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Abstract

We study the problem of finding fair allocations —
EF1 and EFX - of indivisible goods with orienta-
tions. In an orientation, every agent gets items from
their own predetermined set. For EF1, we show that
EF1 orientations always exist when agents have
monotone valuations, via a pseudopolynomial-time
algorithm. This surprisingly positive result is the
main contribution of our paper. We complement
this result with a comprehensive set of scenarios
where our algorithm, or a slight modification of it,
finds an EF1 orientation in polynomial time. For
EFX, we focus on the recently proposed graph in-
stances, where every agent corresponds to a vertex
on a graph and their allowed set of items consists
of the edges incident to their vertex. It was shown
that finding an EFX orientation is NP-complete in
general. We prove that it remains intractable even
when the graph has a vertex cover of size 8, or when
we have a multigraph with only 10 vertices. We es-
sentially match these strong negative results with a
fixed-parameter tractable algorithm that is virtually
the best someone could hope for.

1 Introduction

The allocation of a set of indivisible goods to a set of agents
in a way that is considered to be “fair” is a problem that
has been studied since ancient times. Since envy-free alloca-
tions — no agent prefers the bundle of any other agent over
their own — for indivisible goods are not always guaranteed
to exist, in recent decades mathematicians, economists, and
computer scientists formally studied the problem and have
proposed several different fairness solution concepts [Lip-
ton et al., 2004; Bouveret and Lang, 2008; Budish, 2011;
Caragiannis et al., 2019b].

Arguably, EF1 and EFX are the two solution concepts that
have received the majority of attention in the literature and
have created a long stream of work. An allocation is EF1, if it
is envy-free up to one good, i.e., any envy from one agent ¢ to
some agent j is eliminated by removing a specific item from
the bundle of agent j. On the other hand, an allocation is EFX
if it is envy-free up to any good, i.e., any envy towards agent
7 is eliminated by removing any item from j’s bundle. While

EFX is a stronger fairness notion, it is unknown whether it
always exists; this is one of the main open problems in fair
division. On the other hand, EF1 allocations are always guar-
anteed to exist and in fact, we can efficiently compute such an
allocation via the envy-cycle elimination algorithm [Lipton et
al., 2004].

However, both EF1 and EFX allow for allocations that can
be considered “counterintuitive” in the best case, or wasteful
in the worst. Consider for example the case where we have
two agents, X and Y, and three items, a, b, and c. The val-
uations of X for a,b,c are 1,1,0.2 respectively, while the
valuations of Y are 0,1,0. Observe now that the allocation
that gives X item a and Y items b and c is both EFX and
EF1. Still, giving item c to agent Y seems rather unreason-
able since item c is “irrelevant” to agent Y'! Luckily for us,
this issue can be fixed by giving item c to X instead. But is
such a “fix”” always possible? In other words, does a fair allo-
cation always exist under the constraint that every agent gets
goods from a restricted set, i.e., a subset of goods that they
approve? This is the question we answer in this paper.

Our work is inspired by the recent paper of Christodoulou
et al. [2023] that studies valuations on graphs. In that model,
an instance of the problem is represented via a graph whose
vertices correspond to agents with additive utilities and the
edges correspond to goods. There, each agent had positive
utility only for the goods that corresponded to edges incident
to their vertex, i.e., only those goods were relevant to them.
The value of an agent for every other good, non-incident to
their vertex, was zero.

Christodoulou et al. studied the existence and complexity
of finding EFX allocations and EFX orientations. An ori-
entation is an allocation where every agent gets only edges
adjacent to them, i.e., every edge is “oriented” towards the
incident agent that gets it. Christodoulou et al. showed some-
thing really interesting. They have shown that albeit EFX
allocations always exist for this model and they can be com-
puted in polynomial time, EFX orientations fail to exist and
in fact, the corresponding problem is NP-complete even for
binary, additive and symmetric valuations for the agents.

1.1 Our contribution

Our contribution is twofold: (a) we initiate the study of EF1
orientations; (b) we examine EFX orientations through the
lens of parameterized complexity.
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Our main result is to prove that an EF1 orientation al-
ways exists when the valuations of the agents are monotone!
In fact, we prove our result for a more general model than
the one from Christodoulou et al. [2023], where instead of
graphs, we consider hypergraphs, i.e., the goods now corre-
spond to hyperedges. In other words, each agent has a subset
of goods that are relevant to them. We prove our result al-
gorithmically (Theorem 1). The base of our algorithm is the
well-known envy-cycle elimination algorithm [Lipton et al.,
20041, although it requires two careful modifications to in-
deed produce an orientation. The first modification is almost
straightforward: every item is allocated to an agent that is
incident to it. The second modification is required after we
swap the bundles of some agents when we resolve an envy
cycle. After the swap, an agent might get goods that are not
relevant to them. If this is the case, we remove any irrelevant
items from all the bundles of the partial allocation and we re-
distribute them. However, a priori it is not clear whether this
procedure will ever terminate. As we prove via a potential
argument, the procedure indeed terminates, albeit in pseudo-
polynomial time.

Then, we derive polynomial-time bounds for several dif-
ferent valuation classes as direct corollaries of our main the-
orem, or via a slight modification of the algorithm. Namely,
our base algorithm finds an EF1 orientation in polynomial
time if every agent has a constant number of relevant items
(Corollary 1), or when there exists a constant number of “lo-
cal” item-types (Corollary 2). In addition, via straightforward
modifications of the base algorithm, we can efficiently com-
pute EF1 orientations for identical valuations (Theorem 2),
or when the relevant items of the agents form laminar sets
(Corollary 3).

For EFX orientations, we begin by showing two strong
negative results. Firstly, we show that it is NP-complete to
decide whether an EFX orientation exists even on graphs with
vertex cover of size 10, even when the valuations are additive
and symmetric (Theorem 3). This result rules out the pos-
sibility of fixed-parameter algorithms for a large number of
graph parameters. Furthermore, we show that if we consider
multigraphs instead of graphs, i.e., we allow parallel edges,
finding an EFX orientation is NP-hard even when we have 8
agents with symmetric and additive valuations (Theorem 4).
We complement these intractability results with a fixed pa-
rameter algorithm, for which the analysis is rather involved,
parameterized by the slim tree-cut width of the underlying
graph; this is essentially the best result someone could hope
for, given our previous results.

Due to space constraints, some details, marked with x, are
omitted and are available in the supplementary material.

1.2 Related Work

The recent survey by Amanatidis et al. [2023] provides a
comprehensive coverage of work on fair division of indivisi-
ble goods. In this section, we direct the reader to some other
papers, in particular, that study EFX or EF1 and restrict the
instance in different ways.

As aforementioned, the question of whether EFX always
exists is a well-known open question in Fair Division. Cur-
rently, we have that Plaut and Roughgarden [2020] prove

EFX always exists for 2 agents. For 3 agents already this
question is much harder, Chaudhury er al. [2024] prove that
EFX exists for 3 agents but with additive valuations, and re-
cently Akrami et al. [2024] prove a result for 3 agents where
only 1 of these agents requires additive valuations (and the
other 2 agents have MMS-feasible valuations). The paper
by Goldberg et al. [2023] studies the intractability of EFX
with just two agents. They find that even with a small in-
stance like this, it quickly becomes intractable as the valua-
tions become more general — namely computing an EFX allo-
cation for two identical agents with submodular valuations is
PLS-hard!. However, they propose an intuitive greedy algo-
rithm for EFX allocations for weakly well-layered valuations;
a class of valuations which they introduce. An example of re-
laxation of EFX that has been studied is EFkX, envy freeness
up to k goods, Akrami et al. [2022] study EF2X and prove
existence in some restricted settings. A recent paper by Zhou
et al. [2024] studies EFX allocations in the mixed setting on
graphs, where agents only have valuations for edges adjacent
to them and these can be positive or negative. They treat ori-
entations as a special case of their problem and show that
deciding if an EFX orientation exists is NP-complete. The
paper by Payan et al. [2023] also studies graph restrictions
but these are subtly different to that of Christodoulou et al..
In this model, edges are not items but instead, they are where
EFX (/other fairness notions) must apply, intuitively this aims
to capture a model where we want envy freeness between an
agent and some of their neighbors. Some studies look at EFX
where we (may) decide to leave some items unallocated. We
refer to this as EFX with charity, [Caragiannis ef al., 2019a;
Chaudhury et al., 2021], where not all items are allocated and
these leftover items are said to be “given away to charity”.
Moreover, Caragiannis e al. [2019b] introduces EFX0 and
Kyropoulou et al. [2020] studies this. An allocation satisfies
EFXO if for one agent ¢ they are not envious of any other agent
7’s bundle after removing any item for which agent ¢ doesn’t
have a positive value. Moreover, another model which may be
of interest is that of connected fair division - originally intro-
duced by Bouveret et al. [2017] and more recently Deligkas
et al. [2021] studies this under the lens of parameterized com-
plexity - in which there are some items which cannot be sep-
arated i.e. have some connectivity constraints.

2 Preliminaries

Throughout the paper we consider A = {ay,az,...,amn} to
be a set of indivisible items and N = {1,2,...,n} to be a set
of agents. An allocation 7 = (71,72, ...,7,) is a partition
of the items into n (possibly empty) sets which we refer to as
bundles. Thus, m; N 7; = () for every i # j and | J,cn ™ =
A, where the bundle 7; is allocated to agent 7. For an item
a € A, we denote by 7(a) the agent who receives item a in
the allocation . We refer to an allocation of a subset of items
as a partial allocation.

Every agent 7 € N has a valuation function V; that assigns
a value V;(S) for every subset S C A, where V;()) = 0.
V; is non-negative if for all S C A it holds V;(S) > 0; V;
is monotone if for all S’ C S it holds V;(S") < Vi(S); Vs

'For the definition of PLS see Johnson et al. [1988].
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is additive if there exist non-negative values v;1, v;2, . . .
such that for every S C A it holds V;(S) = >, 5 vij.

For an allocation 7 and two agents 7, j € IN, we say that ¢
envies j or alternatively that there is envy from i towards j if
Vi(m;) > V;(m;). An allocation is fair if envy can be elimi-
nated in some particular way.

» Uim

Definition 1 (EF1). An allocation m is envy-free up to one
item (EF1), if for every pair of agents i,j € N there exists
an item a € 7; such that V;(m;) > Vi(m; \ {a}).

Definition 2 (EFX). An allocation 7 is envy-free up to any
item (EFX), if for every pair of agents i,j € N and every
a € mj it holds that V;(m;) > V;(m; \ {a}).

Relevant items. We say that an item a is relevant for an
agent ¢ if there is a set S of items such that V;(S\ a) < V;(5).
For every agent ¢, we will denote the set of items relevant to ¢
by A;. Similarly, for every item a, welet N, = {i € N | a €
A;} be the set of agents to which a is relevant, we will also
call N, the agent list of a. We say that items a and b belong
to the same group if N, = Njp. Throughout the paper we
assume that the union of all relevant sets is the set of items or,
in other words, every item is relevant for at least one agent.

Orientations. Using relevant items, we can define a subset
of all possible allocations, that we call orientations. Formally,
an allocation © = (w1, 7o, ..., 7y, ) is called an orientation if
w; C A; for all © € N. In other words, in an orientation,
the bundle of an agent contains only relevant items. For ¢ €
{EF1, EFX}, we say that an allocation 7 is a ¢ orientation if it
is an orientation and in addition, it satisfies the corresponding
fairness definition.

Parameterized Complexity. An instance of a parameter-
ized problem @ C X x N, where X is fixed and finite alphabet,
is a pair (I, k), where I is an input of the problem and & is a
parameter. The ultimate goal of parameterized algorithmics
is to confine the exponential explosion in the running time
of an algorithm for some NP-hard problem to the parameter
and not to the instance size. The best possible outcome here
is the so-called fixed-parameter algorithm with running time
f(E) - |T]°M for any computable function f. That is, for ev-
ery fixed value of the parameter, we have a polynomial time
algorithm where the degree of the polynomial is independent
of the parameter. For a more comprehensive introduction to
parameterized complexity, we refer to the monograph of Cy-
gan et al. [2015].

3 EF1 Orientations for Monotone Valuations

In this section we establish the existence of EF1 orientations
when agents have monotone valuations via the construction
of a pseudopolynomial-time algorithm and we identify sev-
eral sub-classes of valuation functions for the agents where
our algorithm, or a slight modification of it, finds an EF1 ori-
entation in polynomial time.

Let V; be a valuation function of an agent. The maximal
range of V; is the number of different values of a bundle as-
signed by V;, i.e., [{Vi(S) | S C A}|.

Theorem 1. When agents have monotone valuations, an
EF1 orientation always exists and can be computed in time
@ (mngr) where 1 is the maximal range size of V;, 1 € N.

Algorithm 1 EF1 orientations for monotone valuations

Input: Set of items A, set of agents IV, valuations V;, sets of
relevant items A;, i € N, agent lists Ny, a € A
Output: EF1 orientation 7
I: Letw = (my,...,m,) such that m; = () forall i € N.
2: Let G, = (N, D) be a directed graph ( an “envy-graph”
of m)
3: while 3 item a that is not in any 7; do
4: Lettv € N, be an agent such that 7 is a source-vertex
in G[N,].
Let T =m; U {(I}
for j € N, \ {i} do
iij(Trj) < Vj(ﬂi) then
Add the edge from j to i if it does not exist.
end if
end for
Call Algorithm 2 with 7 and G; to eliminate all cycles
in G.
12: end while
13: return 7

TeYR W

1
1

Algorithm 2 Eliminating cycles in the envy-graph

Input: partial allocation 7 with an envy-graph G
Output: partial allocation 7’ with V;(w}) > Vi(m;),i € N,
such that G+ does not contain directed cycles

1: while 3 a directed cycle C = (i1, 42, ...,47) in G, do

2: forallj e[l —1]do

3 Let’fr;j :7T7;j+1 ﬂAl-].

4 end for
5: W;( = Tig mAu
6: Letm=n'
7:  Recompute G
8: end while
9: return T

Proof. A full pseudo-code of the algorithm is given in Algo-
rithm 1. The algorithm is inspired by the envy-cycle elim-
ination algorithm by Lipton ef al. [2004]. Similarly to that
algorithm, we are computing the allocation 7 iteratively start-
ing from an empty (partial) allocation keeping an envy graph
G, which is a graph whose vertex set is precisely the set of
agents N and there is a directed edge from ¢ to j if in the al-
location 7 the agent ¢ envies the agent 5. In addition, we will
be preserving that 7 is an EF1 (partial) allocation such that
m; C A; forall i € N. For the ease of the presentation of
the proof, we will say that a pair of agents ¢, j satisfy EF1-
property if V;(m;) < V;(m;) or there exists a € 7; such that
Vi(m; \ {a}) < Vi(m).

While the algorithm by Lipton er al. greedily picks any
source-vertex ¢ in G (that is a vertex without any edge point-
ing towards it; so no agent in [V envies agent ¢ for its bundle
in 7) and allocates to ¢ an arbitrary item, this would not work
for us, as the remaining items might not be relevant for the
source vertices of G. Instead, we first pick an unassigned
item a that needs to be assigned and give it to an agent ¢ that
is a source in the subgraph of GG; induced by the agents in the
set IV, that are allowed to receive that item. Hence, the item



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

a is irrelevant for any agent j that envies ¢ before allocating
the item a. Therefore, these steps preserve both that 7; C A;
for all © € N and that for all ¢, 7 € N the pair ¢, j satisfies
EF1-property.

Furthermore, in order to always find a source-vertex in
this induced subgraph of the envy graph, we also need to
be able to eliminate cycles in G. An algorithm for elim-
inating all cycles in G is described in Algorithm 2. Let
C = (41,199, ...,1r) be a cycle such that the agent ¢; envies
the bundle of the agent i;,; for j € [¢ — 1] and the agent
i¢ envies the bundle of the agent ¢;. Similarly to Lipton et
al., we shift the bundles in the opposite direction of the cy-
cle, which is known to eliminate the envy on the cycle and
does not create any new envy. However, after we execute
this shift of bundles, the bundle of an agent ¢ on the cycle
could contain some items that are not in the set A; of their
relevant items. So we remove from the bundle of the agent
1 any item that is not relevant for them. Note that this does
not change the valuation of ¢ for its bundle. Let us denote
by 7 the allocation before the cycle-elimination step and by
7' the allocation after the cycle-elimination step. As we al-
ready discussed, for all i € N we have V;(7}) > V;(m;) (the
value either increased or the bundle did not change). Now
leti,57 € N. We know that for all j € N, the pair ¢, j sat-
isfies EF1-property in 7. It follows that if 77 = ;, then
1,7 satisfies EF1-property as well. Else 7r;- C my, for some
k € N. It follows from monotonicity of the valuation that
Vl(ﬂ'j) < Vi(ﬂ'k) and VZ(’ITj \(l) < Vi(ﬂ'k \ CL) for all a € 7y
and so the pair 7, j also satisfies the EF1-property in 7’.

It follows from the above discussion and from the fact that
Algorithm 1 stops only when all items have been allocated
that whenever Algorithm 1 stops it returns an EF1 orientation.
It only remains to show that the algorithm terminates.

Let us consider the vector W™ =
(V1(m1), Va(72)), ..., Vu(my)). By definition, each co-
ordinate W of the vector W™ has at most r < 2" many
possible values. In addition, in each cycle-elimination
step all the coordinates corresponding to the agents on
the cycle strictly increase and the remaining coordinates
of W™ do not change. Similarly, adding item a to agent
7 on line 5 of Algorithm 1 does not decrease any of the
coordinates because of the monotonicity of the valuations.
Since every coordinate can increase its value only r — 1
times, it follows that there are less than n - r many cycle
elimination steps in total, each can be executed in O (nm)
time. Between any two cycle-eliminations we can only add
less than m items after each addition of an item, we need
to update G, and check whether a cycle is created, which
can be easily done in O (|V(Gr)| +|E(G,)|) = O (n?)
time. Putting everything together, Algorithm 1 runs in
O (nr - (nm +mn?)) = O (mn®r)) time. O

Note that if the number of relevant items for each agent is
constant and bounded by some ¢ € N, then the number of
possible bundles for each agent and hence the range r of its
valuation function V; is bounded by 2¢. Therefore, Theorem 1
immediately implies the following corollary.

Corollary 1. For monotone valuations, computing an EF1
orientation is fixed-parameter tractable parameterized by the

number of relevant items per agent, | and can be computed in
time O (mn3 . 21).

3.1 Local item-types

While in Corollary 1, the number of relevant items per agent
is small, our algorithm provided in Theorem 1 can be applied
to compute an EF1 orientation in polynomial time in much
more general settings. For instance, if the range of each val-
uation has size at most m? for some constant d, the running
time is upper-bounded by O (md+1n3).

One natural example of such valuations is as follows. As-
sume that each agent subdivides all items relevant to them
into d groups (which we will refer to as local item-types) and
only distinguishes items that are in different groups. In this
case, the valuation each agent has for their bundle depends
only on the number of received items from each local item-
type. Since each of the d groups contains at most m items,
there are at most m< possibilities for their value.

Corollary 2. For monotone valuations, computing an EF1
orientation is XP parameterized by d, the number of lo-
cal item-types per agent, and can be computed in time
) (md+1n3).

In general, when the range size of V; is unbounded, we
still can distinguish some settings for which the described al-
gorithm (or its slight modification) is polynomial.

3.2 Identical valuations

While strictly speaking, identical valuations would mean that
all items have to be relevant for all agents, we relax this no-
tion slightly to better fit with the intended meaning of the rel-
evant items as a restriction of the item an agent is allowed to
receive.

Definition 3. A set of agents have identical valuations if there
exists a function V such that for every agent i their valuation
function is defined by V;(B) = V(B N A;) for every B C S.

Similarly to the standard setting where agents with identi-
cal valuations cannot create envy cycles, we can show that the
same is the case even with this relaxed definition of identical
valuations and we obtain the following theorem.

Theorem 2. An EF'1 orientation can be computed in linear
time when agents have identical monotone valuations.

Proof. We will show that it is not possible to have a cycle in
the envy graph. That is that when we run Algorithm 1, then
whenever Algorithm 2 is called as a subroutine, the condition
on line 1 in Algorithm 2 is always false and it returns the same
partial allocation.

For the sake of a contradiction, assume that C =
(i1,12,...,1¢) is a cycle in the envy-graph for some partial
allocation 7 such that m; C A;. That is the agent ; envies the
agent ;41 forall j € [/ — 1] and the agent i, envies the agent
11. Let V be the function such that for all # € N and for all
B C A we have V,(B) = V(B N A;). Since, m; C A; for
all i € N it follows that V;(m;) = V(m;) foralli € N and
Vi(m;) = V(m; N A;) and by monotonicity V;(7;) < V(7).
It follows that

V(Tril) < V(Trij+1) < < V(ﬂ-i() < V(ﬂ—il)a
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which is a contradiction. Therefore, Algorithm 1 only has
to assign every item a once to a source-vertex in Gr[N],
without ever running Algorithm 2 which takes linear time
O(mn). O

3.3 Laminar agent lists

The final setting for which we get a polynomial time algo-
rithm is when items are arranged in some kind of hierarchical
structure, where the most common items can be assigned to
any agent and then we have more and more specialized items
that only a smaller and smaller group of agents can get. One
can think about it like this: agents need to undergo some train-
ing and which items you are allowed to receive depends on
your specialization and on the amount of training you already
received.

Definition 4. We say that agent lists N,, a € A, are laminar
if for any two items ay and asz it holds that either N,, N N,, =
() or one of the sets is a subset of another, i.e. N,, C N, or
Nq, € Na,

Corollary 3. For the monotone valuations with laminar
agent lists, an EFI orientation can be computed in time

O (m2n)

Proof. Recall that the algorithm described in the proof of
Theorem 1 picks undistributed items in random order. Here,
instead of this, if the agent lists are laminar, we order the
items in a tuple (aq, ..., a,,) so that either N; N N}, = () or
Ny € N; whenever 1 < j < k < m. In the algorithm, we
will pick items exactly in this order. Consider the moment
when a new item a is allocated. Then shifting items along
the cycle in G, will never result in allocating illegal items.
Indeed, if some item b was moved to agent ¢ € N,, then
N, N Ny # 0. Since b was allocated before a, we conclude
that N, € Ny and hence i € N,,.

Therefore, each item is moved from not distributed to dis-
tributed precisely once, and potential cycle elimination after-
wards takes time at most O (mn), so the EF1 orientation is
computed in time at most O (m?n). O

4 EFX Orientations

The paper by Christodoulou et al. [2023] proves that it is
NP-complete to decide if an EFX orientation exists. We
strengthen this result, by showing it is NP-hard even when
the graph has constant vertex cover.

Theorem 3. Deciding whether an EFX orientation exists on
graph G is weakly NP-hard even when G has a vertex cover
of constant size.

Proof. We show a reduction from the NP-complete problem
PARTITION. An instance of partition consists of a multiset
S of positive integers. Let 7" be the number of elements in S.
Let 23:1 S; = 2B. Given S we want to decide if the ele-
ments can be divided into two subsets S; and S5 such that the
sum of elements in S is equal to that of So. Given an instance
of PARTITION, we will construct a graph G = (V, E). We
start by constructing a bipartite graph such that there is a ver-
tex (i.e. an agent) for every element in .S on one side, call
them x4, - -+ , 7, and two additional vertices ¢ and j on the

other. Now we will create the edges, where |E| = m, the
number of items and weights on edges are the valuation of
that item for the agents on both endpoints. For all vertices
2y € {x1,Za...,x7} We create an edge (i, x,) of weight S,
and an edge (j,z,) of weight S,. We create two copies of
gadget X, we will call these Xy and X,. Gadget X is a clique
on 4 vertices based on Example 1. in [Christodoulou erf al.,
2023] that has no EFX orientation on its own. Let the ver-
tices in the gadget X, be Xp1 to X4 . Edges (Xp1, Xpo)
and (Xp3, Xp4) have weight B. All other edges in X}, have
weight 1. Finally, we create edges (i, X11) and (j, Xo1) of
weight B. This completes the construction, see Figure 1.

Figure 1: The construction used in the proof of Theorem 3.

One can now show that in order to get an EFX orientation,
the edges (7, X11) and (j, Xo21) have to be allocated to X1,
and Xo;, respectively. In addition, the only way to satisfy
all the remaining agents in the gadgets X; and X5, both X
and X1 need to receive additional edge of value 1. Hence in
order for both ¢ and j to be satisfied, they each need to value
their bundle at least B. Since to achieve this both ¢ and j need
to receive more than just one edge, each of agents xj, for k €
[T] has to receive at least one of its incident edges. Therefore,
the only way for the graph G to admit EFX orientation is
if the elements associated with the edges allocated to ¢ and
the elements associated with the edges allocated to 5 form a
partition of S. O

Theorem 4 (x). Deciding whether an EFX orientation exists
on a multigraph G is weakly NP-hard even when G has a
constant number of vertices.

Proof Sketch. We begin with a construction very similar to
that of Theorem 3. The only difference is that instead of cre-
ating a set of vertices z; - - - zp we will create 7" many edges
between vertices ¢ and j, see Figure 2. O

Figure 2: The construction used in the proof of Theorem 4.
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4.1 Slim tree-cut width and the FPT algorithm

Examining the hardness of Christodoulou et al., we can see
that their reduction can be made to work on graphs with con-
stant maximum degree. In combination with Theorem 3, this
shows that efficient algorithms for deciding the existence of
EFX orientations are unlikely already for very restricted set-
tings. In this section, we show an efficient algorithm for a
setting that is basically on the limit of tractability from the
point of view of parameterized complexity (in a sense, that
more general parameters studied so far would contain some
of the hard instances).

As follows from our reduction, deciding whether EFX ori-
entation exists in the graph setting is hard, even when the un-
derlying graph has constant vertex cover and tree-cut width.
In particular, this rules out most of the vertex-separator based
parameters. However, we show that the recently introduced
parameter slim tree-cut width (also equivalent to super edge-
cut width, see [Ganian and Korchemna, 2024]) allows us to
achieve tractability.

For simplicity, here we work with super edge-cut width.

For a graph G and a spanning tree T of G, let the local feed-
back edge setatv € V be EC." (v) = {uw € E(G)\ E(T) |
the unique path between v and w in T contains v}.

Definition 5. The edge-cut width of the pair (G,T) is
ecw(G,T) = 1+max,cy \EICOZT(v) , and the edge-cut width
of G (denoted ecw(Q)) is the smallest edge-cut width among
all possible spanning trees T of G.

If in the last definition, we allow to choose the spanning
tree in any connected supergraph of G, this leads to the notion
of super edge-cut width (denoted by sec(G)):

sec(G) = min{ecw(H,T') | H O G, T — spanning tree of H }.

Super edge-cut width is a strictly more general parameter
than degree+treewidth and feedback edge number, but it is
more restrictive than tree-cut width [Ganian and Korchemna,
2024].

Theorem 5 (x). Deciding whether an EFX orientation exists
for a given graph G is fixed-parameter tractable if parame-
terized by the slim tree-cut width of G.

4.2 Proof of Theorem 5

Let H be the supergraph of G with the spanning tree 71" such
that sec(G) = ecw(H,T) = k. For the rest of the proof,
we root T in some arbitrary fixed vertex. We begin by re-
calling some basic properties of the super edge-cut width, in
particular, we adapt the related notion of the boundary of a
vertex, firstly introduced in [Ganian and Korchemna, 2021]
for a weaker parameter.

For v € V(T'), let T,, be the subtree of T rooted at v, let
Vo, =V(GNT,),andlet V,, = Ng(V,) UV,. We define the
boundary 6(v) of v to be the set of endpoints of all edges in G
with precisely one endpoint in V,, (observe that the boundary
can never have a size of 1). A vertex v of T is called closed
if [6(v)| < 2 and open otherwise.

Observation 1 ([Ganian and Korchemna, 20211). Let v be a
vertex of T'. Then:

1. 6(w) = {v,w} for every closed child w of v in T, and
vw is the only edge between V., and V\'V,, in G.

2. |6(v)] < 2k +2.

3. Let {v;|i € [t]} be the set of all open children of v in T.
Then t < 2k and §(v) C U!_;8(v;) U{v} U Ng(v).

We can now define the records that will be used in our dy-
namic program. Intuitively, these records will be computed
in a leaf-to-root fashion and will store at each vertex v infor-
mation about possible EFX orientations for the subtree of T’
rooted at v.

Let R be a binary relation on 6(v), and S a subset of 6(v).

Definition 6. We say that (R, S) is a record at vertex v _if
there exists an orientation D of G restricted to vertices in V,,
and edges with at least one endpoint in V., such that:

1. The partial allocation defined by D is EFX between any
two vertices in V.

2. R is the set of all arcs of D that have precisely one end-
point in V.

3. For every w € §(v), if there is envy from some vertex
u €V, towards w in D then w € S.

4. The in-degree of every w € S in D is equal to one.

We call such a digraph D a partial solution at v. We say
that D is a witness of the record (R, S). Denote the set of all
records for v by R(v), then [R(v)| < 20+,

Intuitively, the set S in a record is intended to capture all
the vertices of J(v) towards which there can be envy in the
resulting solution. This is why we require all the vertices in
S to have the in-degree of one. Otherwise, there would be a
possibility to remove items without changing the envy: note
that the only relevant item for both agents is their shared edge.

Note that if v; is a closed child of v, then by Observation 1,
R (v;) can contain only the records ({v;v}, ), ({viv}, {v}),
({vv;},0) and ({vv;}, {vi}). The root r of T' contains at most
one record (@, @), which happens if and only if the instance is
a YES instance (otherwise R(r) = ().

Observation 2 (x). Let v; be a closed child of v.

o If ({viv},0) € R(vi), then ({v;v}, {v}) € R(v;),

o if ({vvi}, {vi}) € R(vyi), then ({vv;},0) € R(v;).
Lemma 6 (%). Let v € V(G) have ¢ > 0 children in T, and
assume we have computed R(v;) for each child v; of v. Then
R(v) can be computed in time at most 2°*<°) . .

Proof sketch. Without loss of generality, let the open children
of v € V(G) be vq,...,v, then t < 2k by Point 3 of Ob-
servation 1. Let C' be the set of remaining (closed) children
of v,ie. C = {vt41,...,0.}. Denote V; = V., V; = V.,
i €[], and Vj = d(v) \ US_, V;. Note that all V, i € [c]o,
are pairwise disjoint. If the record set of some child is empty,
we conclude that R(v) = . Otherwise, we branch over all
choices of (R;,S;) € R(v;) for each individual open child
v; of v. We also branch over all orientations Ry of edges
{uv|u € Vu}.

Let R = U,¢cpy, Bj- We branch over subsets Sy of
Vo \ {v} with precisely one incoming arc in R'. Let S’ =
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Uje, S5+ if R’ is not anti-symmetric or contains two dif-
ferent arcs ujw and usw for some w € S’, we discard this
branch. We also discard it if V; NS’ # V; N S; for some
i € [t]. Otherwise, we create a trial record (R, S), where R
is the restriction of R’ to those arcs which have precisely one
endpoint in V,, and S = 5" N 6(v). We branch over 4 options
for the in-neighbors of v in the partial solution, and in each
case try to choose suitable records for the closed children.

Case 0: no in-neighbors. If v has no in-neighbors in R,
and every closed child v; contains the record ({vv;}, {v;})
(or ({vv; },0) if V,({v;v}) = 0), and every w € Ng(v) \ C
with V,({wv}) > 0isin S’, we add the record (R, S).

Case 1: one open in-neighbor. If there is precisely one
incoming arc uv to v in R’, and for every closed child v; of
v, R(v;) contains the record ({vv;},0), let s1 = V,({uv}).
If s1 < V,({v;v}) for some v; € C, and R(v;) does not
contain the record ({vv;},{v;}), we discard this case. We
also discard it if s; < V,,({wv}) for some w € Ng(v)\ (CU
S’). Otherwise, we add the records (R, S) and (R, S U {v}).

Case 1’: one closed in-neighbor. If R’ has no incoming
arcs uv to v, we model partial solutions where the unique in-
neighbor of v is one of its closed children. We branch over
the choices of this closed child v;. For every fixed v; € C
such that R (v; ) contains the record ({v;v}, {v}), we compare
s; = Vy({viv}) with all the values s; over the rest of the
closed children v; of v. If s; > s, for some j and R (v;) does
not contain the record ({vv, }, {v;}), we discard the case. We
also discard it if for some j # 4, R(v;) does not contain
({vv;},0). Otherwise, we compare s; with V,({wv}) for
every w € Ng(v) \ C. If for some w ¢ S’ the latter is larger,
we discard the branch as well. Otherwise, we add the record
(R,S U {v}). If R(v;) contains the record ({v;v},0), we
additionaly add (R, S).

Case 2: two or more in-neighbors. Finally, if v & S,
we model the subcase when v has more than one in-neighbor
in a partial solution. For every closed child v; of v such that
({v;v},0) € R(v;), vv; must be oriented towards v;. On the
other hand, for every v; € C such that R(v;) contains the
record ({v;v}, ), by monotonicity of V,, we can just greedily
orient the edge vv; towards v. The corresponding value of v
will be s = V,({wv|wv € R'} U {vv|v; € C,({v;v},0) €
R(v;)}. If there is a closed child v; such that s < V,,({v;v})
and R(v;) does not contain the record ({vv; }, {v;}), we dis-
card the branch. Moreover, if there is closed child v; such
that ({v;v},0) & R(v;) and ({vv;},0) & R(v;), we discard
the branch. We also discard it if s < V,({vw}) for some
w € Ng(v) \ C such that w ¢ S’. Otherwise, we add the
record (R, 5).

For the running time, note that we branch over the choice
of at most 2k + 1 many binary relations R;, and there are
at most O(2(25+2)) options for every such relation, which
dominates the number of possible choices of subsets S; of the
boundaries. Therefore, we have at most O((2(2k+2)°)2k+1 <
20(k*) branches. In each branch, we need at most linear in
¢ time to traverse closed children of v. Hence, R(v) can be
computed in time 20(K*) . ¢,

To establish the correctness of the procedure described
above, which we will refer to as CRC(v) (combining records

of children of v), we prove the following two claims:
Claim 1 (»). If (R*,S*) € R(v), then CRC(v) adds it.
Claim 2 (x). If CRC(v) adds (R, S), then (R, S) € R(v).

This concludes the proof of Lemma 6. O

5 Discussion and Open Problems

The focus of this paper was the existence and complexity of
EF1 and EFX orientations of goods, i.e., allocations that sat-
isfy the corresponding fairness criterion and in addition, ev-
ery agent gets items from their own predetermined set. In
contrast to EFX orientations, which do not always exist and
if they do it is almost always hard to find one, we have shown
that EF1 orientations do exist and can be computed. Hence,
EF1 orientations, in addition to fairness constraints, preserve
some economic efficiency as well; however in Christodoulou
et al. [2023] it was shown that EFX does not have the latter
property, as in specific cases it has to give goods to agents
that do not value them at all.

We conclude by highlighting some intriguing open prob-
lems that deserve further investigation.

From a purely theoretical point of view, the complexity of
finding an EF1 orientation is open. Can we compute such an
orientation in polynomial time? We currently do not know the
answer even for three agents- for two agents the problem is
easy. Alternatively, is the problem hard for some complexity
class? Our proof indicates that the problem belongs to PLS,
however, showing hardness is an intriguing question.

What about EF1 allocations that satisfy other types of con-
straints? Our results show existence under “approval” con-
straints for the agents. A different option would be to consider
cardinality constraints for the agents, i.e., every agent should
get a specific number of items. A version of this model was
studied by Caragiannis and Narang [2024] and the existence
of EF1 allocations is an open problem.

Moreover, in this paper we show weak NP-hard for EFX
orientations where we have a small vertex cover. This leaves
open whether we can compute if an EFX orientation exists
when the weights are given in unary, i.e. can we find a
pseudo-polynomial time algorithm? (However do note that,
Caragiannis and Narang [2024] show that this is strongly NP-
hard even for instances with constant max degree.)

The definition of EFX that both Christodoulou et al. [2023]
and this paper has adopted, assumes that the envy should
be eliminated by removing any item from an envied bundle.
However, someone can study the relaxed notion of EFX+; re-
call in EFX+ the envy should be eliminated by removing any
item that changes the value of the envied bundle. Our pre-
liminary investigation shows that indeed this is a promising
direction. We have identified some classes of (graph-based)
monotone valuations where a natural generalization of EFX+
always exists and can be computed efficiently. This raises the
natural question about for which classes of valuation func-
tions EFX+ allocations are guaranteed to exist.
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