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Abstract
Traditional knowledge graphs (KGs) provide each
entity with a unique embedding as a representa-
tion, which contains a lot of redundant informa-
tion. Meanwhile, the space complexities of the
KGs are positively related to the number of enti-
ties. In this work, we propose a hierarchical rep-
resentation learning method, namely HRL, which
is a parameter-efficient model where the number of
model parameters is independent of dataset scales.
Specifically, we propose a hierarchical model com-
prising a Meta Encoder and a Context Encoder
to generate the representation of entities and re-
lations. The Meta Encoder captures the com-
mon representations shared across entities, while
the Context Encoder learns entity-specific repre-
sentations. We further provide a theoretical anal-
ysis of model design by constructing a structural
causal model (SCM) when completing a knowl-
edge graph. The SCM outlines the relationships
between nodes, where entity embeddings are con-
ditioned on both common and entity-specific rep-
resentations. Note that our model is designed to
reduce model scale while maintaining competitive
performance. We evaluate HRL on the knowl-
edge graph completion task using three real-world
datasets. The results demonstrate that HRL sig-
nificantly outperforms existing parameter-efficient
baselines, as well as traditional state-of-the-art
baselines of similar scale.

1 Introduction
Knowledge Graphs (KGs) have been widely used across var-
ious domains, including recommendation systems [Yang et
al., 2023; Du et al., 2022; Zhang et al., 2023], interpretability
analysis [Ma et al., 2023; Bing et al., 2023], and zero-shot
learning [Liu et al., 2020; Wang et al., 2018], among others.
KGs, as a form of structured human knowledge, are com-
posed of triples, i.e., (head entity, relation, tail entity), or (h,
r, t) for short, where entities represent objects or abstract con-
cepts, and relations denote the relationships between entities.

∗Corresponding Author.

(a) (b)

(c)

Figure 1: (a) RotatE Performance. (b) Correlation of Entity Repre-
sentation Distance and Entities’ Relations on the FB15k-237. The
distance between representations denotes the Euclidean distance be-
tween RotatE’s entity representations. The distance between rela-
tions of entities is calculated as the Euclidean distance between re-
lation vectors. Each vector position is binary, with a value of 1 indi-
cating that the entity interacts with the relation type corresponding
to the position at least once. (c) Illustration of a knowledge graph. It
shows blue ellipses as entities and arrows as relations.

In traditional KGs, each entity corresponds to a unique em-
bedding that is independently trained. It results in the fol-
lowing issues: 1) The number of model parameters is corre-
lated with the dataset scale, leading to significant hardware
resource consumption during training and deployment. The
space complexity of these methods is theoretically O(|E| +
|R|) [Galkin et al., 2021] where |E| is the number of en-
tities, and |R| is the number of relations. Since the num-
ber of entities is typically much larger than the number of
relations (e.g., YAGO3-10: 123k entities vs. 37 relations
and OGBL-Wikikg2: 2,500k entities vs. 535 relations) in
real-world KGs, |E| is the dominant factor in space com-
plexity. Our analysis focused on |E|, following prior work
(e.g., EARL [Chen et al., 2023]). 2) Since entity embeddings
are not shared between entities, the only way to limit model
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scales in traditional methods is by reducing the embedding
dimensions. In traditional methods, reducing embedding di-
mensions too much can lead to excessive compression, which
results in information loss and degraded model performance.
As shown in Figure 1(a), the performance of RotatE [Sun
et al., 2018], a state-of-the-art knowledge graph model, de-
creases dramatically when entity embedding dimensions are
reduced. In summary, simply reducing the embedding dimen-
sions is not an effective manner to limiting model scale.

Several works [Galkin et al., 2021; Chen et al., 2023] have
been developed to address the above issues. These works pri-
marily focus on reducing the number of entity embeddings to
limit space complexity. These works first randomly sample
a fixed proportion of entities to serve as anchors, each with
a corresponding unique embedding. Specifically, NodePiece
[Galkin et al., 2021] generates entity embeddings by utilizing
the nearest k anchors, while EARL generates embeddings by
incorporating relation types and passing messages from these
anchors. However, the methods still fall short due to the fol-
lowing challenges: 1) Space Complexity. Despite the signif-
icant reduction in model scales, the space complexity of exist-
ing methods remains O(|E|+ |R|). This is due to selecting a
fixed proportion of entities as anchors, though the proportion
is low. 2) Sampling Strategy. The random sampling of enti-
ties in existing methods adversely affects model performance
and stability. The uneven positional distribution of sampled
anchors leads to suboptimal entity representations.

To address the aforementioned challenges, we propose
HRL, a hierarchical representation learning method, which
assumes entity embeddings are affected by two factors: com-
mon representations shared across entities and entity-specific
representations distinguishing individual entities. Inspired by
human cognitive processes, HRL begins with capturing the
common characteristics of entities within a category and then
delves into the individual features of each specific entity. For
example, as illustrated in Figure 1(c), entities such as Person
A and Person B belong to the same category and share com-
mon representations relevant to their category, which con-
strains their relation types, whereas Film C does not. It is
logical for entities in the Person category to have relations
such as lived or profession, while relations like genre or mu-
sic are illogical for the Person category. Meanwhile, it is
not possible to distinguish among entities belonging to the
same category merely by common representations. It neces-
sitates incorporating entity-specific representations. For ex-
ample, (Person: A, nomination, Award: I) and (Person: B,
nomination, Award: I) cannot be distinguished by common
representations, as both A and B fall into the Person category.
Distinguishing between them requires knowing the structural
information relevant to A and B in the KG. B’s profession J
and Award I belong to the same domain according to (Person:
B, Profession, Profession: J), making the latter more likely to
be the positive instance.

Our framework incorporates a Meta Encoder to capture
common representations using a memory mechanism, and a
Context Encoder to learn entity-specific representations from
structural information. This combination allows us to effi-
ciently manage model parameters while maintaining robust
entity differentiation. Then, we integrate common and entity-

specific representations as entity embeddings and follow the
traditional KG training regime to optimize the parameters.
This design model eliminates the need to assign a unique em-
bedding to each entity, thereby reducing the model parame-
ters while obviating the need for anchor selection and pre-
computation. Finally, we illustrate the causalities about the
entity embedding generation and knowledge graph complete
task with SCM. The contributions of this paper are summa-
rized as follows:

• We propose a HRL that contains a Meta Encoder and a
Context Encoder that can capture common and entity-
specific representations of entities. Significantly, the
number of parameters in the model is independent of the
dataset scales, achieving a space complexity of O(|R|).

• We introduce a novel causal perspective for analyzing
the knowledge graph completion process, offering a the-
oretical expression for our model design. To our knowl-
edge, this is the first successful application of structural
causal models to guide entity embedding generation.

• We conduct extensive experiments to evaluate our model
on three real-world graph datasets. Our model maintains
competitive performance compared with state-of-the-art
parameter-efficient models on knowledge graph comple-
tion tasks while utilizing fewer parameters.

2 Related Work
2.1 Causal Learning
Causal learning is widely used in numerous scenarios. Tradi-
tional methods often focus on correlation rather than under-
lying causality. KGCR [Wei et al., 2022] enhances recom-
mendation systems by learning fine-grained user preferences
using causal KGs. CAL [Sui et al., 2022] introduces a causal
perspective to graph neural networks, improving feature ex-
ploitation while avoiding shortcuts. STNSCM [Deng et al.,
2023] uses a causal graph for traffic prediction, analyzing re-
lationships among factors to improve performance by extrap-
olating from factual to counterfactual scenarios. This paper
analyzes the entity embedding generation from the perspec-
tive of causality, offering a theoretical explanation.

2.2 Parameter-Efficient Model
Current models mainly pursue the enhancement of perfor-
mance with increasing model size, which complicates train-
ing and deployment. To address this, methods like quantiza-
tion and knowledge distillation are commonly used. Quan-
tization reduces the precision of weights and activations to
minimize accuracy loss, as seen in TS-CL [Sachan, 2020] and
LightKG [Wang et al., 2021a]. Knowledge distillation trans-
fers knowledge from larger models to smaller ones, as exem-
plified by MulDE [Wang et al., 2021b] and DualDE [Zhu et
al., 2022]. These methods require training large models first.
Recently, there has been the emergence of a new perspec-
tive, which involves directly reducing model scales. Node-
Piece [Galkin et al., 2021] selects a subset of entities to serve
as anchors that are assigned unique embeddings. The embed-
dings for the other entities are then generated based on these
anchors and the relations that belong to the other entities. The
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number of anchors is 10 − 100× smaller than the total num-
ber of entities. EARL [Chen et al., 2023] constructs entity
embeddings using connected relations, k-nearest anchor en-
tities (similar to NodePiece), and multi-hop neighbors. Our
model also falls into the above category and is compared with
NodePiece and EARL as the same type.

3 Preliminaries
A knowledge graph consists of an entity set E, a relation set
R, and a triple set T . | · | denotes the number of elements of
the set. Further, a knowledge graph is also denoted as G =
(V, E ,X ,R), where V = {vi | 0 ≤ i < |E|} is a node set
corresponding to entities and E = {eij | 0 ≤ i, j < |E|}
denotes the set of directed edges based on the relation set R.
X = {xi ∈ Rd | 0 ≤ i < |E|} and R = {rij ∈ Rd′ |
0 ≤ i, j < |E|} represent the entity and relation embeddings,
respectively. eij represents a directed edge from vi to vj , and
its embedding is rij .
Problem Statement. Given an entity set E, a relation set R,
and a triple set T , the goal is to complete the missing triples.

4 Methodology
4.1 Meta Encoder
The Meta Encoder significantly reduces the need for unique
embeddings by generalizing across entities within the same
category. Specifically, the Meta Encoder learns the patterns
of entities by interactions between entities and relations. As
shown in Figure 1(b), entity representations are correlated
with the interacted relation types, which means that entities
sharing the same relation types can be grouped together. This
fashion leads to more compact and efficient representations,
making the model require fewer parameters.

The Meta Encoder leverages memory mechanisms and
consists of a memory bank and a query network. The mem-
ory bank, serving as a representation space, stores representa-
tions for various entity categories. The query network, using
relation embeddings as input to effectively retrieve, gener-
ates queries to access and retrieve relevant entity embeddings
from the memory bank.

As shown in Figure 2(b), the memory bank M ∈ Rη×d is
a learnable matrix that is randomly initialized. We generate
key vectorsK and query vectorsQi to compute the relevance
weights of each embedding vector in the memory bank for
the entity i. The K and Qi are expressed as:

K = fK(M), (1)

Qi = fQ(mi), (2)

where fK and fQ are stacking nonlinear layers, K,Qi ∈
R1×η . mi ∈ Rd is an entity embedding based on relation
types where i is the index of entities.

To generate entity-related queries, we design a hypergraph
structure, where entities and relations are represented as
nodes and hyperedges, respectively. Entities sharing the same
relation type are connected to the same hyperedge. The rela-
tion type embeddings are learnable parameters. The embed-
dings of entities are progressively refined through a message-
passing process over the hypergraph. The message passing

process is formulated as:

x̄t+1
i = ρv({ētk | k ∈ N v

i }), (3)

ēt+1
k = ρe({x̄tj | j ∈ N e

k }), (4)

whereN v
i is a relation set connected by entity i andN e

k is an
entity set belonging to relation k. x̄ and ē are the entity and
relation embeddings, respectively. ρv and ρe are aggregation
functions that are set as pooling. After multiple iterations of
message passing, the final entity embedding are used as mi.
This design ensures an efficient and expressive mechanism
for capturing relational and structural information within the
knowledge graph.

Next, we calculate the weight of each embedding vector
in the memory bank and generate common representations,
which are formulated as:

EC
i = softmax(Qi +K)⊗M, (5)

where EC
i ∈ R1×d, ⊗ is the matrix product, and

softmax(Qi +K) is a weight that measures the relatedness
of the entity vi to the embedding vectors inM . The softmax
normalizes the weights, assigning higher values to more rel-
evant vectors. This results in more distinctive common rep-
resentations for entities from different categories, enhancing
the model’s ability to differentiate.

4.2 Context Encoder
The Meta Encoder generates common representations that
can capture the characteristics of entities in one category.
However, while the common representations capture com-
mon characteristics, they lack the specificity needed to differ-
entiate between entities within the same category. As shown
in Figure 1(c), common representations can effectively iden-
tify incorrect instances like (Person: A, genre, Genre: D),
but distinguishing entities of the same category, such as (Per-
son: A, nomination, Award: I) and (Person: B, nomination,
Award: I), remains challenging due to the overlap in their
common representations. To that end, we propose a Context
Encoder that learns entity-specific representations, which are
essential for distinguishing between entities that share com-
mon representations.

The Context Encoder learns entity-specific representations
by leveraging graph structural information, which helps dif-
ferentiate entities based on their unique topological relation-
ships within the KG. For entities within the same category,
their topological structure provides distinguishing informa-
tion. The Award I and Profession J are in the same domain,
from which it can be inferred that (Person: B, nomination,
Award: I) could be a positive instance, rather than (Person: A,
nomination, Award: I). Since KGs are heterogeneous graphs,
the Context Encoder aggregates both entity and relation em-
beddings, which is expressed as:

ht+1
i = ϕ(hti, u

t+1
i , vt+1

i ), (6)

ut+1
i = ψu({htk||rtik | k ∈ Ni·}), (7)

vt+1
i = ψv({htk||rtki | k ∈ N·i}), (8)

rtik = φu(r
t−1
ik ), (9)

rtki = φv(r
t−1
ik ), (10)
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Figure 2: An overall architecture of HRL. (a) The colors of arrows indicate relation types. (b) The memory bank is a fixed-size matrix. (c)
The direction and colors of dotted arrows indicate message passing and relation direction in the KG, respectively. (d) The scoring function is
to measure the plausibility of (h, r, t).

where ϕ is an update function that updates each entity embed-
ding by aggregating its current embedding hti with its neigh-
boring embeddings, ut+1

i and vt+1
i . ψu and ψv are message

functions which are nonlinear layers. Ni· andN·i are the sets
of tail and head entities connected to the entity vi, respec-
tively. rtik and rtki are the relation embeddings of (vi, vk) and
(vk, vi). || is the concatenation operation. As shown in Fig-
ure 2(c), the entity v0 integrates tail entities, i.e., (v1, e01),
(v3, e03), and (v5, e05), and head entities, i.e., (v2, e20), and
(v4, e40). φu and φv are nonlinear layers to update relation
embeddings rtik and rtki. h

0
i is initialized with the common

embedding EC
i and r0 is a relation embedding r. The output

is the entity-specific representation EU
i ∈ R1×d.

In our model, we aggregate information about neighbor-
ing entities and relations multiple times to enlarge receptive
fields, which can enhance the distinguishability of entity-
specific representations. However, frequent message passing
can lead to over-smoothing embeddings, where the embed-
dings of adjacent nodes become too similar to distinguish be-
tween them. Therefore, the number of stacking layers is care-
fully chosen to balance between capturing sufficient context
and avoiding over-smoothing.

4.3 Training and Inference
In our model, parameters are trained in the same manner as
traditional models. We design a projection layer to integrate
the common and entity-specific representations into entity
embeddings, which is expressed as:

xi = fP (E
C
i ||EU

i ), (11)

where fP denotes a projection layer that is a linear layer and
xi is the embedding of the entity vi.

Figure 3: SCM. It shows a structure causal graph for KG completion
where G, C, U, H, T, and R are KG information, common repre-
sentation, entity-specific representation, head entity embedding, tail
entity embedding, and relation embedding, respectively.

The HRL can adaptively integrate the scoring function
and training method used in existing KGs. In HRL, we
adopt the widely-used RotatE’s scoring function and the self-
adversarial negative sampling strategy for training.

4.4 Theoretical Analysis of Model Design
We first analyze the causal relationships among knowledge
graph information, entity embeddings, and relation embed-
dings using a SCM, as depicted in Figure 3. In real-world sce-
narios, the complete knowledge graph is unavailable, there-
fore, the KG can be divided into two parts: a training set that
is the observed part of the KG and a test set that is the unob-
served part of the KG. We assume entity embeddings H and
T consist of both common (C) and entity-specific (U) repre-
sentations which are derived from the knowledge graph (G).
R is affected by H, T, and G when it is inferred.

We need to model the C and U effects on R for parameter-
efficient embedding and robustness. However, since knowl-
edge graphs are complex, observed relations are directly used
to infer unobserved relationships, which introduce noise. In
Figure 1(c), we believe J and I belong to the same domain,
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but L and I are uncorrelated. When (Person: B, profession,
Profession: J) and (Person: B, profession, Profession: L)
are all or partially observable, it is possible that the inference
of (Person: B, nomination, Award: I) is negatively affected.
Therefore, we quantify the impacts of the common and entity-
specific representations on KG completion.

We cannot apply backdoor adjustments based on the path
C,U ← G → R because G is only partially observable, lead-
ing to incomplete adjustments for confounding effects. Ad-
ditionally, we apply the frontdoor criterion according to the
path G → C,U → H,T → R ← G, cutting off the link
G→ C,U. Formally, we formulate:

P (R|do(C,U))

=
∑
H,T

P (R|do(H,T))P (H,T|do(C,U))

=
∑
H,T

∑
C′,U′

P (R|H,T,C′,U′)P (C′,U′)P (H,T|C,U)

=
∑
H,T

∑
C′,U′

P (R|H,T,C′,U′)P (U′|C′)P (C′)P (H,T|C,U),

(12)
where P (R|do(C,U)) provides a causal perspective on how
specific interventions in the C and U influence the R within
KGs, thereby offering valuable insights into the underlying
causal relationships. It denotes the probability distribution
of R resulting from such interventions. do(C,U) indicates
an intervention in the causal model where C and U are fixed
to specific values. Additionally, P (C′) represents the distri-
bution of common representations and P (U′|C′) represents
the distribution of entity-specific representations given com-
mon representations. P (H,T|C,U) is a projection layer that
generates entity embedding H and T based on common and
entity-specific representations. P (R|H,T,C′,U′) denotes the
distribution of the relation between the head entity and the tail
entity, i.e., the feature extraction and the scoring function.

4.5 Space Complexity Analysis
We theoretically analyze the space complexity of our model
and compare it with baseline models. We assume the number
of entities and relations are |E| and |R|, respectively. Since
the number of entities |E| is typically much larger than the
number of relations |R|, the space complexity due to |R| is
often negligible in comparison to |E|.

In most traditional methods, the space complexity is domi-
nated by |E| entity embeddings, leading to a space complex-
ity of O(|E|). While |R| relation embeddings contribute to
the overall complexity, |E| is typically much larger, so the
O(|R|) term in O(|E| + |R|) is ignored and the complexity
is considered to be actually O(|E|). This means the number
of parameters increases linearly as the growth of the dataset
scales. To reduce the number of parameters, existing methods
often use entity sampling techniques. They sample a propor-
tion p of entities as anchors and generate embeddings for the
remaining entities based on these anchors, reducing the num-
ber of unique entity embeddings required. However, the re-
sulting space complexity still includes p|E| for entity embed-
dings, |R| for relation embeddings, and additional parameters

for other components. The methods relieve the issue, but the
space complexities are still O(|E|).

In our model, parameters include |R| relation embeddings,
a Meta Encoder, a Context encoder, and a projection layer.
The parameters of the Meta Encoder include a memory bank
with a fixed size, a query network utilizing a pooling layer,
and several linear layers. Since the scale of these components
does not depend on the number of entities |E|, their combined
space complexity is O(1). The parameters of the Context En-
coder include several stacking nonlinear layers. Given that
the number of these layers is fixed and does not scale with
|E|, their space complexity is O(1). The projection layer
also consists of linear layers, similarly, its space complexity
is O(1). In conclusion, the space complexity of HRL is O(1)
when |R| is ignored, indicating that the number of parameters
remains constant and does not increase with dataset scales.

5 Experiments
In this section, we perform KG completion tasks to train and
evaluate our model. Note that the core goal of our model is
to achieve parameter efficiency, reducing the model scale
while maintaining reasonable performance, rather than
solely aiming to surpass traditional methods with high
space complexity. In summary, we demonstrate the follow-
ing questions: RQ1. Can our model achieve reasonable per-
formance with fewer parameters? RQ2. What is the influ-
ence of various components in the HRL on different datasets?
RQ3. Can the Meta Encoder effectively capture the common
representations as our assumption? RQ4. What is the impact
of different settings on HRL?

5.1 Datasets
We evaluate our model on three real-world knowledge graph
datasets: FB15k-237 [Toutanova et al., 2015], WN18RR
[Dettmers et al., 2018], and CoDEx-L [Safavi and Koutra,
2020]. The datasets are well-established KGs commonly
used in the field. Detailed statistics and descriptions of these
datasets are provided in Table 2.

5.2 Baselines
We compare HRL with two categories of models: 1) Tradi-
tional Models. We select RotatE without constraint on the
number of parameters, which serves as an upper bound of
performance. For a fair comparison, we adjust the embed-
ding dimension of RotatE and compGCN [Vashishth et al.,
2020] to approximately match the number of other baselines.
2) Entity-efficient Models. We compare with NodePiece and
EARL, which use similar scoring as RotatE.

5.3 Experimental Settings
Implementation Details
For the Meta Encoder, the memory bank dimension is
searched within the range {128, 256, 512}. For the Con-
text Encoder, the number of layers is set to 2 for FB15k-
237 and CoDEx-L, and 3 for WN18RR. We employ the
Adam [Diederik, 2014] optimizer with a learning rate of 1e−3

and a weight decay of 5e−5. The batch size and the number of
negative samples are set to 1024 and 256, respectively. Due
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Model RotatE RotatE compGCN NodePiece EARL HRL △ w/o CM. w/o CT. w/o PJ.
FB

15
k-

23
7 Dim 1000 100 100 100 150 180 - 180 180 180

#P(M) 29.3 2.9 9.4 3.2 1.8 0.9 -50.0% 0.8 0.5 0.7
MRR 0.356 0.293 0.345 0.258 0.301 0.306 1.7% 0.296 0.217 0.297
Effi 0.012 0.101 0.037 0.081 0.167 0.340 103.3% 0.370 0.434 0.424

W
N

18
R

R Dim 500 50 100 100 200 240 - 240 240 240
#P(M) 40.6 4.1 12.0 4.4 3.8 1.9 -50.0% 1.7 0.8 1.5
MRR 0.514 0.414 0.494 0.402 0.425 0.433 1.9% 0.407 0.243 0.410
Effi 0.013 0.101 0.041 0.091 0.112 0.228 103.8% 0.239 0.304 0.273

C
oD

E
x-

L Dim 500 25 100 100 100 190 - 190 190 190
#P(M) 78 3.8 15.8 3.6 2.1 1.1 -47.6% 0.9 0.5 0.8
MRR 0.262 0.197 0.286 0.193 0.232 0.235 1.3% 0.194 0.162 0.202
Effi 0.003 0.052 0.018 0.054 0.110 0.214 93.4% 0.216 0.324 0.253

Table 1: Knowledge graph completion results of HRL and baseline models.

Dataset #Ent #Rel #Train #Valid #Test

FB15k-237 14,505 237 272,115 17,526 20,438
WN18RR 40,559 11 86,835 2,824 2,924
CoDEx-L 77,951 69 551,193 30,622 30,622

Table 2: The statistics of datasets.

to the RotatE’s training strategy, the margin γ is chosen from
{8, 9, 10, 11, 12}. The temperature factor α is set to 1.

Metrics
We utilize a widely-used metric, MRR in the filtered set-
ting [Bordes et al., 2013] on KG completion tasks to evaluate
our model. In addition, we report the number of parameters
#P to compare our model scale with baselines. Meanwhile,
we use Effi [Chen et al., 2023] to quantify the efficiency of
models, which is calculated as MRR

#P .

5.4 Performance Results (RQ1)
To demonstrate the effectiveness of HRL, we compare it with
baselines on three benchmark datasets. The performances are
summarized in Table 1. We set different entity dimensions
for the three datasets and report the HRL and the baseline
methods performances.

By analyzing the results, we have the following findings: 1)
In the case where RotatE’s parameter scale is unconstrained,
it achieves optimal performance in MRR. However, its pa-
rameter scale significantly exceeds that of parameter-efficient
models and HRL, and its Effi is substantially lower compared
to other models. Additionally, when reducing the param-
eter scale of RotatE to be comparable to other models, its
performance in MRR and Effi falls short compared to base-
line methods. 2) NodePiece and EARL significantly reduce
model scale by selecting a subset of entities as anchors and as-
signing unique embeddings only to these entities, rather than
to all entities. Meanwhile, they leverage structural informa-
tion within the knowledge graph to improve performance on
MRR. In terms of Effi, these parameter-efficient models out-
perform traditional models. 3) HRL demonstrates a signif-
icant reduction in model scale compared to other methods,

with decreases ranging from 47.6% to 50%. Despite this sub-
stantial decrease in model scale, HRL outperforms the base-
lines in performance metrics, with improving ranging from
1.3% to 1.7% in MRR across the different datasets. HRL
demonstrates superior performance in terms of Effi compared
to baseline methods, indicating its ability to better balance
model performance with space complexity. This balance
underscores the ability to optimize computational resources
without sacrificing performance.

5.5 Ablation Study (RQ2)
This subsection describes ablation studies of HRL to validate
the effectiveness of key components, as shown in Table 1.
We consider the following variants of our base model: 1)
w/o CM.: We remove the Meta Encoder. In this variant, the
query network’s input is used as the common representations
to initialize the entity-specific representations and the entity-
specific representations are treated as the entity embedding.
2) w/o CT.: We remove the Context Encoder, and the com-
mon representations are considered as the entity embedding
to optimize parameters. 3) w/o PJ.: We remove the projection
layer and concatenate the common and entity-specific repre-
sentations as entity embeddings.

The performances of the competing baselines and HRL are
summarized on the datasets shown in Table 1. From this ta-
ble, we can have the following findings: 1) In terms of the
number of parameters, the Context Encoder is more than the
Meta Encoder and the projection layer. As the dimension of
the entity embeddings becomes wider, the number of param-
eters in the Context Encoder grows the fastest. 2) The perfor-
mance of w/o CT. on WN18RR drops dramatically compared
to its performance on FB15k-237. We believe the number of
relation types results in the phenomenon. Due to P (U ′|C ′),
theQ is not a good prior distribution for a Context Encoder on
WN18RR. 3) The projection layer is crucial for enhancing en-
tity representations. A simple concatenation of common and
entity-specific representations cannot capture the distribution
of P (H,T |C,U) effectively. 4) While the partial variants im-
prove the efficiency (Effi), they lead to decreases in MRR and
compromise the model’s robustness. This suggests that these
variants’ performance is more sensitive to the characteristics
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(a) Embedding Weight Heat-map of FB15k-237

(b) Embedding Weight Heat-map of WN18RR

Figure 4: In (a) and (b), the horizontal axis indicates the output of
the query network softmax(K + Q), which ranges from 0 to 256
(memory bank dimension). The vertical axis indicates the entity
ID. The larger the value, the brighter the color of the corresponding
position, and conversely, the duller the color.

of datasets and the components are necessary for the HRL.

5.6 Case Study (RQ3)
We further present a case study to verify our assumption
that the Meta Encoder effectively captures common rep-
resentations. We randomly sample 80 entities from one
category to analyze their embedding weights, computed as
softmax(K+Q) for the memory bank. As shown in Figure
4, the embedding weights of entities within the same category
exhibit a similar distribution. Therefore, the Meta Encoder
can capture the common representation of entities in one cat-
egory. Additionally, the results of the w/o CT. demonstrate
that common representations for different categories can be
effectively distinguished.

5.7 Parameter Study (RQ4)
Impact of memory bank dimension
As shown on the left in Figure 5(a) and (b), the memory bank
dimension affects the HRL performance. In general, with the
increase in memory bank dimension, the performance of HRL
starts to increase at the beginning, then plateaus or declines.
Initially, a larger memory bank dimension increases the em-
bedding space, which enhances the model’s learning capacity.
However, excessively large dimensions result in overfitting,
diminishing the model’s generalization ability and leading to
performance degradation.

Impact of the number of Context Encoder layers
We also conduct experiments on different numbers of Context
Encoder layers. The experiment results are displayed on the
right in Figure 5(a) and (b). Initially, MRR improves as the
number of Context Encoder layers increases. The increased
layers enlarge receptive fields, making entity-specific repre-
sentations to obtain rich structural information. It enhances
the distinguishability of the entity-specific representations,
as well as model performances. Then, the MRR declines

(a) FB15k-237

(b) WN18RR

Figure 5: The left figures in (a) and (b) shown HRL performances
under various memory bank and embedding dimensions. The colors
of the bars denote embedding dimensions. The right figures in (a)
and (b) shown HRL performances under various numbers of Context
Encoder layers.

with the number of Context Encoder layers increasing. Layer
stacking makes message passing frequent, which results in
the representations being too similar to distinguish. However,
as the number of layers continues to increase, frequent mes-
sage passing can make over-smoothing embeddings, leading
to diminished performance.

6 Conclusion

In this paper, we propose a hierarchical representation learn-
ing method, a parameter-efficient model designed to reduce
the number of parameters while maintaining competitive per-
formance. HRL leverages a combination of the Meta Encoder
and the Context Encoder to capture both common and entity-
specific representations. HRL achieves a significant reduction
in model scale compared to existing models, while still deliv-
ering robust performance across three benchmark datasets. A
critical aspect of HRL involves the use of SCM to analyze
the causal relationships between entity embeddings, relation
embeddings, and knowledge graph information. SCM pro-
vides a theoretical analysis for understanding how common
and entity-specific representations influence relations within
KGs. Finally, we conduct numerous experiments to demon-
strate the effectiveness of our model.
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