogramming operation of the signals is defined as:

~ ~ T
me 7
%) Vi, ®)

Rde

Zm = softmazx <

By aggregating each Z,,, € across all heads, we ob-
tain Z € RP*4m A linear projection is then performed to
align the hidden dimensions with the backbone model. Af-
ter applying the aforementioned operations to both the time-
domain and frequency-domain signals, we obtain the time-
domain embedding Siime and frequency-domain embedding
Sfre, Slimev Sfre S RPXD-

3.6 Output Projection and Optimization Objective

Finally, we integrate the prompt, frequency-domain embed-
ding, and time-domain embedding, which are then fed into
the frozen LLM to obtain the output. The output is passed
through a linear projection layer to yield the final prediction
Y:

Y = Linear(LLM (Concat(Prompt, Ske, Stime)))-  (9)

During each training iteration, our optimization objective
L is:

L K
1 ¥ 2 1 I
L= E;Hifl_Y”|F+)‘E;Lp(ffreaetop—K)7 (10)

where A > 0 is a trade-off hyperparameter. The first term
in the objective function represents the prediction loss of the
model, focusing on improving model performance. The sec-
ond term is the similarity score loss, which averages the sim-
ilarity scores between the K semantic exemplars selected by
the semantic exemplar-aligned prompts and the frequency-
domain embedding. The goal of this term is to ensure that
the selected semantic exemplars and the frequency-domain
embedding are aligned, thus optimizing the soft prompt.

4 Experiments

In this section, we validate the effectiveness and adaptabil-
ity of the proposed FreqLLM method through experiments.
Specifically, we address the following research questions
(RQs): 1) Can the proposed FreqLLM model be effectively
generalized to long-period time series forecasting scenarios?
2) Can the proposed FreqLLM model be effectively general-
ized to short-period time series forecasting scenarios? 3) Can
the proposed FreqLLM model generate accurate forecasting
with limited training data? 4) Are the main modules of the
model essential for the FreqLLM method? 5) How do the
model’s hyperparameters affect its overall forecasting perfor-
mance? We used a unified pipeline following the experimen-
tal configurations of all baselines [Wu et al., 2023].

4.1 Experimental Setup

Datasets: For the long-term forecasting experiments, we test
using a variety of datasets, including the Electricity Trans-
former Temperature (ETT) dataset [Zhou et al., 2021], as well
as weather and traffic datasets [Wu et al., 2023], which are
widely used for evaluating the long-term forecasting perfor-
mance of time series models. For short-term experiments,
we primarily utilize the M4 benchmark dataset [Makridakis
et al., 2018], which consists of time series data from annual,
quarterly, monthly, and other categories, featuring large scale,
wide coverage, and high-quality data.

Baselines: The baselines include a set of Transformer
based methods: PatchTST [Nie et al., 2023], FEDformer
[Zhou et al., 2022], Autoformer [Wu et al., 2021], and In-
former [Zhou et al., 2021]. We also compared against a set of
non-Transformer-based methods: DLinear [Zeng et al., 2023]
and TimesNet [Wu er al., 2023]. Lastly, three LLM-based
methods, GPT4TS [Zhou et al., 20231, S2IP-LLM [Pan et
al., 2024], and Time-LLM [Jin et al., 2024], were included.

Implementation Details: Our method is trained with MSE
loss, using the Adam [Kinga et al., 2015] optimizer with
an initial learning rate of 1072, We maintain the backbone
model at 32 layers. We set the patch dimension d,,, to 16, the

number of heads M to 8, the semantic exemplars size V' to
1000, the loss weight A to 0.08, the sliding window size to 8,
and the prompt length K to 8.

4.2 Long-Term Forecasting (RQ1)

Setups: For long-term forecasting, we evaluate the effective-
ness of FreqLLM on the ETTh1, ETTh2, ETTml, ETTm2,
Weather, and Traffic datasets, which are widely used bench-
mark datasets for long-term forecasting tasks. The input time
series length is set to 512, and we assess performance over
four different forecasting horizons: 96, 192, 336, 720. Eval-
uation metrics include Mean Squared Error (MSE) and Mean
Absolute Error (MAE).

Results: Our results are briefly summarized in Table 1.
FreqLLM outperforms all baselines in most cases. Com-
pared to models related to LLMs, FreqLLM improves aver-
age performance by 2.21% over models that do not fine-tune
the backbone, such as Time-LLM, and by 3.88% over mod-
els that fine-tune the backbone, such as GPT4TS. FreqLLM
achieves a 3.83% improvement in average performance com-
pared to the state-of-the-art task-specific Transformer model
PatchTST. This is because (1) FreqLLM leverages both time-
domain and frequency-domain data, allowing the model to
retain the numerical scale of the data while improving its abil-
ity to capture a global perspective, and (2) the semantics ex-
emplars related to TSF tasks, inductively integrated from the
pre-trained word embeddings of the LLM, further enhance
the representation of the time series.

4.3 Short-Term Forecasting (RQ2)

Setups: We use the M4 benchmark [Makridakis et al., 2018]
as our test platform. The M4 benchmark dataset is widely rec-
ognized as a comprehensive test platform, featuring datasets
from various domains such as finance, economics, demo-
graphics, and industry. For this setup, the prediction horizon
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FreqLLM SZIP-LLM Time-LLM GPT4TS PatchTST FEDformer DLinear TimesNet Autoformer Informer

Methods MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETThl  0.404 0420 0417 0426 0412 0424 0417 0433 0442 0465 0442 0473 0420 0435 0452 0450 0504 0497 1.039 0.803
ETTh2 0.344 0.384 0.353 0.387 0.353 0.394 0.360 0.396 0.376 0416 0433 0441 0502 0479 0398 0439 0436 0446 4273 1.714
ETTml 0353 0.382 0.359 0.390 0.353 0.384 0.355 0.380 0.356 0392 0451 0450 0.355 0386 0412 0417 0.592 0526 0.965 0.734
ETTm2 0.248 0312 0256 0320 0253 0.315 0266 0327 0271 0328 0302 0.344 0275 0350 0.280 0.344 0.334 0367 1411 0.817
Weather  0.220 0.252 0.235 0.262 0.230 0260 0.240 0268 0.221 0.258 0.308 0.363 0.245 0.302 0.254 0285 0.337 0397 0.640 0.551
Traffic 0388 0.290 0.403 0305 0402 0302 0417 029 0392 0.277 0.614 0378 0431 0293 0.623 0.327 0.617 0377 0.757 0.416

Table 1: Long-term forecasting results. A lower value indicates better performance. The best results are in bold, and the runners-up are
underlined.

Methods FreqLLM S?IP-LLM Time-LLM GPT4TS PatchTST FEDformer DLinear TimesNet Autoformer Informer
SMAPE 11.911 12.491 12.460 12.683 12.061 13.158 13.802 12.894 12.925 14.090
Avg.  MASE 1.618 1.652 1.646 1.816 1.630 1.782 2.051 1.795 1.789 2.742
OWA 0.876 0.884 0.906 0.986 0.892 1.006 1.053 0.960 1.024 1.279

Table 2: Short-term time series forecasting results on the M4 datasets. The best performances in bold and the runners-up underlined.

Percentage 5% 10%

Methods FreqLLM S21P-LLM GPTA4TS iTransformer FreqLLM S2IP-LLM GPT4TS iTransformer
MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE

ETThl 0.635 0.544 0.650 0.550 0.681 0.560 1.070 0.710 | 0.582 0.519 0.593 0.529 0.590 0.525 0.910 0.860
ETTh2 0.387 0.420 0.380 0.413 0.400 0433 0.4838 0475 | 0406 0.427 0419 0.439 0.397 0421 0489 0.483
ETTml 0419 0432 0455 0446 0472 0450 0.784 0.596 | 0.422 0437 0455 0435 0464 0441 0.728 0.565
ETTm2  0.287 0.331 0.296 0.342 0308 0.346 0.356 0.388 | 0.279 0.325 0.284 0.332 0.293 0.335 0336 0.373
Traffic 0414 0.280 0420 0.299 0434 0305 0450 0.324 | 0434 0311 0427 0307 0440 0.310 0495 0361
Weather  0.277 0.316 0.260 0.297 0.263 0.301 0.309 0.339 | 0.233 0.265 0.233 0.272 0.238 0.275 0.308 0.338

Table 3: Few-shot learning on 5% and 10% training data. The best performances in bold and the runners-up underlined.

ranges from 6 to 48. The input length is set to twice the pre-
diction horizon. Evaluation metrics include Symmetric Mean
Absolute Percentage Error (SMAPE), Mean Absolute Scaled
Error (MASE), and Overall Weighted Average (OWA).
Results: Table 2 summarizes the short-term forecasting re-
sults. We observe that FreqLLM consistently outperforms all
baselines, showing improvements of 3.15% and 9.39% over
Time-LLM and GPTA4TS, respectively. FreqLLM remains
competitive even when compared with the SOTA model,
PatchTST. This could be attributed to the focus on utilizing
local frequency-domain signals closest to the prediction time
period, which helps identify the most relevant influencing in-
formation for the prediction points, mitigating the issue of
missing correlations caused by short sequence lengths.

4.4 Few-Shot Learning (RQ3)

Setups: We follow the experimental setup in [Zhou et al.,
2023] to evaluate the performance under the few-shot predic-
tion setting, which allows us to examine whether the model
can generate accurate predictions with limited data. In these
experiments, we use the top 5% and 10% of the training data.

Results: We summarize the few-shot learning experiment
results in Table 3. We observed that LLM-based methods,
such as S?IP-LLM and GPT4TS, significantly outperform
other baseline methods. This is because other baseline meth-
ods are trained from scratch and have limited training data in
this case. On the other hand, FreqLLM leverages frequency
domain information to help the model learn more domain-
relevant knowledge, thereby improving its performance in
few-shot learning.

4.5 Ablation Studies (RQ4)

Setups: We conducted an ablation study on the ETTh1 and
ETTh2 datasets to verify the necessity of the three key com-
ponents of FreqLLM. To verify the effectiveness of the LLM
in our model, we follow the experimental setup in [Tan et al.,
2024] which the LLM is removed, while retaining the remain-
ing components of the model, and compare the performance.
We created four FreqLLM variants:

* FreqLLM vl: Replaces the Dual-Scale Frequency-
Domain Encoding with an FFT.

e FreqLLM v2: Replaces the Frequency-Domain Seman-
tic Alignment module with a linear layer.

* FreqLLM v3: Replaces the Dual-Domain Reprogram-
ming module with two linear layers.

e FreqLLM v4: Removes the LLM components, retaining
only the remaining structure.

Results: The experimental results are shown in Table 4.
It can be observed that these three components are effec-
tive for FreqLLM in the vast majority of cases. Among
them, Dual-Domain Reprogramming contributed the most
improvement to the model, with an average performance
gain of 4.97%. Dual-Scale Frequency-Domain Encoding had
a slightly smaller impact, with an average improvement of
1.94%, while Frequency-Domain Semantic Alignment fell
between the two, offering an average performance boost of
3.24%. Notably, removing the LLM results in a 1.85% per-
formance decline, underscoring its critical role in the model.
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Methods ETTh1-96 ETTh1-192 ETTh1-336 ETTh1-720 ETTh2-96 ETTh2-192 ETTh2-336 ETTh2-720
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
FreqLLM vl 0378 0.392 0407 0419 0421 0432 0454 0466 0287 0345 0337 0371 0366 0406 0401 0418
FreqLLM v2 0377 0409 0427 0428 0440 0446 0439 0448 0294 0358 0355 0385 0358 0.392 0418 0.447
FreqLLM v3 0381 0.407 0431 0431 0437 0444 0452 0466 0301 0364 0362 0399 0373 0419 0414 0453
FreqLLM v4 0370 0395 0414 0421 0419 0424 0440 0462 0299 0354 0353 0381 0355 0400 0405 0432
FreqLLM  0.367 0.390 0.406 0.414 0411 0426 0434 0451 0.285 0.340 0.344 0.378 0.350 0.392 0.396 0.427

Table 4: Ablation study on ETTh1 and ETTh2 compares FreqLLM with its three variants. The best results are highlighted in bold.
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Figure 3: Parameter sensitivity analysis on the ETTh1 and ETTh2 datasets (MSE reported). (a) shows the impact of the size of semantic
exemplars (V'). (b) shows the influence of the Loss weight (\). (c) shows the effect of the length of the prompt (K). (d) shows the influence

of the GPT-2 layers.

4.6 Parameter Sensitivity (RQ5)

Setups: We conducted a Parameter Sensitivity experiment
on the ETThl and ETTh2 datasets to assess FreqLLM’s
adaptability to different hyperparameters. The results, shown
in Figures 3, demonstrate how FreqLLM performs in vari-
ous settings for semantic exemplar size, loss weight, prompt
length, and GPT-2 layer count.

Results: The experimental results in Figure 3 show that as
the size of semantic exemplars 178 increases, MSE on ETTh1
and ETTh2 remains stable with minor fluctuations, decreas-
ing until a certain point and then rising. This suggests that a
small V' leads to limited information, while a large V' intro-
duces irrelevant data. For the loss weight A, a moderate value
improves prediction, while a larger A reduces performance.
Similarly, increasing the prompt length (/') improves accu-
racy up to a point, but excessively long prompts reduce focus
on the most relevant information, decreasing accuracy. With
the increase in GPT-2 layers, performance continuously im-
proves, as deeper architectures capture more complex time
series patterns. These results demonstrate FreqLLM’s adapt-
ability to various hyperparameters.

5 Related Work

5.1 Time Series Forecasting

Given the importance of TSF, various models have been de-
veloped. Transformer-based models have been widely ex-
plored and refined for TSF [Zhou et al., 2021; Wu et al., 2021;
Lin et al., 2024]. Recent research has focused on optimiz-
ing Transformers’ capabilities in handling time series data,
such as PatchTST [Nie ez al., 2023], which aggregates time
steps into patches, and iTransformer [Liu er al., 2024b],
which reallocates dimensions to enhance multivariate corre-
lations, has significantly boosted model performance. Mean-
while, traditional linear and TCN-based models, with spe-

cific modifications, have demonstrated performance compa-
rable to Transformer-based models while circumventing the
slower training speeds associated with Transformers [Zeng et
al., 2023; Das et al., 2023; Wu et al., 2023]. These meth-
ods perform well on specific tasks but require task-specific
training and lack cross-domain generalization.

5.2 Large Language Models for Time Series
Forecasting

With the rise of large language models (LLMs), researchers
have developed TSF models that leverage LLMs’ pattern
recognition capabilities [Cui et al., 2024; He et al., 2022b;
Ghosal et al., 2023]. Some methods convert time series data
into textual formats for LLM input, such as LLMTIME [Gru-
ver et al., 2024] and PromptCast [Xue and Salim, 2023],
while others align time series with LLMs’ pre-trained se-
mantic space using embeddings and mapping layers, as seen
in TEST [Sun et al., 2024], Time-LLM [Jin et al., 2024],
and S2IP-LLM [Pan et al., 2024]. Unlike these approaches,
FreqLLM incorporates frequency-domain information to cap-
ture underlying periodicity and fluctuations, addressing chal-
lenges from instability and local variations in time series data.

6 Conclusion

We propose FreqLLM, a model that incorporates frequency-
domain signals to enhance LLMs’ understanding of time se-
ries data for forecasting. The model captures both global
and local patterns from the frequency domain and aligns
these signals with the LLM’s pre-trained knowledge, improv-
ing its contextual understanding. Experiments on bench-
mark datasets validate FreqLLM’s effectiveness. Future
work should focus on improving the integration of time
and frequency-domain information and exploring multimodal
pre-training for greater adaptability in forecasting tasks.
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