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Abstract
Local causal discovery aims to identify and distin-
guish the direct causes and effects of a target vari-
able from observational data. Due to the inherent
incompleteness of local information, popular meth-
ods from global causal discovery often face new
challenges in local causal discovery tasks, such as
1) erroneous symmetry constraint tests and the re-
sulting cascading errors in constraint-based meth-
ods, and 2) confusion within score-based approach-
es caused by local spurious equivalence classes.
To address the above issues, we propose a Hybrid
Local Causal Discovery algorithm, called HLCD.
Specifically, HLCD initially utilizes a constraint-
based approach with the OR rule to obtain a can-
didate skeleton, which is subsequently refined us-
ing a score-based method to eliminate redundan-
t structures. Furthermore, during the local causal
orientation phase, HLCD distinguishes between V-
structures and equivalence classes by comparing lo-
cal structure scores between the two, thereby avoid-
ing orientation interference caused by local equiv-
alence class ambiguities. Comprehensive experi-
ments on 14 benchmark Bayesian networks and t-
wo real datasets validate that the proposed algorith-
m outperforms the existing local causal discovery
methods.

1 Introduction
Causal discovery has always been an important goal in many
areas of scientific research [Huang et al., 2019; Prosperi et al.,
2020]. It reveals the underlying causal mechanisms of data
generation and contributes to solving decision-making prob-
lems in machine learning [Yu et al., 2020; Chen et al., 2023].
Learning a Bayesian network (BN) from observational data
is a popular method for causal discovery [Cui et al., 2020;
Zhang et al., 2021]. The structure of a BN takes the form
of a directed acyclic graph (DAG), where nodes signify vari-
ables, and edges represent cause-effect relationships [Xie et
al., 2020; Spirtes et al., 2000]. In recent years, many global

∗Corresponding author

causal discovery algorithms have been proposed, which aim
to learn the entire causal network [Chickering et al., 2004]. In
general, learning a global causal network over a large number
of variables is computationally intractable [Zeng et al., 2021;
Scutari et al., 2019]. To reduce computational complexi-
ty, the local-to-global approach was introduced to limit the
search space for causal networks [Tsamardinos et al., 2006;
Gao et al., 2017]. Rather than exploring the entire network
across all variables at once, these methods first identify the
Markov blanket (MB) or the parent-child (PC) set of a target
variable and gradually construct the DAG skeleton from these
subsets [Yu et al., 2023]. In many practical cases, however,
focusing on the causal relationships around a specific variable
can eliminate the need to build a global causal network [Wu
et al., 2023], increasing the importance of local causal dis-
covery algorithms.

Local causal discovery aims to uncover the causal struc-
ture surrounding a specific variable. However, due to the un-
availability of complete global information, many edge direc-
tions determined by relationships with distant variables1 re-
main unidentified. As a result, most existing methods adopt a
progressive learning approach to gradually acquire outer lay-
er information, until the causal directions around the target
variable are identified. Consequently, local causal discovery
commonly employs the faster constraint-based methods [You
et al., 2023; Ling et al., 2025c], as score-based methods ex-
hibit higher time complexity and are not well-suited for this
gradual information acquisition process [Ling et al., 2022a].

Similar to global causal discovery methods, local causal
discovery is susceptible to common issues associated with
conditional independence (CI) testing, which can impact ac-
curacy [Wu et al., 2024]. One prominent concern is that CI
testing cannot accurately determine the causal skeleton. As
a result, many approaches employ symmetry tests to address
this limitation [Wu et al., 2022; Ling et al., 2025b]. However,
the prevailing AND rule2 and OR rule3 used in these symme-

1“Distant variables” refer to nodes that are located further away
from the target variable along the causal paths.

2If X belongs to the PC of Y , but Y does not belong to the PC
of X , then X should be removed from the PC of Y .

3If X belongs to the PC of Y , but Y does not belong to the PC
of X , then Y should be added to the PC of X .
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(c)  Four local causal networks 
              with equal scores(a)  The Alarm causal DAG 
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Figure 1: Directly using the search scoring algorithm to find the maximum score local network structure of node “artco2” will randomly
return one of the four local structures in (c). It may depend on the order in which the variables in the dataset are encountered.

try tests introduce certain errors. The AND rule aims to rigor-
ously eliminate all erroneous relationships, while the OR rule
seeks to include as many true positives as possible, operating
under a more lenient criterion [Guo et al., 2024]. Empiri-
cal studies have provided evidence that approaches based on
the AND rule achieve superior precision, whereas methods
based on the OR rule exhibit better recall [Wu et al., 2021;
Guo et al., 2023]. Consequently, neither approach yield-
s completely accurate results. Additionally, the presence of
data bias caused by inherent noise and incomplete local infor-
mation further compounds the negative impact, exacerbating
the potential for misleading results in local causal discovery.

To battle the challenge of insufficient observational sam-
ples in rare, costly, or privacy-sensitive events and the ab-
sence of global information due to unknown or unconsidered
distant causal relationships in local causal discovery, a nat-
ural approach is to leverage a hybrid methodology for lo-
cal causal discovery. This approach seeks to enhance per-
formance by combining the strengths of constraint-based and
score-based methods. While hybrid methods are commonly
employed in global causal discovery research, their applica-
tion in local causal discovery remains relatively unexplored.
The complexity arises because a straightforward combination
of these two methods inevitably faces the efficiency dilem-
ma mentioned earlier in score-based approaches. Moreover,
directly utilizing a global search scoring method to find the
maximum score of local network structures may lead to in-
correct local causal networks due to local equivalence class
issues, as shown in Fig. 1. Furthermore, inaccuracies in CI
tests resulting from information miss cascade into errors in
the score-based causal discovery process. Consequently, ef-
fectively leveraging score information in local causal discov-
ery poses a significant challenge.

In this paper, we introduce a novel hybrid method that iden-
tifies causal skeletons and V-structures by comparing scores

among different local causal structures. Specifically, we em-
ploy a constraint-based approach for the initial causal skele-
ton, which uses symmetric tests with the OR rule to achieve
a comprehensive yet less precise structure. On this basis,
we demonstrate the identification and removal of redundant
structures through specialized local structure scores between
the target variable and its causes and effects. Additionally, we
prove the discovery of V-structures using similar score infor-
mation. Our main contributions are summarized as follows:
• We theoretically analyze the special local structure score

relationships between the target variable and its causal
variables, as well as different local structure score rela-
tionships between equivalence classes and V-structures.
• We propose a Hybrid Local Causal Discovery algorith-

m, HLCD. To the best of our knowledge, HLCD is the
first work on hybrid local causal discovery. Based on
our analysis, HLCD can effectively eliminate redundant
causal skeletons and differentiate between V-structures
and equivalence classes by scoring to avoid interference
caused by score equivalence.
• We conducted extensive experiments against seven

state-of-the-art local causal discovery algorithms on 14
benchmark BN datasets and two real datasets. The re-
sults show that our HLCD algorithm outperforms the
compared methods, especially in the small sample case.

Section 2 reviews the related work. Section 3 describes the
proposed HLCD algorithm in detail and Section 4 reports the
experimental results. Section 5 summarizes the paper.

2 Related Work
Most local causal discovery algorithms are constraint-based
and rely on CI tests to build and orient causal networks. No-
table early approaches, such as Local Causal Discovery (L-
CD) [Cooper, 1997] and its variants, use CI tests to discover
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causal relationships between sets of four variables. Bayesian
Local Causal Discovery (BLCD) focuses on learning the Y -
structure within the MB of a target variable [Mani and Coop-
er, 2004]. However, these LCD/BLCD algorithms aim to
identify only a subset of causal edges, focusing on specif-
ic structural patterns among variables, without distinguishing
the direct causal relationships for the target variable.

To address this problem, the state-of-the-art local causal
discovery algorithms distinguish the direct causes and effect-
s of the target variable directly. PCD-by-PCD (PCD means
parents, children, and some descendants) [Yin et al., 2008]
uses the Max-Min Parents and Children (MMPC) algorith-
m [Tsamardinos et al., 2003] to find PC and separating sets
for V-structure identification, and then applies AND rule for
local causal skeleton construction. Finally, the identified V-
structures and Meek-rules [Meek, 1995] are applied to orient
the edges in the local causal skeleton. MB-by-MB [Wang et
al., 2014] first finds a MB of the target node and constructs a
local causal structure, and then sequentially finds MB of vari-
ables connected to the target and simultaneously constructs
local structures along the paths starting from the target un-
til the causes and effects of the target have been determined.
Causal Markov Blanket (CMB) [Gao and Ji, 2015] initial-
ly applies the HITON-Markov Blanket (HITON-MB) algo-
rithm [Aliferis et al., 2003] to identify the target’s MB, and
then orients the edges by monitoring changes in conditional
independence within the MBs. The Local Causal Structure
learning by Feature Selection algorithm (LCS-FS) [Ling et
al., 2020] uses the mutual information-based feature selection
method [Peng et al., 2005] to discover the PC set of variables
and construct the skeleton using OR rules, and then searches
for separating sets from the learned PC sets and in turn us-
es the separating sets for edge orientation. Yang et al. [Yang
et al., 2021] proposed the concept of N-structures. By us-
ing N-structures, the Efficient Local Causal Structure Learn-
ing (ELCS) algorithm [Yang et al., 2021] uncovers the local
structure of the target variable while minimizing the number
of MBs learned, thus reducing the number and influence of
unreliable CI tests. The Partial Structure Learning (PSL) al-
gorithm [Ling et al., 2022b] is a partial causal discovery algo-
rithm. It uses the OR rule to build the skeleton and finds two
types of V-structures, Type-C and Type-NC, in the PC set of
the current node, avoiding the false edge orientation problem
of local causal discovery algorithms. Recently, Yang et al.
proposed GraN-LCS (Gradient-based Local Causal Structure
Learning) [Liang et al., 2024], a gradient-based approach for
learning local causal structures. This method builds a multi-
layer perceptron (MLP) to simultaneously model the relation-
ships of all other variables with a target variable, and incorpo-
rates an acyclicity-constrained local recovery loss to encour-
age the discovery of local graphs and identify direct causes
and effects.

3 The Proposed Method
This section presents our approach, including theoretical
analysis and algorithmic details. For detailed proofs of the
theorems and the analysis of the algorithm’s time complexity,
please refer to [Ling et al., 2025a].

3.1 The local causal discovery strategy

In this section, we introduce the hybrid local causal discovery
strategy for HLCD. This strategy is constructed based on the
following two fundamental theorems.

Before introducing and proving the theorem, we need to
account for the symbolic representation. Since the AIC s-
core function (denoted as SA(G,D)) and BDue score func-
tion (denoted as SB(G,D)) are decomposable, they can be
written as a sum of metrics, each of which is a function
of only one node and its parent node (i.e. SA/B(G,D) =∑n

i=1 SA/B(Xi, PaGi ), where PaGi denotes the parent of Xi

in G). Therefore, we use the symbols SA/B(∅ → X,D) and
SA/B(X → Y,D) to denote the AIC score or BDue score
of node X and Y , respectively. Where SA/B(∅ → X,D)
denotes the score of node X when the empty set is the par-
ent of X , and SA/B(X → Y,D) denotes the score of node
Y when X is the parent of Y . Moreover, U denotes the set
of variables in the dataset, and PCT refers to the parents and
children nodes of the target variable T .

Theorem 1. Let T be any variable in U, and X be a vari-
able in PCT . Assume that the score function maintains local
score consistency within the data D. When node X is treated
as a parent of T , in the local structure X → T , the score of
node T will increase. Conversely, when node T is treated as
a parent of X , in the local structure T → X , the score of n-
ode X will increase. Moreover, the score gains in both cases
are identical. i.e. SA/B(X → T,D) − SA/B(∅ → T,D) =
SA/B(T → X,D)− SA/B(∅ → X,D) > 0 holds.

Theorem 1 shows that when X is a causal node of T , the
local score relationship between X and T will always satis-
fy SA/B(X → T,D) − SA/B(∅ → T,D) = SA/B(T →
X,D) − SA/B(∅ → X,D) > 0. Therefore, using Theo-
rem 1, we can first employ existing parent and child discov-
ery algorithms and the OR rule to construct a comprehensive
but redundant causal skeleton. Then, the nodes in the skele-
ton that do not satisfy Theorem 1 are deleted, thus removing
the redundant skeleton structure and providing a more pre-
cise causal structure search space for the subsequent causal
orientation.

Since all structures within the equivalence class share the
same score, we consider X → T → Y as the representative
structure of the equivalence class, and X → T ← Y as the
V-structure.

Theorem 2. Let X,Y, T ∈ U and T be a target node with
no edge connected between X and Y , and X,Y ∈ PCT .
Assume that the score function maintains score consistency
within the data D. Then, when the score of local structures
X → T ← Y is greater than the score of local structures
X → T → Y , i.e., SA/B(∅ → X,D) + SA/B(∅ → Y,D) +
SA/B(X,Y → T,D) > SA/B(∅ → X,D) + SA/B(X →
T,D) + SA/B(T → Y,D), there exists a V-structure in vari-
ables X , Y , T , and T is a collision node.

With Theorem 2, we can identify V-structures through s-
core comparison, thereby avoiding interference caused by e-
quivalence classes, and determine the final local causal direc-
tions by incorporating the Meek rule.
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Algorithm 1 Hybrid Local Causal Discovery
Input: D: Data, T : The target variable
Output: Parents of T : Direct causes of T , Children of T :

Direct effects of T
Initialize: V = ∅, Q (a regular queue) = {T}
repeat

/* Step 1: Hybrid local causal skeleton construction */
Z = Q.pop;
if Z /∈ V then

PCZ = getPC(D,Z);
V = V ∪ {Z};

end
for each X ∈ PCZ do

if The local score of X → Z is not equal to Z → X
or SA/B(X → Z,D)− SA/B(∅ → Z,D) < 0 then

PCZ = PCZ\{X};
end

end
Q = Q.push(PCZ\{V});
/* Step 2: Hybrid local causal orientation */
for each X ,Y ∈ PCZ do

if The local score of X → Z ← Y is greater than
X → Z → Y then

The X , Y , Z form a V-structure, and Z is the
collision node;

end
end
Using Meek-rules to orient edge orientations between
variables in V;

until All causal orientations of T is determined, or Q = ∅, or
V contains all variables;
Return Parents of T , Children of T ;

3.2 Detailed descriptions of the HLCD algorithm
In this section, we describe the details of the HLCD algorithm
implementation. It consists of the following two steps.

Step 1. Hybrid local causal skeleton construction: The
HLCD begins by removing a variable from the front of the
queue Q and assigning it as the current iteration node Z (s-
tarting with Z as the given target node T ). It then applies
the constraint-based parent and child discovery algorithm to
determine the PCZ and constructs a local causal skeleton us-
ing the OR rule. The HLCD can use any of the state-of-the-
art parent and child discovery algorithms, such as MMPC,
FCBF, etc. Then, the HLCD stores Z into V to prevent repeat-
ed learning of the PC of variables. At this point, the HLCD
builds an initial local causal skeleton from the OR rule and
learned PC sets.

As the OR rule can generate a comprehensive but poten-
tially redundant causal skeleton, the HLCD incorporates the
score-based method to eliminate redundant causal skeleton-
s, ensuring they don’t interfere with subsequent causal ori-
entations. With the analysis of Theorem 1, if node X ∈
PCZ , then the following equation will hold: SA/B(X →
Z,D)−SA/B(∅ → Z,D) = SA/B(Z → X,D)−SA/B(∅ →
X,D) > 0. The HLCD does this by testing each variable X
in PCZ to see if it satisfies Theorem 1, and removing it from
PCZ if it does not satisfy. Next, the HLCD adds all variables

in PCZ\{V} to the queue Q, allowing it to recursively deter-
mine the PC of each node in PCZ in subsequent iterations for
further expansion. At the end of step 1, the HLCD obtains a
refined local causal skeleton consisting of all nodes in the set
V and their PC nodes.

Step 2. Hybrid local causal orientation: To avoid the
effect of the score equivalence, the HLCD distinguishes be-
tween V-structures and equivalence class structures by em-
ploying the score-based method. Specifically, the HLCD i-
dentifies the V-structures in the causal skeleton by compar-
ing the two local structure scores of each tuple X , Y and Z
(X,Y ∈ PCZ) in the causal skeleton obtained in step 1. If
SA/B(∅ → X,D) + SA/B(∅ → Y,D) + SA/B(X,Y →
Z,D) > SA/B(∅ → X,D) + SA/B(X → Z,D) +
SA/B(Z → Y,D), then the edge X − Z and edge Y − Z
will be oriented as X → Z and Y → Z. At this point, the
HLCD orients the causal orientations of all V-structures in the
current causal skeleton and does not orient the causal orien-
tations of equivalent class structures.

Finally, The HLCD uses the constraint-based Meek-rule4

as well as the discovered V-structure to orient the causal ori-
entations of the nodes in the set V. If all causal orientations of
T are recognized in the current V, learning stops, otherwise
it continues to expand outward until it recognizes between
the causes and effects of T . If the set V includes all variables,
and there are still nodes in PCT that have not been directed as
parents or children, then these nodes are considered undirect-
ed. In this case, the HLCD also outputs the undirected causal
nodes. That is, if there are undirected causal orientations, the
HLCD outputs the local completed partially directed acyclic
graph (CPDAG) of T .

Theorem 3 (Correctness of HLCD). Given a set of i.i.d
data D, and samples from some distribution P . As the size
ofD goes to infinity, HLCD correctly identifies all the causes
and effects of a given variable.

Theorem 3 guarantees the correctness of Algorithm 1 un-
der the given assumptions, showing that HLCD can accurate-
ly recover the target variable’s causal structure without ambi-
guity from equivalence classes.

4 Experiments
We conducted experiments on 14 benchmark BN datasets,
where each BN dataset generated samples of sizes 500 and
1000, respectively. Furthermore, we used two real dataset-
s. The first was a well-known dataset from [Sachs et al.,
2005], which captures the varying expression levels of pro-
teins and phospholipids in human cells. This dataset’s ground
truth causal graph consists of 11 nodes and 17 edges, and
we tested it with observational data comprising 853 samples.
The second dataset was a pseudo-real dataset generated using
the SynTReN generator [Van den Bulcke et al., 2006], which
simulates synthetic transcriptional regulatory networks to ap-
proximate experimental gene expression data. We generated
a dataset with 20 nodes and 500 samples, using the default
parameters. Finally, we compare our approaches to HLCD

4The Meek-rule consist of three main principles that, when com-
bined with collider information, allow for the orientation of the re-
maining edges without introducing directed cycles.
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Metrics Algorithm Alarm Child Barley Hailfinder3 Link Pigs Gene

F1

GraN-LCS 0.37±0.03 0.30±0.04 0.20±0.02 0.10±0.01 - 0.43±0.01 -
HLCD-M 0.64±0.05 0.57±0.04 0.30±0.02 0.36±0.02 0.24±0.01 0.98±0.01 0.84±0.01

LCS-FS 0.44±0.05 0.30±0.20 0.24±0.02 0.32±0.02 0.18±0.01 0.92±0.01 0.91±0.01
HLCD-FS 0.58±0.02 0.68±0.11 0.29±0.05 0.43±0.04 0.20±0.02 0.96±0.01 0.94±0.01

ELCS 0.44±0.04 0.53±0.10 0.21±0.01 0.31±0.02 0.19±0.02 0.90±0.01 0.70±0.01
HLCD-H 0.64±0.05 0.66±0.19 0.28±0.02 0.37±0.02 0.24±0.01 0.98±0.00 0.83±0.01

PSL 0.50±0.07 0.56±0.10 0.19±0.02 0.27±0.02 0.17±0.01 0.94±0.01 0.85±0.01
HLCD-P 0.60±0.06 0.70±0.05 0.29±0.03 0.34±0.03 0.23±0.01 0.99±0.00 0.91±0.01

SHD

GraN-LCS 2.57±0.24 2.41±0.16 5.39±0.21 9.40±0.44 - 1.81±0.05 -
HLCD-M 1.29±0.16 1.39±0.10 4.93±0.18 4.43±0.08 4.05±0.09 0.10±0.02 0.48±0.03

LCS-FS 1.75±0.11 1.85±0.53 4.33±0.10 3.02±0.06 4.29±0.29 0.47±0.08 0.30±0.04
HLCD-FS 1.43±0.11 0.99±0.23 3.05±0.15 2.89±0.14 4.09±0.25 0.26±0.06 0.25±0.05

ELCS 1.76±0.14 1.48±0.22 9.31±0.44 5.39±0.07 4.53±0.09 0.36±0.03 0.83±0.02
HLCD-H 1.27±0.15 1.20±0.46 5.14±0.23 4.43±0.07 4.08±0.10 0.10±0.02 0.53±0.02

PSL 1.62±0.18 1.43±0.26 11.52±0.69 5.67±0.12 4.41±0.08 0.20±0.03 0.41±0.03
HLCD-P 1.34±0.22 1.11±0.15 4.97±0.18 4.52±0.09 4.09±0.08 0.05±0.01 0.29±0.03

Table 1: The experimental results of F1 and SHD for HLCD and its competitors on a partial BN dataset (7 out of 14 datasets) with a sample
size of 500.
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PCD-by-PCD MB-by-MB CMB LCS-FS ELCS PSL GraN-LCS HLCD

Figure 2: The experimental results of normalized F1, where the normalized value is the result of the comparison algorithm divided by the
result of the HLCD. The larger the normalized F1, the better (the x-axis labels from N1 to N14 represent the Bayesian networks. N1: Alarm.
N2: Alarm3. N3: Alarm5. N4: Alarm10. N5: Child. N6: Insurance3. N7: Insurance5. N8: Barley. N9: Hailfinder3. N10: Hailfinder5. N11:
Hailfinder10. N12: Link. N13: Pigs. N14: Gene).

with seven state-of-the-art local causal discovery algorithm-
s [Ling et al., 2022c], including PCD-by-PCD [Yin et al.,
2008], MB-by-MB [Wang et al., 2014], CMB [Gao and Ji,
2015], LCS-FS [Ling et al., 2020], ELCS [Yang et al., 2021],
PSL [Ling et al., 2022b],and GraN-LCS [Liang et al., 2024].

In the evaluation of the quality of local causal graph learn-
ing, we utilized two metrics: F1 and SHD [Tsamardinos et
al., 2006]. The F1 is the harmonic mean of precision and
recall, weighted accordingly. The SHD represents the Struc-
tural Hamming Distance. A higher F1 score indicates better
performance, while lower SHD values is preferable.

Different local discovery methods adopt various parent and
child discovery algorithms to identify PC set when construct-
ing the skeleton structure. To eliminate discrepancies arising
from these differences, we ensure that HLCD and the com-
parison methods employ the same parent-child identification
approach and conduct separate comparisons of their experi-
mental results.

Furthermore, for more details on the experimental setup,
more comprehensive experimental data, and additional exper-

imental results, please refer to [Ling et al., 2025a].

4.1 Synthetic data experiment
Table 1 shows the results of the F1 and SHD experiments of
HLCD with state-of-the-art local causal discovery algorithms
over the past four years on a partial BN dataset (7 out of 14
datasets) with a sample size of 500. The Figs. 2 and 3 present
the normalized F1 and SHD results of HLCD and its com-
petitors across 14 BN datasets. Specifically, among 28 BN
sample datasets, HLCD achieves the highest F1 score in 27
datasets and the lowest SHD value in 24 datasets. Compared
to PCD-by-PCD and GraN-LCS, HLCD-M (using MMPC as
the PC learning algorithm) achieves an 8% to 27% improve-
ment in F1 scores and a 5% to 20% reduction in SHD val-
ues on networks such as Alarm, Child, Insurance, Hailfinder,
and Gene. Compared to MB-by-MB and LCS-FS, HLCD-
FS (using FCBF as the PC learning algorithm) achieves a 3%
to 24% improvement in F1 scores and a 2% to 28% reduc-
tion in SHD values on Alarm, Insurance, Barley, Hailfind-
er, and Pigs networks. Compared to CMB, ELCS, and PSL,
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Metrics Algorithm Size=500 Size=1000 Size=5000 Size=10000 Size=15000 Size=20000

F1

GraN-LCS 0.20±0.02 0.21±0.03 0.22±0.01 0.21±0.01 0.23±0.01 0.26±0.01
HLCD-M 0.30±0.02 0.36±0.02 0.51±0.03 0.52±0.01 0.52±0.01 0.55±0.00

LCS-FS 0.24±0.02 0.32±0.02 0.42±0.03 0.44±0.02 0.44±0.02 0.44±0.01
HLCD-FS 0.29±0.05 0.36±0.02 0.46±0.04 0.49±0.01 0.51±0.02 0.50±0.01

ELCS 0.21±0.01 0.22±0.01 0.39±0.02 0.38±0.02 0.38±0.01 0.43±0.03
HLCD-H 0.28±0.02 0.34±0.02 0.51±0.03 0.52±0.01 0.54±0.01 0.55±0.00

PSL 0.19±0.02 0.23±0.02 0.41±0.02 0.42±0.02 0.42±0.02 0.47±0.02
HLCD-P 0.29±0.03 0.36±0.03 0.53±0.01 0.54±0.00 0.54±0.00 0.57±0.00

SHD

GraN-LCS 5.39±0.21 5.22±0.23 4.32±0.05 4.43±0.17 4.18±0.17 3.62±0.14
HLCD-M 4.93±0.18 5.26±0.22 3.57±0.14 4.04±0.09 3.78±0.10 3.33±0.07

LCS-FS 4.33±0.10 3.77±0.11 2.90±0.13 2.72±0.07 2.75±0.08 2.80±0.05
HLCD-FS 3.05±0.15 2.98±0.08 2.73±0.10 2.60±0.05 2.56±0.06 2.63±0.03

ELCS 9.31±0.44 9.79±0.26 4.81±0.10 5.31±0.13 4.92±0.05 4.35±0.10
HLCD-H 5.14±0.23 5.28±0.21 3.58±0.15 4.05±0.11 3.66±0.05 3.30±0.08

PSL 11.52±0.69 11.06±0.34 4.56±0.05 4.88±0.06 4.53±0.07 3.82±0.13
HLCD-P 4.97±0.18 5.23±0.24 3.49±0.09 3.89±0.07 3.56±0.09 3.09±0.04

Table 2: Results of F1 and SHD experiments between HLCD and its competitors on Barley’s network with different sample size dimensions
(Sample size: 500 ∼ 20000)
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PCD-by-PCD MB-by-MB CMB LCS-FS ELCS PSL GraN-LCS HLCD

Figure 3: The experimental results of normalized SHD. The lower the normalized SHD, the better (the x-axis labels from N1 to N14 are
identical to those in Figure 2).

HLCD-H (using HITON-PC as the PC learning algorithm)
and HLCD-P (using PCsimple as the PC learning algorithm)
achieve a 4% to 22% improvement in F1 scores and a 6% to
28% reduction in SHD values on all networks. In general, as
the average number of conditional probability parameters Θ
increases, the performance of local causal discovery declines
due to the larger state space requiring more samples. Con-
versely, fewer parameters lead to better results. HLCD alle-
viates this issue through a scoring-based approach, achieving
superior performance in both simple and complex networks.

4.2 Performance evaluation of HLCD with
different sample sizes

To evaluate the effect of sample size on the algorithm, we as-
sessed the performance of HLCD and its competitors (state-
of-the-art algorithms from the last four years) on barley net-
works with sample sizes ranging from 500 to 20,000.

Table 2 summarizes the experimental results of HLCD and
its competitors on the Barley network across sample sizes
ranging from 500 to 20,000. As the sample size increases, the
F1 score and SHD score of all algorithms generally improve.
HLCD consistently outperforms other methods across most

sample sizes. For example, compared to GraN-LCS, HLCD-
M improves the F1 score by 8–11% and reduces the SHD by
8–10%. Against LCS-FS, HLCD-FS increases the F1 score
by 4–6% and decreases the SHD by 4%–18%. When com-
pared to ELCS, HLCD-H boosts the F1 score by 5%–10%
and lowers the SHD by 13%–22%. Finally, compared to PSL,
HLCD-P improves the F1 score by 10%–12% and reduces the
SHD by about 20%.

Further analysis reveals that methods relying on CI tests or
mutual information perform poorly with smaller sample sizes
but improve significantly as the sample size grows, though
they still lag behind HLCD. This is because HLCD leverages
score information from data to enhance performance.

4.3 Real data experiment
Tables 3-4 summarize the experimental results of HLCD and
its competitors on two real datasets. On the Sachs dataset,
GraN-LCS achieved the highest F1 score of 42%, followed
by HLCD-M/FS/H/P at 37%. For the SHD metric, HLCD-FS
recorded the lowest value of 2.36. On the SynTReN dataset,
HLCD-FS achieved the best F1 score of 25% and the second-
lowest SHD of 2.20. Furthermore, certain algorithms fail to
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Algorithm F1 Prec- Re- SHD Time
ision acll

PCD-by-PCD 0.13 0.15 0.13 3.09 0.01
GraN-LCS 0.42 0.45 0.46 2.55 75.30
HLCD-M 0.37 0.55 0.32 2.55 0.01
MB-by-MB 0.13 0.20 0.12 3.27 0.01
LCS-FS 0.00 0.00 0.00 3.09 0.01
HLCD-FS 0.37 0.55 0.32 2.36 0.01
CMB 0.00 0.00 0.00 3.36 0.01
ELCS 0.00 0.00 0.00 3.45 0.01
HLCD-H 0.37 0.55 0.32 2.55 0.01
PSL 0.00 0.00 0.00 3.45 0.01
HLCD-P 0.37 0.55 0.32 2.55 0.01

Table 3: Experimental results of HLCD and its competitors on Sachs
dataset

Algorithm F1 Prec- Re- SHD Time
ision acll

PCD-by-PCD 0.08 0.13 0.07 2.10 0.01
GraN-LCS 0.01 0.02 0.01 3.40 3.46
HLCD-M 0.08 0.12 0.10 2.40 0.01
MB-by-MB 0.14 0.15 0.15 2.50 0.01
LCS-FS 0.00 0.00 0.00 2.90 0.01
HLCD-FS 0.25 0.30 0.26 2.20 0.01
CMB 0.03 0.03 0.03 2.70 0.01
ELCS 0.00 0.00 0.00 2.75 0.01
HLCD-H 0.08 0.12 0.10 2.40 0.01
PSL 0.00 0.00 0.00 2.75 0.01
HLCD-P 0.08 0.12 0.10 2.40 0.01

Table 4: Experimental results of HLCD and its competitors on SyN-
TReN dataset

recover correct local causal structures on the Sachs and Syn-
TReN datasets, possibly because the learned PC or MB sets
lack key collider nodes needed for accurate orientation.

To illustrate the detailed learning of local causal structures
by the HLCD algorithm on the Sachs network, we present
the experimental results in Fig. 4. The Sachs network con-
tains 11 nodes, shown in dark blue in the innermost circle.
Each branch extending from these nodes represents their par-
ent or child nodes. Blue edges indicate that HLCD correctly
identified a parent or child node, while red edges signify un-
successful identification. From Fig. 4, it is evident that the
HLCD algorithm performs well when a node’s PC set is s-
mall but struggles as the PC set size increases. This decline
in performance can be attributed to two factors: 1) Insuffi-
cient recall of the parent and child discovery algorithms: A
smaller PC set may exclude correct causal nodes, causing V-
structures (e.g., Raf and Mek) to be missed due to undetected
parent nodes. 2) Nodes as colliders: Some nodes (e.g., PKA
and PKC) are inherently collider nodes, lacking identifiable
V-structures. In these cases, causal directions can only be in-
ferred based on whether their child nodes are colliders.

Purely CI test or mutual information methods often fail to
identify local causal networks in real-world datasets accurate-
ly. GraN-LCS iteratively refines the local causal graph using

Sachs

Jnk
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PKC

PKA
PKC

P38

Plcg

Akt
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PIP3
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Figure 4: The identification results of the local causal structure for
each node by the HLCD algorithm on the Sachs real network. Blue
edges indicate that HLCD correctly identified a parent or child node,
while red edges signify unsuccessful identification.

an MLP but suffers from low time efficiency due to exten-
sive matrix computations. In contrast, HLCD integrates both
constraint-based and score-based methods, striking an effec-
tive balance between accuracy and efficiency.

5 Conclusion
In this paper, we discuss the limitations of AND and OR rules
in constructing exact local causal skeletons, and the problem
of global causal discovery methods randomly returning incor-
rect local causal networks due to equivalence classes ambi-
guities. To address the challenges, we propose a novel hybrid
local causal discovery (HLCD) method. Specifically, During
the skeleton construction phase, HLCD uses maximized lo-
cal scores to eliminate redundant causal skeleton structures,
thereby providing a more precise causal network space. In
the skeleton orientation phase, HLCD employs an innovative
score-based V-structure identification approach to avoid inter-
ference caused by equivalence classes. The experimental re-
sults show that the quality of local causal discovery of HLCD
is significantly better than existing methods. In future work,
we aim to pursue two directions: 1) investigating the reasons
behind HLCD’s superior performance in small-sample set-
tings, and 2) extending HLCD to dynamic or time-series data
analysis, as well as exploring its potential in discovering more
complex causal structures.
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