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Abstract
Compositional zero-shot learning (CZSL) aims to
recognize novel compositions of attributes and ob-
jects learned from seen compositions. Previous
works disentangle attributes and objects by extract-
ing shared and exclusive parts between the im-
age pair sharing the same attribute (object), as
well as aligning them with pretrained word embed-
dings to improve unseen attribute-object recogni-
tion. Despite the significant achievements of ex-
isting efforts, they are hampered by three limita-
tions: (1) The efficacy of disentanglement is com-
promised due to the influence of the background
and the intricate entanglement of attributes with
objects in the same parts. (2) Existing word em-
beddings fail to capture complex multimodal se-
mantic information. (3) Overconfidence exhibited
by existing models in seen compositions hinders
their generalization to novel compositions. Be-
ing aware of these, we propose a novel framework
named multimodal large language model (MLLM)
embeddings and attribute smoothing guided disen-
tanglement for CZSL. First, we leverage feature
adaptive aggregation modules to mitigate the im-
pact of background, and utilize learnable condi-
tion masks to capture multi-granularity features for
disentanglement. Moreover, the last hidden states
of MLLM are employed as word embeddings for
their superior representation capabilities. Further-
more, we propose attribute smoothing with aux-
iliary attributes generated by the large language
model (LLM) for seen compositions to address the
overconfidence challenge. Extensive experiments
demonstrate that our method achieves state-of-the-
art performance on three challenging datasets. The
supplementary material and source code will be
available at https://github.com/xud-yan/Trident.

1 Introduction
As for the study of compositional generalization ability in-
herent in human beings, compositional zero-shot learning

∗Corresponding authors

(CZSL) [Misra et al., 2017; Nagarajan and Grauman, 2018;
Purushwalkam et al., 2019] is proposed to enable machines
to recognize unseen compositions by leveraging knowledge
of attributes and objects (i.e., primitives) learned from seen
compositions. Specifically, in the training phase, the mod-
els are provided with images of seen compositions (e.g.,
ripe orange and peeled apple). During the testing
phase, given an image that depicts a novel composition (e.g.,
peeled orange), models are assigned to correctly recog-
nize it [Zhang et al., 2022].

Prior works [Misra et al., 2017; Nan et al., 2019; Naeem et
al., 2021] focus on mapping the visual features and the word
embeddings of compositions into a joint space. These meth-
ods have poor generalization capabilities on unseen com-
positions due to the recombination of primitives. There-
fore, recent studies [Saini et al., 2022; Wang et al., 2023;
Li et al., 2024; Zhang et al., 2024] consider visual disentan-
glement. Among them, some prominent works [Hao et al.,
2023] deploy a triplet of images to disentangle visual fea-
tures: a given image and two supplementary images, each
sharing either the same attribute or object as the given image.
The triplet of images is treated as two image pairs for subse-
quent analysis. These approaches aim to disentangle attribute
and object by extracting the shared and exclusive features of
the image pair, as well as aligning them with word embed-
dings (e.g., GloVe [Pennington et al., 2014]), as shown in
Figure 1. Although these pioneering research studies have
made great progress, they exhibit three limitations:

L1: Disentanglement is impeded due to the influence of
the background and the intricate entanglement between at-
tributes and objects in the same parts of images. On the one
hand, models tend to extract the background features unique
to one image in the pair as the disentangled exclusive features.
On the other hand, some existing methods [Ruis et al., 2021;
Saini et al., 2022] compute the similarity of the image pair for
disentanglement at the spatial level. However, this paradigm
is limited by the frequent entanglement of attributes and ob-
jects within the same image regions.

L2: Existing word embeddings lack the depth needed
to capture complex multimodal semantic information. To
begin with, word embeddings (e.g., GloVe [Pennington et
al., 2014]) are grounded in word frequency and contex-
tual co-occurrence, overlooking the high-level semantic nu-
ances [Sarzynska-Wawer et al., 2021]. Moreover, the pro-
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Figure 1: A general comparison between the existing method and our proposed TRIDENT. Note that, we only present the representation
learning of an image pair sharing the object for brevity.

cess of aligning visual features with word embeddings can be
viewed as a form of cross-modal matching; however, these
word embeddings are trained only in a single text modality,
failing to capture multimodal information between images
and texts.

L3: Existing methods display excessive confidence in seen
compositions, impairing their ability to generalize towards
novel compositions. Specifically, due to the one-hot label
used during training, these approaches are limited by learning
only one disentangled attribute and object, neglecting the fact
that objects naturally exhibit multiple attributes [Xu et al.,
2024]. Consequently, models exhibit overconfidence in the
disentangled ground-truth attribute, treating other attributes
that can describe the object as negative ones, which results in
the diminished generalization to unseen compositions.

Being aware of these, we propose a novel framework
named multimodal large language model (MLLM) embed-
dings and atTRibute smoothIng guiDEd diseNTanglement
(TRIDENT), which consists of three major modules: vi-
sual feature extraction, attribute-object disentanglement, and
feature alignment. The first module leverages feature adap-
tive aggregation (FAA) modules to mitigate the impact of
background noise, and exploits learnable condition masks
for multi-granularity feature learning at the dimensional level
to improve subsequent disentanglement. The second mod-
ule aims at leveraging shared and exclusive weights of im-
age pairs to disentangle attributes and objects under the
paradigm that apart from the shared features of the im-
age pair, each image has its own exclusive features. The
third module is intended to align the visual features of com-
positions and disentangled primitives with the last hidden
states of MLLM (i.e., MLLM embeddings). This is inspired
by prior works [Wang and Kuo, 2020; Muennighoff, 2022;
Muennighoff et al., 2024], which reveal that the last hid-
den states of (M)LLM exhibit powerful representation ca-
pabilities in embedding tasks (e.g., retrieval and classifica-
tion). Moreover, to tackle the issue that the overconfidence of
the models regarding the ground-truth attribute hinders them
from generalizing to unseen compositions, we exploit the
large language model (LLM) to generate auxiliary attributes
for compositions and perform label smoothing for attributes
(i.e., attribute smoothing).

In summary, the contributions of our work are three-fold:
1. We propose novel feature adaptive aggregation mod-

ules to reduce the impact of background, and utilize learn-
able condition masks to capture multi-granularity features at

the dimensional level for disentanglement in CZSL.
2. We employ both LLM and MLLM to guide attribute-

object disentanglement by generating auxiliary attributes and
representing primitive words for CZSL, respectively.

3. Extensive experiments conducted on three challenging
datasets (MIT-States [Isola et al., 2015], C-GQA [Naeem et
al., 2021], and VAW-CZSL [Saini et al., 2022]) show that
TRIDENT has achieved state-of-the-art performance.

2 Related Work
Compositional zero-shot learning (CZSL). Prior works in
CZSL can be broadly divided into two main streams. One
main stream is learning visual representations and textual la-
bels of compositions in a joint space. SymNet [Li et al.,
2020] aims to learn the symmetry property in compositions.
Co-CGE [Mancini et al., 2022] leverages a graph convolu-
tional neural network to learn composition representations.
The other main stream aims at disentangling visual repre-
sentations of primitives to reduce composition learning to
primitive learning. SCEN [Li et al., 2022] leverages con-
trastive loss to excavate discriminative prototypes of prim-
itives. CANet [Wang et al., 2023] learns the conditional at-
tribute conditioned on the recognized object and the input im-
age. More recent works [Nayak et al., 2023; Lu et al., 2023;
Huang et al., 2024] leverage the encyclopedic knowledge of
pre-trained vision-language models (VLM) like CLIP [Rad-
ford et al., 2021] to encode and align images and texts.

Large language model (LLM). LLMs have realized sig-
nificant advancements thanks to the scaling up of training
data and the increase in the number of parameters. Early
models, such as GPT-2 [Radford et al., 2019], initially exhibit
strong capabilities in understanding and generating human-
like language. Subsequently, GPT-3 [Brown et al., 2020]
and LLaMA [Touvron et al., 2023] demonstrate great break-
throughs across numerous language benchmarks.

Expanding on LLMs, multimodal large language models
(MLLM) incorporate a visual encoder for vision-language
tasks. Flamingo [Alayrac et al., 2022] integrates Vision
Transformer (ViT) [Dosovitskiy et al., 2021] and LLM by
gated cross-attention. LLaVA [Liu et al., 2024b] and LLaVA
v1.5 [Liu et al., 2024a] introduce visual instruction tuning
to enhance the instruction following capability. The visual
understanding part of LLaVA v1.5 consists of a ViT and an
MLP cross-modal connector. We choose LLaVA v1.5 as our
foundational MLLM for its state-of-the-art performance.
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Figure 2: The overall architecture of our proposed TRIDENT. The model consists of three major modules: (a) visual feature extraction, (b)
attribute-object disentanglement, and (c) feature alignment.

Recently, exploring the powerful embedding capabilities
of (M)LLM to handle representation tasks (e.g., retrieval)
has emerged as a prominent research domain. SGPT [Muen-
nighoff, 2022] exploits the last hidden states of LLM for the
input token sequence or a special learnable token to derive
representational embeddings. Subsequently, GritLM [Muen-
nighoff et al., 2024] applies mean pooling over the last hidden
states of LLM to produce the textual embeddings.

3 Approach
3.1 Task Formulation
Compositional zero-shot learning (CZSL) aims at learning a
model that can recognize unseen compositions of attributes
and objects that are learned from seen compositions. Given
an attribute set A and an object set O, the attributes and ob-
jects are composed to form a composition set C = A × O.
The composition set C is divided into two disjoint sets: the
seen composition set Cs and the unseen composition set Cu,
i.e., Cs ∩ Cu = ∅. The model learns from a seen training set
Dtr = {(xs, cs)}, where xs is an image of the seen compo-
sition label cs ∈ Cs. Following the Generalized CZSL [Pu-
rushwalkam et al., 2019], the model is evaluated on a pre-
defined test set Dte = {(xte, cte)}, where xte is a test image
from the predefined composition subset Cte of C, i.e., Cte ⊆ C,
and cte ∈ Cte is the label of xte.

3.2 TRIDENT
As the major novelty, we propose a novel framework named
MLLM embeddings and attribute smoothing guided disen-
tanglement (TRIDENT), as shown in Figure 2. It consists
of three modules: (1) visual feature extraction, (2) attribute-
object disentanglement, and (3) feature alignment.

Visual Feature Extraction
As shown in Figure 2, we denote a given image with the
attribute-object composition label (e.g. ripe apple) as
the main image xm, and randomly sample an image with
the same attribute xa (i.e., ripe orange) and an image
sharing the same object xo (i.e., peeled apple) to form a
triplet image set. For convenience of expression, we simply
use ximg (where img ∈ {m, a, o}) to collectively denote the
images as they are processed using the same module.

Visual backbone. As mentioned before, since LLaVA
v1.5 is used as our fundamental MLLM, we directly lever-
age its visual encoder (i.e., ViT) and cross-modal connec-
tor (CMC) to extract visual features. Specifically, the im-
age ximg is partitioned into n patch tokens, which are subse-
quently put into ViT along with the [CLS] token. Afterward,
the output of patch tokens before the last layer of ViT is fed
into the CMC module, as implemented in LLaVA v1.5. To
align the dimensions of the patch tokens output by CMC and
the [CLS] token produced by ViT, the patch tokens output
by CMC is input into a linear layer. Consequently, we obtain
one feature vector of [CLS] token f img

cls ∈ Rd and a patch
feature matrix of n patch tokens F img

patch ∈ Rn×d.
Local features extraction. Intuitively, the composition

(e.g., ripe apple) only occupies a few parts of the image.
Since each patch token corresponds to one local region of the
image, to filter out background noise and focus on related re-
gions, we deploy p feature adaptive aggregation (FAA) mod-
ules to derive p relevant local features of ximg , where each
FAA module is formulated as follows:{

v = agg ⊗ F img
patch

agg = ReLU(Conv(F img
patch))

(1)
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where Conv(·) represents the 1 × 1 convolution layer, agg ∈
Rn is the weight vector, and the k-th element of agg is the
weight for k-th patch feature. ⊗ represents matrix prod-
uct, and v ∈ Rd is the local feature obtained by an FAA
module. We vertically concatenate the local features pro-
duced by p FAA modules to obtain the local feature matrix
F img
l ∈ Rp×d.
Global features extraction. Normally, the [CLS] token

output by ViT is regarded as containing various global infor-
mation of the image, which highly entangles both attribute
and object together [Hao et al., 2023]. To disperse multi-
granularity global information into different representations
at the dimensional level, q learnable condition masks are ap-
plied to f img

cls to obtain q different global representations.
Each global representation is computed as:

u = f img
cls ⊙ c (2)

where u ∈ Rd denotes the global representation, c ∈ Rd

refers to the learnable condition mask and ⊙ is the element-
wise multiplication. We vertically concatenate q global repre-
sentations to derive the global feature matrix F img

g ∈ Rq×d.
Features concatenation. Finally, F img

l and F img
g are ver-

tically concatenated to form the visual features of ximg , i.e.,
F img = [F img

l , F img
g ] ∈ Rh×d (where h = p + q), which is

used for the following attribute-object disentanglement.
Orthogonal regularization. Different features should

capture distinct and complementary aspects of the image.
Therefore, we introduce the orthogonal regularization, i.e.:

Lortho =
1

|img| · |i|
∑

img∈{m,a,o},i∈{g,l}

(||F img
i F img

i

T − Ii||Fro)

(3)
where Ii denotes the identity matrix, and || · ||Fro refers to the
Frobenius norm of the matrix.

Image embedder. Inspired by [Nagarajan and Grauman,
2018], for the input image ximg , we first use the average pool-
ing Avg(·) on F img

g and F img
l , respectively, and horizontally

concatenate them by Cat(·, ·) to aggregate both global and
local features of ximg . Then the concatenated feature passes
through a linear layer Lincomp(·) to derive the final visual
feature f img

comp that represents the composition. This module
is formulated as follows:

f img
comp = Lincomp(Cat(Avg(F img

g ), Avg(F img
l ))) (4)

Attribute-Object Disentanglement
As mentioned before, one of the key challenges for CZSL is
to disentangle attributes and objects from visual features. To
overcome the challenge, we propose a novel weighted disen-
tanglement strategy, as illustrated in Figure 2. For brevity,
the image pair (xm, xa) from the triplet image set is taken as
an example to elaborate on this strategy, while another image
pair (xm, xo) is processed in the same manner.

Weights computation. The features of xm and xa (i.e.,
Fm and F a) are vertically concatenated and fed into two
MLP modules to derive their respective weights of shared at-
tribute features relative to each other. Subsequently, we uti-
lize them to compute the weights of their own exclusive ob-

ject features as follows:
wm2a

attr = σ(MLPm2a([F
m, F a]))

wm2a
obj = 1− wm2a

attr

wa2m
attr = σ(MLPa2m([Fm, F a]))

wa2m
obj = 1− wa2m

attr

(5)

where wm2a
attr , w

a2m
attr ∈ Rh represent the weights of the shared

attribute features of xm relative to xa and xa relative to xm,
respectively. wm2a

obj and wa2m
obj denote the weights of exclu-

sive object features corresponding to xm and xa, respectively,
which are derived by ”1− shared weights” paradigm as be-
yond the shared features of the image pair are the exclusive
features of each image. Taking wm2a

attr as an example, its k-th
element refers to the shared attribute proportion of the k-th
feature of xm relative to xa.

Disentangled features acquisition. We multiply the el-
ements of each weight vector by the corresponding features
and then calculate the average. The following takes the pro-
cess of obtaining the shared attribute features of image xm

relative to xa as an example:

fm2a
attr =

1

h

h∑
i=1

wm2a
attr i F

m
i,: (6)

where Fm
i,: denotes the i-th row of Fm, i.e., the i-th feature

of xm. wm2a
attr i refers to the i-th element of wm2a

attr .
For the image pair of xm and xa, four parts are obtained:

the shared attribute features of xm relative to xa and xa rel-
ative to xm, as well as two exclusive object features of the
two images, respectively. These four features are marked as
fe
pri, where e ∈ {m2a, a2m} and pri ∈ {attr, obj}. Then

the shared attribute feature of xa and xm without relativity
is obtained by an MLP layer, which is less dependent on the
different objects of the two images. The process is as follows:

fma
attr = MLPma(Cat(fm2a

attr , f
a2m
attr )) (7)

Similarly, we disentangle the attribute and object for the
image pair (xm, xo) and obtain the same visual features
as (xm, xa): fe

pri, where e ∈ {m2o, o2m} and pri ∈
{obj, attr}, and the feature without relativity fmo

obj .

Feature Alignment
Inspired by GritLM [Muennighoff et al., 2024] that leverages
the last hidden states of LLMs as the representational embed-
dings, we consider the last hidden states of LLaVA v1.5 [Liu
et al., 2024a] as our MLLM embeddings for primitive words.
Moreover, to tackle the problem that the ineffective overcon-
fidence exhibited by the model in terms of the ground-truth
attribute hinders it from generalizing to unseen compositions,
we employ GPT-3.5 [OpenAI, 2023] to generate auxiliary at-
tributes for compositions and perform label smoothing during
attribute alignment. The auxiliary attributes and MLLM em-
beddings are obtained offline before training TRIDENT.

Auxiliary attributes generation by LLM. Since only tex-
tual attributes need to be generated, the LLM GPT-3.5 [Ope-
nAI, 2023], instead of an MLLM, is leveraged to generate
t auxiliary attributes for each composition. Specifically, the
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following prompt is input to LLM: ’Please give me t adjec-
tives that can describe the visual feature of a photo of a/an ...
well.’, where the attribute-object composition (e.g., peeled
apple) is filled in ’...’. Subsequently, the generated auxil-
iary attribute words form a set Aa. Therefore, the set of all
words Y is obtained, including attributes, objects and auxil-
iary attributes:

Y = A ∪O ∪Aa (8)

MLLM embeddings acquisition. Each word y ∈ Y
is fed into LLaVA v1.5 to get the last hidden states, i.e.,
LLaV Alhs(·). Specifically, y is tokenized into multiple sub-
words and passed through the MLLM; the final-layer output
is averaged as the MLLM embedding of the word. Subse-
quently, it is passed through an MLP layer to obtain the em-
bedding Eword(·) of the aligned dimension with visual fea-
tures. And for a composed pair c of attribute a and object
o, i.e., c = (a, o), we horizontally concatenate the MLLM
embeddings for a and o and feed them into a linear layer
Linco(·) to get the composed pair embedding Eco(·). The
process is formulated as follows:

Eword(y) = MLPword(LLaV Alhs(y)) (9)

Eco(c) = Linco(Cat(LLaV Alhs(a), (LLaV Alhs(o)))
(10)

Word expanding. Previous works compute cosine similar-
ities of disentangled features and word embeddings and apply
cross-entropy only within the respective domains of attributes
or objects, which results in the disentangled attributes and ob-
jects still retaining the information of each other. To address
the problem, we propose a novel word expanding strategy,
which computes cosine similarities of visual features and the
embeddings of all words, including attributes and objects, and
treats all words except the ground-truth word as the negative
labels in subsequent cross-entropy.

Alignment by cross-entropy. Similar to [Mancini et al.,
2021], we use cross-entropy to align the visual features and
word embeddings. Assume that f is the visual feature and
Eword(wd) is the word embedding for the word wd ∈ Y . The
classifier logit from f to Eword(wd) is defined as follows:

CE(f, wd) =
eδ·cos(f,Eword(wd))∑

wd′∈Y eδ·cos(f,Eword(wd′ ))
(11)

where δ is the temperature variable, and cos(·, ·) denotes the
cosine similarity function. Thus cross-entropy with/without
label smoothing can be uniformly formulated as follows:

H(f,Y) =
∑
y∈Y

−z log(CE(f, y))

with z =


1− α, if y is ground truth label
α/t, if y is auxiliary label
0, otherwise

(12)

where α denotes the smoothing factor, t refers to the number
of auxiliary labels, and z ∈ [0, 1] represents the target value of
one-hot label or smoothing label. For cross-entropy without
label smoothing, i.e., with one-hot label Hoh, α is set to 0.
The cross-entropy with label smoothing is denoted as Hls.

Dataset Primitive Train Validation Test
|A| |O| |Cs| |X | |Cs| |Cu| |X | |Cs| |Cu| |X |

MIT-States 115 245 1262 30k 300 300 10k 400 400 13k
C-GQA 413 674 5592 27k 1252 1040 7k 888 923 5k
VAW-CZSL 440 541 1252 72k 2121 2322 10k 2449 2470 11k

Table 1: Summary statistics of the datasets used in our experiments.

For the disentangled attribute features of one image relative
to each other, since a single object exhibits multiple attributes,
we exploit attribute smoothing with auxiliary attributes to un-
dermine the overconfidence in the ground-truth attribute and
learn more related attributes. For the shared attribute features
without relativity, the one-hot label is used to learn a pure at-
tribute concept that is less conditioned on objects. The loss
for disentangled attributes is as follows:

Lattr =
1

|e|+ 1
(

∑
e ∈ {m2a, a2m,m2o, o2m}

Hls(f
e
attr,Y) +Hoh(f

ma
attr,Y))

(13)
Concerning the disentangled object features, we use cross-

entropy with one-hot label to learn the object concept and the
loss is as follows:

Lobj =
1

|e|+ 1
(

∑
e ∈ {m2a, a2m,m2o, o2m}

Hoh(f
e
obj ,Y) +Hoh(f

mo
obj ,Y))

(14)
With respect to the visual feature of the composition from

image embedder, we calculate the cosine similarities between
the visual embedding and the composed pair embeddings of
seen composition labels. The cross-entropy loss for the com-
position is as follows:

Lcomp =
1

|img|
∑

img∈{m,a,o}

Hoh(f
img
comp, Cs) (15)

3.3 Training and Inference
During the training phase, the overall loss is as follows:

L = γorthoLortho + γcompLcomp + γpri(Lattr + Lobj)/2
(16)

where γortho, γcomp, and γpri are weighting factors to bal-
ance the influence of different losses.

For inference, given an image from the test set, the cosine
similarities of its visual feature obtained by image embedder
and the composed pair embeddings of all candidate composi-
tions are computed. The composition with the highest simi-
larity is predicted by the model. Note that although the disen-
tanglement branch is not used for inference, it still influences
the formation of the composition feature space through the
visual feature extraction module described in Section 3.2.

4 Experiment
4.1 Experiment Setup
Datasets. We evaluate our model on three challenging CZSL
datasets: MIT-states [Isola et al., 2015], C-GQA [Naeem et
al., 2021], and VAW-CZSL [Saini et al., 2022]. The common
data splits are presented in Table 1.

Metrics. Our method is evaluated on seen and unseen
compositions separately. Following the common generalized
CZSL setting [Purushwalkam et al., 2019], a calibration bias
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Method MIT-States C-GQA VAW-CZSL

AUC HM Seen Unseen AUC HM Seen Unseen AUC HM Seen Unseen

SymNet [Li et al., 2020] 3.2 13.7 22.7 20.1 1.9 10.8 20.3 11.8 2.8 13.5 20.2 18.0
CompCos [Mancini et al., 2021] 12.3 28.2 39.0 39.5 5.0 17.7 32.8 19.1 6.5 20.8 30.5 27.4
Co-CGE [Mancini et al., 2022] 10.3 25.1 41.0 33.1 4.2 15.2 32.9 17.0 6.2 19.7 31.0 26.1
SCEN [Li et al., 2022] 9.8 24.6 35.1 36.5 3.8 15.3 31.5 15.7 5.7 19.2 29.9 24.5
OADis [Saini et al., 2022] 13.1 29.0 42.3 27.3 2.3 12.1 23.3 12.8 4.1 16.2 26.0 20.7
INV [Zhang et al., 2022] 11.5 26.6 28.5 25.0 1.4 7.9 28.6 6.8 2.0 11.1 21.1 11.9
CANet [Wang et al., 2023] 13.6 29.8 46.4 39.9 5.7 18.9 34.8 20.5 6.7 21.0 31.2 27.4
ProCC [Huo et al., 2024] 9.5 28.1 43.1 39.1 3.5 15.1 32.4 15.8 3.6 18.9 26.9 25.5

CLIP [Nayak et al., 2023] 11.0 26.1 30.2 46.0 1.4 8.6 7.5 25.0 - - - -
CoOp [Nayak et al., 2023] 13.5 29.8 34.4 47.6 4.4 17.1 20.5 26.8 - - - -

TRIDENT (Ours) 14.2 30.9 44.5 40.0 8.0 22.6 39.5 24.1 8.3 23.4 33.3 31.1

Table 2: Comparison with the state-of-the-art results on MIT-States, C-GQA and VAW-CZSL. The four indicators are explained in Metrics.
We measure top-1 AUC on MIT-States and C-GQA, and top-3 AUC on VAW-CZSL. The best results are displayed in boldface, and the
second best results are underlined.

Method AUC HM Seen Unseen

w/o patch features 12.9 28.9 42.6 38.0
w/o [CLS] feature 13.4 30.1 44.3 39.7
w/o FAAs 13.9 30.4 44.4 39.7
w/o condition masks 14.0 30.5 44.2 39.8
w/o word expanding 14.0 30.1 44.7 39.8
w/o attribute smoothing 13.9 30.5 44.9 39.5
w/o Lattr + Lobj 13.2 30.1 43.8 38.9
w/o Lortho 14.1 30.7 44.6 39.7
TRIDENT 14.2 30.9 44.5 40.0

Table 3: Ablation study results on MIT-States. w/o {certain part}
denotes this part is ablated.

trades off between the accuracies of seen and unseen compo-
sitions. We calculate the Area Under the Curve (AUC) using
seen and unseen accuracies at different biases. The best Seen
and Unseen accuracies of the curve are also reported. In ad-
dition, we calculate the Harmonic Mean of seen and unseen
accuracies at different biases and report the best one (HM ).

Implementation details. We use the visual encoder of
LLaVA v1.5, ViT-Large-Patch14-336px as our frozen visual
backbone. TRIDENT and all baseline models are trained
with the batch size of 128 for 50 epochs under the PyTorch
framework [Paszke et al., 2019]. The number of global fea-
tures is set to 6, 2, and 4 for the three datasets, respectively,
and the number of local features is twice that of the global
features. The label smoothing factor is set to 0.09, 0.03, and
0.03 for the three datasets, respectively. The number of auxil-
iary attributes generated for each composition is set to 3. We
train TRIDENT by Adam optimizer with the weight decay
of 5e-5, learning rates of 1.5e-6 for word embedding and 2e-
4 for other modules. We decay the learning rate by a factor
of 0.1 at epoch 30 and 40. The temperature variable of cosine
similarity δ is set to 0.05. For weighting coefficients γortho,
γcomp, and γpri, we set them to 0.1, 1, 0.25, respectively.

Baselines. We compare our TRIDENT with recent and
prominent approaches in CZSL: SymNet [Li et al., 2020],
CompCos [Mancini et al., 2021], Co-CGE [Mancini et al.,
2022], SCEN [Li et al., 2022], OADis [Saini et al., 2022],
INV [Zhang et al., 2022], CANet [Wang et al., 2023], and

Method V arient AUC HM

SCEN [Li et al., 2022] ft+w2v 8.2 22.8
LLaVAlhs 10.3 25.1

CANet [Wang et al., 2023] ft+w2v 12.3 28.4
LLaVAlhs 12.5 28.3

TRIDENT ft+w2v 14.0 29.9
LLaVAlhs 14.2 30.9

Table 4: Impact of word embedding on MIT-States. ft+w2v means
the sum of Word2Vec and Fasttext. LLAV Alhs represents the last
hidden states of LLAVA v1.5.

ProCC [Huo et al., 2024]. We replace their visual backbone
with ViT-Large-Patch14-336px and retrain all models with
the same number of epochs for the sake of fairness. In addi-
tion, although comparing TRIDENT with CLIP-based meth-
ods, which rely on the dual-tower architecture, is very unfair
due to inadvertent exposure to unseen compositions, we still
choose CLIP [Radford et al., 2021] and CoOp [Zhou et al.,
2022] as baselines for their strong zero-shot abilities.

4.2 Results and Discussion
In this section, we compare TRIDENT with state-of-the-art
methods. As shown in Table 2, our model surpasses other
models by a substantial margin in general. TRIDENT boosts
AUC from 13.6%, 5.7%, and 6.7% of the previous state-
of-the-art method CANet to the new state-of-the-art perfor-
mance of 14.2%, 8.0%, and 8.3% with 0.6%, 2.3%, and
1.6% improvement on three datasets, respectively. In ad-
dition, TRIDENT achieves 30.9%, 22.6%, 23.4% on the
metrics of HM , providing 1.1%, 3.7%, and 2.4% improve-
ment on CANet. For MIT-States, our model achieves com-
petitive performance, despite considerable label noise [Atz-
mon et al., 2020]. The largest improvement is observed on
the Unseen metric, indicating that attribute smoothing helps
enhance the generalization ability of the model. We also
observe that TRIDENT performs significantly better than
CANet regarding all metrics on two more challenging and
low-noise datasets C-GQA and VAW-CZSL, indicating the
efficacy of our approach. These improvements arise from
the utilization of MLLM embeddings and attribute smooth-
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MIT-States                       

Old Boat
Broken  Shore
Unpainted  Wood
Deflated  Boat

Narrow Tail
Narrow  Tail
Folded  Mountain
Narrow  Valley

Colorful Pillow
Red  Pillow
Orange  Pillow
Red  Flower

Brown Door
Brown  Door
Beige  Door
Tan  Curtain

Burnt House
Burnt  House
Burnt  Log
Large  Fire

Green Leaf
Green  Leaf
Blurry  Leaf
Brown  LeafRi

gh
t

W
ro

ng
Ri

gh
t

 C-GQA

(a) image-to-text retrieval.

MIT-
States
Peeled
Orange

C-GQA
Young

Girl

VAW-
CZSL

Walking
Elephant

(b) text-to-image retrieval (successful cases).

MIT-
States

Old
Church

C-GQA
Green
Grape

VAW-
CZSL

Wooden
Bed

(c) text-to-image retrieval (failure cases).

Figure 3: Qualitative analysis. (a) Top-5 image-to-text retrieval. The first two rows display successful cases, while the last row presents
failure cases. For each image, the top row shows the ground-truth, followed by five rows of top-5 predictions. (b) Successful cases and (c)
failure cases of top-5 text-to-image retrieval. In all cases, the successful and failure results are tagged in green and red, respectively.

ing, which enhance attribute-object disentanglement and con-
sequently facilitate the recognition of unseen compositions
while maintaining performance on seen compositions.

4.3 Ablation Study
We ablate the components of TRIDENT on MIT-States to
evaluate their contributions. From the ablation results in Ta-
ble 3, we gain the following observations.

1) TRIDENT outperforms the models without using patch
and [CLS] features, indicating that both patch and [CLS]
features are crucial, with patch features contributing more.

2) Both w/o FAAs and w/o condition masks models per-
form worse than TRIDENT, which validates the importance
of filtering out the background noise and extracting the multi-
granularity features, respectively.

3) TRIDENT surpasses w/o word expanding model and
w/o attribute smoothing model on the Unseen metric, yet
falls short of them on the Seen metric. The difference be-
tween our model and the w/o word expanding model stems
from its more thorough disentanglement, which enhances
the recognition of unseen compositions while weakening
the identification of seen ones. The disparity between our
model and the w/o attribute smoothing model arises from at-
tribute smoothing, which diminishes the overconfidence of
the model in seen compositions, facilitating its generalization
to unseen ones. However, the improvement of our model over
these two models on AUC and HM indicates the effective-
ness of the word expanding and label smoothing strategy.

4) TRIDENT outperforms w/o Lattr + Lobj model on all
metrics, confirming that the attribute-object disentanglement
module is highly advantageous for generalization from seen
compositions to unseen compositions.

5) w/o Lortho model is inferior to TRIDENT, which sug-
gests that the designed orthogonal regularization is helpful to
guarantee that different features extract different visual infor-
mation.

Impact of word embeddings. Our work leverages the
last hidden states of LLaVA v1.5 as word embeddings, while
Word2Vec [Mikolov, 2013] and FastText [Bojanowski et al.,
2017] are the common word embeddings used for MIT-States
in previous works. In Table 4, based on three models:
SCEN [Li et al., 2022], CANet [Wang et al., 2023] and TRI-
DENT, we compare the performance of using the last hidden

states of LLaVA v1.5 (LLaV Alhs) and the sum of Word2Vec
and FastText (ft+w2v), respectively. The results indicate that
the last hidden states of MLLM capture more complex multi-
modal semantic information than ordinary word embeddings.

4.4 Qualitative Analysis
In this section, we use TRIDENT to conduct both image-
to-text retrieval and text-to-image retrieval experiments on
the three datasets. We first consider image-to-text retrieval,
shown in Figure 3a. For successful cases, such as the image
labeled burnt house, we notice that the top four predic-
tions can describe logs burning on a fire in the image. In terms
of the image labeled green leaf, another successful case,
all predicted attributes can describe the leaf, which is due
to attribute smoothing learning more attributes for an object.
For the failure cases, such as the image labeled colorful
pillow, the prediction of orange pillow can also de-
scribe the image.

We then consider text-to-image retrieval. Successful cases
are shown in Figure 3b, while failure cases are shown in Fig-
ure 3c. We observe that all retrieved images of peeled
orange are correct. However, the retrieved images of
green grapes are all wrong. This is due to the fact that
the training images of green grapes are almost entirely
filled with a single grape, which makes it difficult for the
model to capture the contour features of a bunch of green
grapes.

5 Conclusion
In this work, we propose a novel framework termed TRI-
DENT to address the challenging CZSL task. First, we lever-
age feature adaptive aggregation modules to mitigate the im-
pact of background, and utilize learnable condition masks to
capture multi-granularity features for attribute-object disen-
tanglement. In addition, we exploit the last hidden states of
MLLM to replace ordinary word embeddings, as they can
capture complex multimodal semantic information. More-
over, we leverage LLM to generate auxiliary attributes and
perform attribute smoothing to diminish overconfidence of
the model in seen compositions, which enables it to general-
ize to unseen compositions more effectively. Extensive exper-
iments conducted on three challenging datasets demonstrate
the effectiveness of our method.
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