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Abstract
To meet the growing demand for cross-modal train-
ing data, directly collecting multimodal data from
the Internet has become prevalent. However, such
data inevitably suffer from Noisy Correspondence.
Previous works focused on recasting soft labels
to mitigate noise’s negative impact. We explore
a novel perspective to solve this problem: pursu-
ing proxy representation for noisy data to enable
reliable feature learning. To this end, we pro-
pose a novel framework: Seeking Proxy Point via
Stable Feature Space (SPS). This framework em-
ploys a fine-grained partitioning strategy to obtain
a high-confidence reliable set. By imposing inter-
modal cross-transformation consistency constraints
and intramodal metric consistency constraints, a
stable feature space is constructed. Building on
this foundation, SPS seeks proxy points for noisy
data, enabling even noisy data to be accurately
embedded into appropriate positions within the
feature space. Combined with partial alignment
for partially matched data pairs, SPS ultimately
achieves robust learning under Noisy Correspon-
dence. Experiments on three widely used cross-
modal datasets demonstrate that SPS significantly
outperforms previous methods. Our code is avail-
able at https://github.com/C-TeaRanger/SPS.

1 Introduction
Cross-modal retrieval, a key task in mutilmodal learning,
is gaining significant attention as a crucial cornerstone to
achieve Artificial General Intelligence[Morris et al., 2024],
which focuses on aligning and comparing data across modal-
ities (e.g., images, text, audio) to enable efficient and accurate
retrieval of diverse information. Most existing methods[Yang
et al., 2024][Chen et al., 2020b][Hu et al., 2021] rely on con-
trastive learning, aiming to reduce the feature space distance
between matching pairs (positive examples) to bridge seman-
tic gaps. However, these methods often assume perfect align-
ment in training data pairs, which is unrealistic. Unlike uni-
modal tasks, annotating cross-modal data is costly, especially

∗Corresponding author

for large-scale, high-quality pairs, making it labor intensive
and sometimes unfeasible. To address this, a more econom-
ical and efficient method has been proposed[Sharma et al.,
2018][Jia et al., 2021]: directly crawling native cross-modal
data pairs from the Internet. Yet, this method inevitably in-
troduces N Noisy Correspondence[Huang et al., 2021b][Qin
et al., 2022], that is, some data pairs that are inherently
mismatched, significantly compromising the retrieval perfor-
mance of the model.

In recent years, the issue of Noisy Correspondence has
garnered significant attention and has been extensively re-
searched. Initially, NCR[Huang et al., 2021b] reformulates
the binary hard labels of the original data into soft labels
within the [0, 1] interval by estimating the relevance de-
gree of each data pair and employs a soft-margin triplet
loss constructed based on these soft labels. Subsequently,
MSCN[Han et al., 2023] adopted meta-learning[Li et al.,
2019a] to perform consistency correction. UGNCL[Zha et
al., 2024] partitioned the data under the guidance of un-
certainty. L2RM[Han et al., 2024], based on the Optimal
Transport[Cuturi, 2013] theory, selects reliable samples from
negative examples to compensate for the reduced training in-
formation caused by noise. However, noise data reweighted
by soft labels only mitigate noise’s negative impact without
providing reliable supervision signals. Additionally, whether
using the triplet loss[Faghri et al., 2018] or cross-modal
InfoNCE[Hu et al., 2023] contrastive loss, the representa-
tion space lacks geometric stability, making it hard to ensure
prediction consistency between image and text domains un-
der Noisy Correspondence. This instability significantly de-
grades the retrieval performance.

To address the aforementioned issues, we propose a novel
Noise Correspondence robust learning framework, Seeking
Proxy point via Stable feature space (SPS). This framework
leverages the Memory Effect[Arpit et al., 2017] of deep neu-
ral networks (DNN) to extract a high-confidence reliable set
from the original dataset and further divides the remain-
ing data into a quasi-clean set and a noisy set using poste-
rior probabilities, enabling subsequent fine-grained learning
strategies. Specifically, we begin by adequately mining the
supervisory signals latent within the reliable set. By impos-
ing intermodal cross-transformation consistency constraints
and intramodal metric consistency constraints, we construct a
stable joint feature space, effectively alleviating the inconsis-
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tency in predictions across modalities caused by Noise Cor-
respondence. Subsequently, based on this stable representa-
tion space, we seek proxy points for the noisy pairs, enabling
them to be accurately embedded into appropriate positions
within the feature space, even if they are noisy. This provides
additional reliable supervisory signals and eliminates the im-
pact of Noise Correspondence. Furthermore, the quasi-clean
pairs predominantly represent the partial matching problem.
We address this issue by refining the internal consistency of
quasi-clean pairs to achieve partial alignment. Finally, we
integrate these constraints and employ a cross-modal bidirec-
tional contrastive loss and co-teaching paradigm to achieve
robust learning under Noisy Correspondence conditions. The
main contributions and innovations of this paper can be sum-
marized as follows:

• We propose a novel noisy robust learning framework,
SPS, which effectively resolves the Noisy Correspon-
dence problem through fine-grained data partitioning
and stable feature space constraint learning.

• Our framework innovatively introduces a noise proxy
representation learning method based on a stable feature
space, eliminating the impact of Noisy Correspondence
while providing reliable supervision signals for model
training.

• Extensive experiments across multiple cross-modal re-
trieval tasks validate the effectiveness of SPS, demon-
strating that it significantly outperforms existing meth-
ods, particularly under high noise rates.

2 Related Work
2.1 Cross-modal Retrieval
Cross-modal retrieval[Cheng et al., 2022], essential in multi-
modal learning[Huang et al., 2021a][Zolfaghari et al., 2021]
and information retrieval[Hambarde and Proenca, 2023], en-
ables mutual retrieval across modalities like images and text
by bridging the modality gap and aligning features semanti-
cally. A common approach uses contrastive learning to cre-
ate a shared embedding space, bringing similar cross-modal
samples closer. Existing methods to improve retrieval include
SCAN[Lee et al., 2018] (stacked cross-attention for image-
text similarity), VSRN[Li et al., 2019b] (GCNs for seman-
tic reasoning), IMRAM[Chen et al., 2020a] (iterative match-
ing with attention), and SGRAF[Diao et al., 2021] (similar-
ity graph reasoning). However, these methods assume per-
fectly aligned training data and overlook Noisy Correspon-
dence—mismatched image-text pairs common in real-world
data due to collection and annotation challenges. When noise
is present, model performance drops as mismatched samples
are incorrectly aligned, corrupting the feature space.

2.2 Noisy Correspondence Learning
Noisy Correspondence Learning (NCL) is a novel paradigm
addressing semantically mismatched or partially matched
cross-modal data pairs, unlike traditional noisy label[Liu
and Tao, 2016][Xia et al., 2020] learning focused on
single-modality data (e.g., image classification). Introduced

by[Huang et al., 2021b], NCL leverages DNNs’ memoriza-
tion effect to partition datasets and correct labels adaptively.
Subsequent improvements include: DECL[Qin et al., 2022]
(combining Cross-modal Evidence Learning and Robust Dy-
namic Hinge Loss), BiCro[Yang et al., 2023] (using bidi-
rectional similarity consistency for soft labels), CREAM[Ma
et al., 2024] (adapting InfoNCE loss to uncover consistency
within mismatched pairs), L2RM[Han et al., 2024] (using
Optimal Transport to filter reliable samples), and PC2[Duan
et al., 2024] (pseudo-caption methods with oscillation for rel-
evance correction). However, limitations persist: insufficient
feature space stability due to noise-induced drift, and limited
utilization of noisy data, as methods only re-weight rather
than extract reliable supervision. Our proposed SPS frame-
work effectively tackles these challenges.

3 Methodology
3.1 Problem Formulation
In cross-modal retrieval, we consider a dataset D =
{(Ii, Ti, yi)}Ni=1 of N samples, where each triplet (Ii, Ti, yi)
consists of an image-text pair (Ii, Ti) and a binary label yi.
The label yi indicates whether Ii and Ti are positively cor-
related (yi = 1) or uncorrelated (yi = 0). Uncorrelated
examples can introduce erroneous supervisory signals, mis-
leading the model during training and degrading its overall
performance. Thus, our objective is to learn a robust feature
embedding that faithfully captures the true relevance between
images and text, even in the presence of mislabeled or par-
tially incorrect pairs.

3.2 Vanilla Cross-modal Loss
The core of cross-modal retrieval lies in accurately measur-
ing the consistency between different modalities. We employ
modality-specific encoders f(·) and g(·) to map an image I
and its corresponding text T into a shared feature space, with
f(I) and g(T ) representing their respective feature embed-
dings. The semantic similarity between image I and text T
is measured as S(f(I), g(T )). To learn the encoders f(·)
and g(·), we adopt a variant of the InfoNCE [Radford et al.,
2021] loss tailored for cross-modal scenario. This contrastive
loss, derived from mutual information, aims to bring positive
pairs closer while simultaneously pushing negative pairs as
far apart as possible:

L(Ii, Ti) = H(yi,Pi2t
i ) +H(yi,Pt2i

i ), (1)

where H denotes the unidirectional cross-entropy function.
Since cross-modal retrieval involves bidirectional queries, L
consists of two symmetric terms H. Pi2t

i represents the
matching probability of query Ii with respect to Ti in the
image-text pair (Ii, Ti), Pt2i

i represents retrieval in the op-
posite direction, expressed as:

Pi2t
i =

exp(S(Ii, Ti)/τ)∑N
j=1 exp(S(Ii, Tj)/τ)

Pt2i
i =

exp(S(Ii, Ti)/τ)∑N
j=1 exp(S(Ij , Ti)/τ)

,

(2)
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White bird 

A brown dog 

Modality Image-Text Closest 
Prediction

(a)

A child is playing 
on a swing set.

White bird 

Noisy 
Correspondence Irrelevant

(b)

Figure 1: Illustrations of prediction inconsistency and its exacerbation by Noisy Correspondence. (a) Traditional contrastive loss functions
create feature spaces with prediction inconsistency due to structural instability. For example, I∗ aligns with I1 (a brown dog) in the image
domain but with T2 (“white bird...”) in the text domain, degrading retrieval performance. (b) Noisy Correspondence erroneously link irrelevant
image-text pairs, further destabilizing the structure. This exacerbates the prediction errors for I∗, making both T2 and T3 incorrect.

where τ is the temperature parameter, which is fixed at 0.07 in
this experiment. When Noisy Correspondence occurs, there
exist triplets (Ia, Tb, y

∗ = 1) ∈ D, where Ia and Tb are
not actually matched, but the corresponding label y∗ is incor-
rectly annotated as 1, which leads the model to erroneously
align originally irrelevant cross-modal features.

3.3 Fine-grained Data Partitioning
Directly training the model on the raw dataset mentioned
in 3.1 without preprocess will lead to overfitting on noisy
samples, significantly degrading cross-modal retrieval per-
formance. The memorization effect of DNNs, indicates that
DNNs tend to prioritize memorizing clean training data be-
fore memorizing noisy training data. Leveraging this charac-
teristic, we can achieve dataset partitioning by analyzing the
loss distribution differences among sample pairs.

Given the raw dataset D, we compute the loss value Li for
each sample using Equation (1):

LD = {Li}Ni=1 = {L(Ii, Ti)}Ni=1. (3)

Then we employ a two-component Gaussian Mixture
Model (GMM)[Li et al., 2020][Permuter et al., 2006] to fit
the probability distribution of the loss values Li:

p(Li) =
K∑

k=1

πkN (Li|µk, σk), (4)

where K = 2, and πk and N (Li|µk, σk) represent the mix-
ing coefficient and probability density function of the k-th
component with parameters µk > 0, σk > 0. We employ the
Expectation-Maximization (EM) algorithm to ensure the con-
vergence of the GMM. Subsequently, we calculate the prob-
ability pi that Li belongs to the component k′ with a smaller
mean loss (i.e., the probability that (Ii, Ti) is a positive pair):

pi = p(k′|Li) =
p(k′)p(Li|k′)

p(Li)
. (5)

Given that the construction of a stable feature space highly
depends on reliable data, we design a fine-grained data parti-
tioning strategy. Specifically, we use the posterior probabil-
ity pi to approximate the matching degree of iamge-caption

pairs. By setting thresholds ϵ1 and ϵ2, the original training set
D is meticulously divided into three subsets: the reliable set
Dre, the quasi-clean set Dqc and the noisy set Dn:

Dre = {(Ii, Ti, yi = 1)|p(k′|Li) > ϵ1, ∀(Ii, Ti) ∈ D}. (6)

For the quasi-clean set Dqc, we treat it as partially matched
samples, remove the original labels, and use the adjusted con-
sistency coefficients ŷqc as the new labels:

Dqc = {(Ii, Ti, ŷqc)|ϵ2 < p(k′|Li) ≤ ϵ1, ∀(Ii, Ti) ∈ D}.
(7)

The noisy set Dn is identified as mismatched sample pairs,
and their original labels are discarded entirely.

Dn = {(Ii, Ti)|p(k′|Li) ≤ ϵ2, ∀(Ii, Ti) ∈ D}. (8)

To address the issue of bias accumulation in single-model
training, which is common in noisy label learning, we im-
prove the co-teaching [Yu et al., 2019][Han et al., 2018]
framework by training two networks Ma = {fa, ga,Sa}
and Mb = {fb, gb,Sb} with identical architectures simul-
taneously and adjusting the data interaction mechanism: at
the batch level, only the data partitioning strategy is shared,
rather than the raw data. This approach enhances training ef-
ficiency while adaptively correcting training errors and avoid-
ing bias accumulation in a single model.

3.4 Seeking Proxy Point via Stable Feature Space
Traditional contrastive loss functions, such as InfoNCE
and Triple Loss, primarily construct the feature repre-
sentation space from two perspectives: alignment and
uniformity[Wang and Isola, 2022][Pu et al., 2022]. These
loss functions aim to maximize the alignment of positive sam-
ple pairs while simultaneously pursuing a uniform distribu-
tion of features on the hypersphere, with the goal of pre-
serving the maximum amount of information. However, in
the cross-modal retrieval tasks we study, due to the presence
of noise and the inherent modality gap[Liang et al., 2022],
simply pursuing alignment and uniformity struggles to ef-
fectively address this challenge[Jiang et al., 2023]. In such
cases, the constructed feature space often suffers from predic-
tion inconsistency[Goel et al., 2022] issues owing to the lack
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Fitting GMM

Similarity

Caption Feature

Image Feature

Feature Extraction Vanilla Loss Fitting

(         ,        )

Stable Space Construction

Proxy Point Seeking

/       Proxy Point
Proxy Radius

Reliable
Quasi-clean
Noisy

/      Threshold

Constraint
Alignment

(        ,        )Man in a girl jacket 
riding a cute girl the 

desert.

Man in a green jacket 
riding a green ATV  the 

desert.

Man in a green jacket 
riding a green ATV in 

the desert.

Discard

Figure 2: Overview of the proposed SPS. The given dataset is processed through modality-specific encoders to extract features, that are then
used to fit GMM based on the memorization effect of DNNs. By applying multiple thresholds and employing a fine-grained partitioning
strategy, the dataset is divided into reliable set, quasi-clean set, and noisy set. Next, by imposing intermodal cross-transformation consistency
constraints and intramodal metric consistency constraints on the reliable set, a stable joint feature space is constructed. Building on this
foundation, proxy points are sought for the noisy set, leveraging proxy features to accurately embed noisy data into appropriate positions.
Finally, by combining partial alignment for the quasi-clean set, robust cross-modal retrieval is achieved.

of structural stability. When Noisy Correspondence are intro-
duced, the model erroneously align irrelevant features, further
destabilizing the model structure and exacerbating this prob-
lem ,as illustrated in Figure 1. Inspired by this, we propose
a novel framework that addresses the NC problem by con-
structing a stable cross-modal feature space, enabling proxy
point learning for the noisy set and partial alignment for the
quasi-clean set.

Stable Feature Space Constraint
For data pairs identified as clean samples with high confi-
dence, we should fully exploit the supervisory information
they contain. Additionally, in the cross-modal joint embed-
ding space, the feature representations of different modali-
ties should maintain metric consistency, without significant
discrepancies. Based on these two intuitive insights, we in-
troduce an intermodal cross-transformation consistency con-
straint Lcro and an intramodal metric consistency constraint
Lmet on the reliable set Dre, aiming to construct a stable joint
feature space.

The constraint Lcro ensures that the cross-transformation
between clean sample pairs remains consistent, which con-
tributes to achieving a stable geometric structure. It is formu-
lated as:

Lcro =
1

|Bre|2
∑
i

∑
j

[∥S(Ii, Tj)−S(Ij , Ti)∥22−α]+. (9)

The constraint Lmet requires that the metric differences
within each modality should be consistent. It is formulated
as:

Lmet =
1

|Bre|2
∑
i

∑
j

[∥S(Ii, Ij)− S(Tj , Ti)∥22 − α]+,

(10)

where S(Ii, Ij) denotes S(f(Ii), f(Ij)), and S(Ti, Tj) de-
notes S(g(Ti), g(Tj)), Bre represents a batch sampled from
Dre, [x]+ = max(x, 0) and ∥ · ∥2 denotes the L2 norm.
Following[Wang et al., 2023], we utilize a margin parame-
ter α to control the strength of regularization.

Proxy Representation Learning
Unlike previous approaches that widely adopted re-weighting
strategies for noisy data, as discussed in the 1, such meth-
ods merely mitigate the negative impact of noisy data on the
model, essentially providing low-quality and unreliable su-
pervisory signals. Instead, we propose to search for proxy
points for noisy data based on the stable feature space con-
structed in 3.4, thereby providing reliable supervisory signals.

Without loss of generality, we use the image as a query to
find a proxy caption, while a similar method is applied when
using the caption as a query to find a proxy image. Specifi-
cally, given a noisy data pair (In, Tn) ∈ Dn, we first discard
the caption Tn. Then, using the image In as a query, we
search for the image İ with the highest similarity to In within
the current batch Bre, along with the corresponding caption
Ṫ of İ . This process can be formulated as:

İ = arg max
Ik∈Bre

S(In, Ik), (11)

yielding a clean triplet (İ , Ṫ , y = 1). Subsequently, we derive
the proxy label yp based on the similarity S(In, İ):

yp =
1

γ + exp(−β · S(In, İ))
, (12)

where γ and β are hyperparameters. For demonstration pur-
poses, we can define the proxy radius rp as rp = 1 − yp, as
illustrated in the figure 2. Next, we treat Ṫ as the proxy cap-
tion for the image I , constructing a new triplet (I, Ṫ , ŷ = yp).
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These triplets, formed by noisy samples and proxy points,
constitute a new dataset D̂n, which is used for more robust
training. The loss function for the noisy set is defined as:

Ln =
1

|Bn|
∑
i

ŷnL(Ii, Ṫi), (13)

where Bn is a batch sampled from D̂n. Consequently, even
noisy data initially provided as mismatched pairs can be accu-
rately embedded into appropriate positions within the stable
feature space, determined jointly by the proxy point and the
proxy label yp.

Partial Alignment
The quasi-clean sample pairs primarily reflect partial match-
ing issues. Based on the previously constructed stable feature
spave, we only need to adjust the consistency coefficients ac-
cording to the internal similarity of the quasi-clean sample
pairs to achieve partial alignment. Given a quasi-clean sam-
ple pair (Ii, Ti, ŷqc) ∈ Dqc, like[Ma et al., 2024], we adjust
ŷqc using the posterior probability pi and the binary hard label
yi collectively:

ŷqc = piyi + (1− pi)ŷi, (14)

where ŷi represents the predicted matching degree of the sam-
ple pair (Ii, Ti) by the model, obtained by averaging the bidi-
rectional cross-modal matching probabilities:

ŷi =
1

2
[Pi2t

i + Pt2i
i ]. (15)

Finally, we compute the loss for the quasi-clean set using
the following formula:

Lqc =
1

|Bqc|
∑
i

ŷqcL(Ii, Ti), (16)

where Bqc denotes a batch sampled from Dqc.

3.5 Global Training Objective
Before implementing co-teaching, we need to perform
Warmup training for models Ma and Mb to achieve pre-
liminary parameter convergence. Details are provided in the
Appendix. For the fine-grained partitioned reliable set Dre,
we minimize the following loss function using batch data
Bre ⊂ Dre:

Lre =
1

|Bre|
∑
i

yiL(Ii, Ti). (17)

In summary, the overall loss function of the SPS method
can be expressed as:

LOverall = Lre + Lqc + Ln + λ1Lcro + λ2Lmet, (18)

where λ1 > 0 and λ2 > 0 are hyperparameters used to
balance the weights of the two spatial constraints, thereby
achieving optimal performance. The entire framework of SPS
is illustrated in the figure 2.

4 Experiments
4.1 Datasets and Evaluation Metrics
We employ three widely used cross-modal datasets to validate
our proposed framework.

• Flickr30K [Young et al., 2014] consists of 31,000 im-
ages sourced from the Flickr platform, with each image
annotated by five distinct captions, yielding a total of
155,000 image-text pairs for training purposes. Follow-
ing [Lee et al., 2018], we allocate 1,000 images for vali-
dation, 1,000 images for testing, and utilize the remain-
ing images for training.

• MS-COCO [Lin et al., 2014] contains 123,287 images,
each paired with five captions, resulting in a total of
616,434 image-text pairs for training. We divide the
dataset into 566,435 pairs for training, 25,000 for val-
idation, and 25,000 for testing.

• Conceptual Captions [Sharma et al., 2018] is a large-
scale dataset comprising 3.3 million image-text pairs,
which inherently exhibit real-world Noisy Correspon-
dence challenges. Each image is paired with a sin-
gle caption. Following [Huang et al., 2021c], we uti-
lize a subset of the dataset, CC152K, for our experi-
ments. Within CC152K, 150,000 images are designated
for training, while 1,000 images each are reserved for
validation and testing.

Given that Flickr30K and MS-COCO are meticulously anno-
tated, we simulate Noisy Correspondence by randomly shuf-
fling the captions of training images at predefined noise ra-
tios. In contrast, Conceptual Captions, being automatically
curated from the Internet, inherently contain approximately
3% to 20% of native mismatched noise, thus requiring no ad-
ditional artificial shuffling. Following [Huang et al., 2021b],
the retrieval performance is assessed using the recall at K
(R@K) metric, which quantifies the percentage of relevant
items correctly identified within the top K retrieved results.
Our experimental evaluation includes R@1, R@5, R@10, as
well as the cumulative recall scores RSum for bidirectional
matching tasks.

4.2 Implementation Details
The proposed SPS is a universal Noisy Correspondence ro-
bust framework that can be directly applied to most exist-
ing cross-modal retrieval models. We adopt the widely used
cross-modal retrieval model SGR[Diao et al., 2021] as the
backbone network, integrating SPS to enhance its robust-
ness to noise. In all our experiments, we use the Adam
[Kingma, 2014] optimizer with default parameters for up-
dating the model parameters. To better control the learning
progress, we initially train the model exclusively on the re-
liable set and then gradually incorporate the quasi-clean set
and the noisy set into the training process. We select the best
checkpoint on the validation set to evaluate performance on
the test set. All experiments were conducted on Linux using
NVIDIA A100 GPUs.

4.3 Comparisons with State-of-The-Art
In this section, we validate the effectiveness of our method
on both artificially noisy and natively noisy datasets. For
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Flickr30K MS-COCO 1K
Noise Methods Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 RSum R@1 R@5 R@10 R@1 R@5 R@10 RSum

SGRAF 72.8 90.8 95.4 56.4 82.1 88.6 486.1 75.4 95.2 97.9 60.1 88.5 94.8 511.9
NCR 73.5 93.2 96.6 56.9 82.4 88.5 491.1 76.6 95.6 98.2 60.8 88.8 95.0 515.0

20% DECL 77.5 93.8 97.0 56.1 81.8 88.5 494.7 77.5 95.9 98.4 61.7 89.3 95.4 518.2
BiCro 78.1 94.4 97.5 60.4 84.4 89.9 504.7 78.8 96.1 98.6 63.7 90.3 95.7 523.2
L2RM 77.9 95.2 97.8 59.8 83.6 89.5 503.8 80.2 96.3 98.5 64.2 90.1 95.4 524.7
PC2 78.7 94.9 96.9 59.8 83.9 89.6 503.8 77.8 95.7 98.4 62.8 89.7 95.3 519.7

CREAM 77.4 95.0 97.3 58.7 84.1 89.8 502.3 78.9 96.3 98.6 63.3 90.1 95.8 523.0
SPS 79.5 95.0 98.0 60.5 84.3 89.8 507.1 79.8 96.4 98.6 64.3 90.5 95.8 525.5

SGRAF 8.3 18.1 31.4 5.3 16.7 21.3 101.1 15.8 23.4 54.6 17.8 43.6 54.1 209.3
NCR 68.1 89.6 94.8 51.4 78.4 84.8 467.1 74.7 94.6 98.0 59.6 88.1 94.7 509.7

40% DECL 72.7 92.3 95.4 53.4 79.4 86.4 479.6 75.6 95.5 98.3 59.5 88.3 94.8 512.0
BiCro 74.6 92.7 96.2 55.5 81.1 87.4 487.5 77.0 95.9 98.3 61.8 89.2 94.9 517.1
L2RM 75.8 93.2 96.9 56.3 81.0 87.3 490.5 77.5 95.8 98.4 62.0 89.1 94.9 517.7
PC2 75.8 93.5 96.9 57.5 81.9 88.2 493.8 77.4 95.8 98.4 62.1 89.4 95.1 518.2

CREAM 76.3 93.4 97.1 57.0 82.6 88.7 495.1 76.5 95.6 98.3 61.7 89.4 95.3 516.8
SPS 77.8 93.6 97.1 57.3 83.5 89.6 498.9 79.2 95.9 98.5 63.3 89.8 95.4 522.1

SGRAF 2.3 5.8 10.9 1.9 6.1 8.2 35.2 0.2 3.6 7.9 1.5 5.9 12.6 31.7
NCR 13.9 37.7 50.5 11.0 30.1 41.4 184.6 0.1 0.3 0.4 0.1 0.5 1.0 2.4

60% DECL 65.2 88.4 94.0 46.8 74.0 82.2 450.6 73.0 94.2 97.9 57.0 86.6 93.8 502.5
BiCro 67.6 90.8 94.4 51.2 77.6 84.7 466.3 73.9 94.4 97.8 58.3 87.2 93.9 505.5
L2RM 70.0 90.8 95.4 51.3 76.4 83.7 467.6 75.4 94.7 97.9 59.2 87.4 93.8 508.4
PC2 70.8 90.3 94.4 53.1 79.0 85.9 473.5 74.2 94.4 97.8 58.9 87.5 93.8 506.6

CREAM 70.6 91.2 96.1 53.3 79.2 87.0 477.4 74.7 94.8 98.0 59.7 88.0 94.6 509.9
SPS 73.4 92.7 96.3 53.7 80.2 87.7 484.1 77.6 95.7 98.3 61.6 89.0 95.1 517.2

Table 1: The retrieval performance on Flickr30K and MS-COCO 1K under 20%, 40% and 60% noise rates separately. The best results and
the second best results are respectively marked by bold and underline.

Method Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 RSum

SCAN 30.5 55.3 65.3 26.9 53.0 64.7 295.7
IMRAM 33.1 57.6 68.1 29.0 56.8 67.4 312.0

SAF 31.7 59.3 68.2 31.9 59.0 67.9 318.0
SGR 35.0 63.4 73.3 34.9 63.0 72.8 342.4
NCR 39.5 64.5 73.5 40.3 64.6 73.2 355.6

DECL 39.0 66.1 75.5 40.7 66.3 76.7 364.3
BiCro 40.8 67.2 76.1 42.1 67.6 76.4 370.2
PC2 39.3 66.4 75.4 39.8 66.4 73.2 355.6

CREAM 40.3 68.5 77.1 40.2 68.2 78.3 372.6
SPS 40.8 67.9 77.7 42.4 69.5 78.0 376.3

Table 2: The retrieval performance on CC152K, The best results are
marked by bold.

the former, we report experimental results for noise rates
of 20%, 40%, and 60%. The baselines include stan-
dard cross-modal retrieval model that lack robustness to
noise, SCAN[Lee et al., 2018], VSRN[Li et al., 2019b],
IMRAM[Chen et al., 2020a], SAF and SGRAF[Diao et al.,
2021], noise-correcting methods NCR[Huang et al., 2021b]
and DECL[Qin et al., 2022], and recently proposed noise-
resistant approaches BiCro[Yang et al., 2023], L2RM[Han et
al., 2024], PC2[Duan et al., 2024], and CREAM[Ma et al.,
2024].

Results on Simulated Noise
Following [Huang et al., 2021b], we adopt two evaluation
protocols to validate the performance on MS-COCO: 5-fold

cross-validation on 1,000 test images (referred to as MS-
COCO 1K), and evaluation on the full 5,000 test images (re-
ferred to as MS-COCO 5K). Due to space limitations, Table
1 only reports the bidirectional retrieval results on Flickr30K
and MS-COCO 1K compared to recent models. For the com-
plete experimental results, please refer to the appendix. The
results for MS-COCO 5K are reported in Table 3. The ex-
perimental results demonstrate that SPS significantly outper-
forms existing methods in terms of robustness to Noisy Cor-
respondence, achieving notably higher RSum scores than all
baselines. Specifically, SPS outperforms the previous best
baseline, CREAM, on Flickr30K and MS-COCO at noise ra-
tios of 20%, 40%, and 60% by margins of 4.8, 3.8, and 6.7 on
Flickr30K and 2.5, 5.3, and 7.3 on MSCOCO, respectively.
Notably, as the noise rate increases to 60%, SPS maintains
high stability, particularly on MS-COCO 5K, where it sur-
passes the second-best method by 13.5, demonstrating a sig-
nificant improvement.

Results on Inherent Noise
To further validate the noise robustness of SPS in real-
world application scenarios, we report results on the CC152K
dataset, as shown in Table 2. According to the results, SPS
achieves the best performance with an overall RSum score of
376.3. Compared to the backbone network SGR and the ro-
bustness method NCR, SPS achieves improvements of 9.9%
and 4.8%, respectively. The experiments demonstrate that
SPS effectively handles both simulated and real-world noisy
environments.
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Figure 3: Illustration of the distribution changes of GT in Flickr30K
under different noise rates throughout the training process.
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Figure 4: Illustration of the relationship between ϵ1 and RSum when
ϵ2 is fixed at 0.5, and the relationship between ϵ2 and RSum when
ϵ1 is fixed at 0.99.

4.4 Ablation Study
In this section, we conduct ablation experiments on the pro-
posed SPS to validate the contribution of each major mod-
ule within the framework, including WarmUp , Space Con-
straint (SCT), Lqc, and Ln. All experiments are performed
on Flickr30K with a 40% noise rate, and to ensure a fair com-
parison, the same parameter settings are used across all exper-
iments. The results are reported in Table 4. From the results,
we observe that the best noise robustness is achieved only
when all components are included, which fully demonstrates
the effectiveness of each module.

4.5 Analytical Experiments
We analyze the impacts of hyper-parameters ϵ1 and ϵ2 un-
der a 60% noise rate on Flick30K, as illustrated in the Fig-
ure 4 . It can be observed that the best retrieval performance
is achieved when the threshold ϵ1 is set to a relatively strict
value, specifically ϵ1 = 0.99. We attribute this to the fact
that constructing a stable feature space highly depends on re-
liable positive pairs. Therefore, when the dataset permits, it
is reasonable to impose stricter requirements on the data par-
titioned into the reliable set.Additionally, for the parameter
ϵ2, experimental results indicate that maintaining a moderate
value, specifically ϵ2 = 0.5 yields the best performance. This
is intuitive, as it effectively distinguishes the quasi-clean set
from the noisy set. Next, we investigated the performance of
SPS in terms of dataset partitioning accuracy. Specifically, we
observed the distribution changes of Ground Truth (GT) (i.e.,

Noise Method Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 RSum

SCAN 11.6 32.2 44.8 7.3 23.5 35.9 155.4
IMRAM 17.0 44.4 59.4 15.6 38.0 50.8 225.1

NCR 55.0 82.2 90.7 39.6 68.8 79.8 416.1
20% DECL 57.3 83.3 90.7 40.0 69.1 79.8 420.1

CREAM 57.6 84.1 91.6 41.4 71.1 81.2 427.0
L2RM 59.6 85.1 92.0 42.5 71.5 81.3 432.0
SPS 59.6 84.9 91.8 42.6 71.7 81.9 432.5

SCAN 12.5 33.1 46.0 6.7 21.1 32.5 151.9
IMRAM 13.5 34.9 49.5 13.6 34.6 47.4 193.5

NCR 55.5 82.2 89.8 39.5 68.3 79.1 414.4
40% DECL 53.4 81.4 89.4 38.6 67.2 78.3 408.3

CREAM 55.3 82.3 90.6 39.8 69.3 80.1 417.3
L2RM 57.1 83.4 91.0 40.8 69.4 79.7 421.4
SPS 58.1 84.0 91.8 41.6 70.6 81.0 427.1

SCAN 10.8 30.0 42.4 5.6 18.7 29.5 136.9
IMRAM 10.7 30.8 44.2 11.6 30.4 42.6 170.3

NCR 49.9 78.5 87.9 36.1 65.4 76.5 394.3
60% DECL 39.1 69.1 80.5 28.4 56.4 68.6 342.0

CREAM 52.1 80.4 89.0 37.8 66.9 78.0 404.3
L2RM 53.5 81.0 88.9 37.3 65.7 76.7 403.1
SPS 55.6 82.8 90.5 39.4 68.8 79.5 416.6

Table 3: The retrieval performance on MS-COCO 5K. The best re-
sults are marked by bold.

SCT Lqc Ln WarmUp Image → Text Text → Image
R@1 R@10 R@1 R@10 RSum

✓ ✓ ✓ ✓ 77.8 97.1 57.3 89.6 498.9
✓ ✓ ✓ 76.1 97.0 55.8 88.9 493.4

✓ ✓ ✓ 75.9 96.8 56.4 88.7 494.5
✓ ✓ ✓ 75.3 97.0 56.7 88.3 494.1

✓ 70.9 95.3 52.3 86.7 475.6
✓ ✓ ✓ 0.5 5.0 0.4 6.4 17.6

Table 4: Ablation study on the major components of SPS using the
Flicker30K with 40% noise. The best results are marked by bold.

truly clean pairs) in the Flickr30K dataset with different noise
rates (20%, 40%, and 60%) throughout the training process,
as shown in Figure 3. This includes the number of GT sam-
ples classified into the reliable set (denoted as GT Count) and
the proportion of GT samples in the noisy set (denoted as GT
Rate). The results demonstrate that SPS can accurately par-
tition the data even as the noise rate increases, which aligns
with the superior retrieval performance observed in the previ-
ous experiments.

5 Conclusion
In this paper, we investigate a relatively underexplored issue
in the field of cross-modal retrieval: the Noisy Correspon-
dence problem. To address this challenge, we propose a re-
liable set-driven approach to construct a stable feature space.
Building on this foundation, we seek proxy points for noisy
data to enable reliable feature learning. Extensive experi-
ments on several cross-modal datasets demonstrate the ef-
fectiveness of the proposed method. In the future, we will
explore the implementation and improvement of this frame-
work in other cross-modal domains.
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