Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Fast Second-Order Online Kernel Learning Through
Incremental Matrix Sketching and Decomposition

Dongxie Wen'!, Xiao Zhang'*, Zhewei Wei'*, Chenping Hou?, Shuai Li® and Weinan Zhang?
!Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2National University of Defense Technology

3Shanghai Jiao Tong University
{2019202221, zhangx89, zhewei } @ruc.edu.cn, hcpnudt@hotmail.com, {shuaili8, wnzhang} @sjtu.edu.cn

Abstract

Second-order Online Kernel Learning (OKL) has
attracted considerable research interest due to its
promising predictive performance in streaming en-
vironments. However, existing second-order OKL
approaches suffer from at least quadratic time com-
plexity with respect to the pre-set budget, rendering
them unsuitable for large-scale datasets. Moreover,
the singular value decomposition required to obtain
explicit feature mapping is computationally expen-
sive due to the complete decomposition process. To
address these issues, we propose FORKS, a fast
incremental matrix sketching and decomposition
approach tailored for second-order OKL. FORKS
constructs an incremental maintenance paradigm
for second-order kernelized gradient descent, which
includes incremental matrix sketching for kernel ap-
proximation and incremental matrix decomposition
for explicit feature mapping construction. Theo-
retical analysis demonstrates that FORKS achieves
a logarithmic regret guarantee on par with other
second-order approaches while maintaining a lin-
ear time complexity w.r.t. the budget, significantly
enhancing efficiency over existing methods. We val-
idate the performance of our method through exten-
sive experiments conducted on real-world datasets,
demonstrating its superior scalability and robustness
against adversarial attacks.

1 Introduction

The objective of online learning is to efficiently and effec-
tively update hypotheses in a data stream environment, where
the processes of training and testing are intermixed [Shalev-
Shwartz, 2012]. A popular online learning algorithm is On-
line Gradient Descent (OGD) [Zinkevich, 2003], which aims
to minimize the loss function by iteratively adjusting the
parameters in the direction of the negative gradient of the
function. To address this limitation, Online Kernel Learning
(OKL) maps the input space to a high-dimensional reproduc-
ing kernel Hilbert space (RKHS), effectively handling non-
linear learning tasks [Kivinen et al., 2001; Singh et al., 2012;

*Xiao Zhang and Zhewei Wei are the corresponding authors.

Hu et al.,, 2015; Lu et al.,, 2016b; CAO et al., 2017,
Sahoo et al., 2019].

From an optimization perspective, OKL can be classi-
fied into first-order and second-order methods. First-order
methods use a fixed learning rate for gradient descent, re-
sulting in O(+/T') regret for any arbitrary sequence of con-
vex losses [Cavallanti et al., 2007; Orabona et al., 2008;
Hoi et al., 2012; Lu ef al., 2016b; Zhang and Liao, 2019],
where 7' denotes the number of rounds. Although some works
set a more aggressive learning rate to improve the regret bound
to O(logT), it requires the assumption that the loss func-
tion exhibits strong convexity, which is unrealistic for most
loss functions [Zhu and Xu, 2015]. In contrast, second-order
algorithms utilize the Hessian matrix to adjust the learning
rate dynamically, achieving logarithmic regret without requir-
ing strong convexity in all directions [Hazan er al., 2007,
Zhdanov and Kalnishkan, 2013; Calandriello ef al., 2017a;
Calandriello et al., 2017b; Zhang et al., 2023].

Despite the improved regret, exact second-order OKL re-
quires O(t?) space and time complexity at round ¢ due to
the need to store the entire kernel matrix. Previous studies
have primarily focused on approximating the kernel matrix
using online sampling techniques [Calandriello et al., 2017a;
Calandriello et al., 2017b; CHEN et al., 2022]. However,
sampling-based algorithms face two significant issues. First,
without prior knowledge of the effective dimension of stream-
ing data, sampling-based methods exhibit at least quadratic
time complexity with respect to the budget, which is the max-
imum size of the static subspace. Second, these methods
only address the problem of kernel matrix approximation in
online kernel learning and cannot efficiently obtain explicit
feature mapping. More precisely, due to the varying size of the
subspace, complete singular value decomposition is required
to calculate the feature mapping, which is computationally
expensive.

In this paper, we propose a fast incremental matrix sketch-
ing approach for second-order online kernel learning, along
with an efficient decomposition method designed for incre-
mental updates, effectively addressing the two aforementioned
challenges both theoretically and experimentally. Our contri-
butions can be summarized as follows:

* We propose FORKS, a fast and effective second-order
online kernel learning method that can be generalized
to both regression and classification tasks. FORKS

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

maintains incremental matrix sketching using efficient
low-rank modifications and constructs an effective time-
varying explicit feature mapping. We provide a de-
tailed theoretical analysis to illustrate the advantages of
FORKS, including having linear time complexity w.r.t.
the budget, and enjoying a logarithmic regret bound.

We propose TISVD, a novel incremental singular value
decomposition adapting to matrix decomposition prob-
lems in online learning environments. We theoreti-
cally compare the time complexity between TISVD and
the original truncated low-rank SVD, confirming that
FORKS with TISVD is computationally more efficient
without compromising prediction performance.

We conduct extensive experiments to demonstrate the
superior performance of FORKS on both adversarial and
real-world datasets, while also enhancing efficiency. Fur-
thermore, we validate FORKS’s robustness and scalabil-
ity using a large-scale streaming recommendation dataset.

2 Notations and Preliminaries

Let [n] = {1,2,...,n}, upper-case bold letters (e.g., A) rep-
resent matrix and lower-case bold letters (e.g., a) represent
vectors. We denote by A;, and A,; the i-th row and j-th
column of matrix A, AT the Moore-Penrose pseudoinverse of
A, ||A||2 and || A|| ¢ the spectral and Frobenius norms of A.
Let S = {(x4,y:) 1, C (X x V)T be the data stream of T
instances, where z; € R?. Weuse A = UXV " to represent
the SVD of A, where U, V denote the left and right matrices
of singular vectors and X = diag[\1, ..., A,] is the diagonal
matrix of singular values.

2.1 Online Kernel Learning

In this section, we introduce the problem of online kernel learn-
ing. Let the kernel function be denoted by x : X x X — R,
with the corresponding kernel matrix K = (k(x;, x;)), where
X represents the input space. Let H,, denote the reproducing
kernel Hilbert space (RKHS) induced by «, and let the feature
mapping ¢ : X — H, correspond to this RKHS. In this con-
text, the kernel function can be expressed as the inner product
(@i x)) = o) ().

Consider a data stream S and a convex loss function /. At
round ¢, we define the hypothesis as f; = w, ¢(x;), where x;
is the incoming sample. Upon receiving a new example x, the
hypothesis predicts the label y; using f;. The hypothesis incurs
aloss £(fi(xe)) = L(fi(xe), ye), where y; is the true label,
and subsequently updates its model parameters. The objective
of an online learning algorithm is to bound the cumulative
regret, which is defined as:

Regr(f*) =) _[6:(ft) = &(f7)],

M=

t

1

where f* is the optimal hypothesis, determined in hindsight.

2.2 Matrix Sketching

Given a matrix M € R%*Y_ the sketch of M is defined as
MS € R**%, where S € RY* is a sketch matrix. In this pa-
per, we introduce the Sparse Johnson-Lindenstrauss Transform

and Column-sampling matrix as the sketch matrix [Charikar
et al., 2002; Kane and Nelson, 2014].

Sparse Johnson-Lindenstrauss Transform (SJLT). SJLT
is a randomized sketching technique based on hash func-
tions. SJLT consists of D submatrices, written as S =
[S1,...,8p] € R¥». Each submatrix S € RV*(s»/D)
is defined by two sets of hash functions:

hk:{1,...,b}—>{1,...,s—p},

D
-1 1
AL b =2 —, — ¢,
e (et { 75 75
where k € {1,...,D}. For each submatrix, the element

[Skli,; equals g (7) if j = hy(2), and equals O otherwise.

Column-sampling matrix. We denote the column-sampling
matrix by S,, € Rb**=_ the columns of S,, is obtained by
uniformly sampling column vectors of Iy .

3 FORKS: The Proposed Algorithm

In this section, we propose a novel and efficient second-order
OKL method that incorporates incremental sketching and de-
composition. While previous work has primarily focused
on the incremental maintenance of the approximated kernel
matrix, our approach is the first to address the incremental
construction and maintenance of the feature mapping.

3.1 Algorithm Overview

The second-order OKL process can be described in three key
stages: kernel matrix approximation, feature mapping, and
second-order online learning. Figure 1 illustrates the over-
all architecture of our method. Rather than storing the en-
tire kernel matrix, we employ matrix sketching techniques
to approximate it with a fixed, constant size. Furthermore,
the novel truncated incremental singular value decomposition
method is utilized to generate the time-varying feature map-
ping. Notably, both the kernel matrix and feature mapping can
be updated incrementally, ensuring efficient maintenance and
adaptability to changes in user preferences. Additionally, we
use second-order updates to predict user behavior effectively.
A non-trivial proof establishes that our method guarantees
logarithmic regret while preserving computational efficiency.

3.2 Matrix Sketching for Kernel Matrix
Approximation

In this section, we apply the matrix sketching technique to
approximate the kernel matrix. Although this reduction has
been employed in first-order methods [Zhang and Liao, 2018;
Zhang and Liao, 2019], the regret bound for second-order
online kernel learning, which operates under the directional
curvature condition, remains unknown in the literature.

In the offline setting, given the kernel matrix K (*) € Rtx?,
the prototype model [Williams and Seeger, 2000] computes
the approximate kernel matrix K® = Cﬁ? Ufast(Cy(,f))—r by
solving the following optimization problem at round ¢:

2

cHhu (C,S?)T ~K® M)

Ut = arg min
U F

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Kernel Matrix
Approximation

P - Incremental Update

User Feedback
& Interactive History

-
/ \ —
Kernel Matrix -—
Sketch Matrix
Dy D] . Data User

Decomposition Incremental Update

Behavior Prediction

eature Mapping

Model
q)pp Updating
] :> Time-varying Second-Order Online
Feature Mapping ¢ Kernel Learning
TISVD

Figure 1: The illustration of the proposed method FORKS.

where Cﬁ) represents the sketch matrix at round ¢, defined
as CF) = KOSY € Rsm, with S € Rt**n being
the column-sampling matrix used to reduce the size of the
approximate kernel matrix.

Note that solving Eq. (1) can impose substantial computa-
tional demands. To address this problem, the sketch-based
method [Wang er al., 2016] is proposed to reduce the computa-

tional complexity. Specifically, let S,(,t) € R'*#» represent the
randomized sketch matrix based on the SJLT (details in Sec-
tion 2.2). The sketched kernel matrix approximation problem
at round ¢ is then formulated as follows:

Ut = argénin H (Sz(f))T C,(,f)U (C,(,f))T Sl(f)—

() sl

= (20)) 2 (207)".

where

() = 8HTCl) e Rev*em,

t t t t SpXSp
@(PP) = 51(7) K()Slg) S R x .

Instead of storing the entire kernel matrix, we can maintain
smaller sketches for approximation. In the online setting, these
sketches can be incrementally updated with the arrival of new
data, x4, 1. Specifically, the updates are given by:

(t+1) — () (t+1)
@, =P, +A

m pm) (4)

e = o + AR,
where A;(,t,f{l) and AS;,H) are composed of three rank-1 ma-
trices. Due to space constraints, the detailed construction is
provided in Appendix B.1.

Next, we construct the time-varying explicit feature map-
ping. For simplicity, we use rank-k£ SVD, though it is inef-
ficient due to the need for a full matrix decomposition. The
elements of the kernel matrix are equal to the inner prod-
uct of the corresponding points after feature mapping, i.e.

K;; = ¢(x;)"¢(x;). Once we build the approximate ker-
nel matrix by Eq. (2), we can obtain a time-varying feature
mapping through the rank-k£ SVD. Specifically, if

@éﬁp—i—l) ~ V(t-‘,—l)z(t-‘,—l)v(t-‘rl)—r € RSPX‘SP7 (5)

where V(H1) ¢ Resp >k 5(t+1) ¢ RF¥F and rank k < s, we
can update the time-varying explicit feature mapping ¢¢42 €
RF at round ¢ + 1 by

¢t+2(') = ([K('v jl)v K’('v jQ)? 3] H('V’ism)]zt-‘rl)—r s

where {&;};™ are the sampled columns by S and
Ziy = ((I,;i;l"l))fv(t+1)(2(t+1))%.

However, directly applying rank-k SVD to ®,,, is inefficient
in online learning scenarios. Specifically, the standard rank-
k SVD incurs a time complexity of O(sf’,) at each update,
rendering it impractical in scenarios with frequent updates.

3.3 Novel Incremental Matrix Decomposition
Method for Feature Mapping

In this section, we propose TISVD (Truncated Incremental
Singular Value Decomposition), a novel incremental SVD
method designed for decomposing sketches. TISVD achieves
linear time and space complexity with respect to the sketch
size s, effectively avoiding the time-consuming operation of
performing a complete SVD.

We begin by presenting the construction of TISVD, which
is well-suited for decomposing matrices with low-rank update
properties. Without loss of generality, we denote a matrix at
round t as M) = UOSOVOT n the (¢ + 1)-th round,
M ® is updated by low-rank matrices as follows:

MO = MO L A AT

— e+ R(t+D) (V(t+1))T 7 ©)
where A1, Ay € R¥*¢ of rank 1 < ¢ < 5.

Our objective is to directly update the singular matrices
U®, x® and V() using low-rank update matrices A; and
Ao, resulting in UHD B0+ and VD | First, we formu-
late orthogonal matrices through orthogonal projection and
vertical projection. Let P, Q) denote the orthogonal basis of
the column space of the following matrices:

(I - U<t>U<t>T)A1 and (I - V(t)V(t)T>A2,

respectively.
Set Ry = P' (I — U(t)U(t)T)Al and R, = Q7 (I -

v® V(t)T) A, we can transform Eq. (6) into

MY = U0 PlH[V® Q] %)
where
[z o UOTA,l [VOTA,l"
H‘{o 0}*{ R, R, |~ ®

Subsequently, as the siz~e 0f~H is sm~aller than M+ an
efficient computation of Uy, Vi, and 3y, can be obtained by

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

performing a truncated rank-k SVD on H. Since the matrices
on the left and right sides are column orthogonal, we finally
obtain U®TD, v+ and B+ at round ¢ + 1

vttt = [u® P] U,
v+ — [V(t) Q] ka 9)
»t+) 5

We summarize the algorithm and provide the pseudo-code

for TISVD in Appendix B.2. Note that the sketch 'IJ;ZH) can
be updated using low-rank matrices, as shown in Eq. (4). By
replacing the standard rank-k SVD with TISVD, we establish
an efficient mechanism for the incremental maintenance of sin-
gular matrices. More precisely, in Eq. (5), we update V (*+1)
and X1 ysing their previous counterparts, V() and),
along with the low-rank update A](DZH) atround ¢ + 1.

Remark 1 (Complexity). The complexity of TISVD is pri-
marily composed of the truncated rank-k SVD on H and
the matrix multiplication in Eq. (9). The update cost of the
truncated rank-k SVD is O(k?), while the matrix multiplica-
tion in Eq. (9) incurs a complexity of O(spk). Consequently,
compared to standard rank-k SVD, TISVD provides signif-
icant improvements by reducing the time complexity from
O(s3) 10 O(spk + k*) and the space complexity from O(s3)
to O(spk + k?). More discussion is provided in Appendix B.3.

3.4 Efficient Second-Order Online Kernel Learning

Since the efficient time-varying explicit feature mapping ¢ (-)
has been constructed, we can formulate the approximate hy-
pothesis f;(x;) at round ¢ as follows

ft(wt) = wt—rd)t(mt)a

where w; is the weight vector. On the basis of the hypothesis,
we propose a two-stage second-order online kernel learning
method, named FORKS (Fast Second-Order Online Kernel
Learning Using Incremental Sketching).

In the first stage, we simply collect the items with nonzero
losses to the buffer SV and perform the Kernelized Online
Gradient Descent (KOGD) [Kivinen et al., 2001]. When the
size of the buffer reaches a fixed budget B, we calculate K,
and initialize sketch matrices @1(,2, <I>§,t,zl in Eq. (3).

In the second stage, we adopt a periodic updating strategy
for sketches. More precisely, we update @,(92, @é% by Eq. (4)
once for every p examples, where p € [T — B is defined
as update cycle. Furthermore, we incrementally update the
feature mapping ¢.(-) by TISVD.

In addition to updating the feature mapping ¢;(-), we per-
form second-order updates on the w;. Specifically, we update
the hypothesis using Online Newton Step (ONS) [Hazan et al.,
2007] for some parameters « > 0 and o, 7; > 0:

-1

Vi1 = Wt — At gt,

h (¢:+1Ut+1)
-1

¢tT+1At P41

), Ay = ol + ZEZO(U@‘ +1:)gig; and
z| — C,0). The second-order updates
P

(10)

1
Wiyl = Vil — A iy,

where gt = thgt(:l)t
h(z) = sign(z) max(

Algorithm 1 FORKS

Input: Data stream { (¢, y;)}7_,, sketch size s, sample size
Sm, rank k, budget B, update cycle p, regularizer «
Output: Predicted label {g;}7_,

1: fort < 1,...,T do
2: Receive x;

3 while SV is not full do

4 Update hypothesis by KOGD

5 Add x; to SV whenever the loss is nonzero
6: end while
7.
8

if SV is full then
: Initialize @,(,2, ‘IDI(% as in Eq. (3)
9: Compute the mapping @41
10: elseif in the update round then
11: Update ¢4 by TISVD (Algorithm 2)
12: SetAt<—aI, w0
13: else
14: 1) Y 1) LV @1 @y
15: endif

16: Predict §j; = sgn ((thwt)

17: # Execute a second-order gradient descent
18: Obtain g; < thft (g)t)

19: Update A1 < A; + (05 +1:)g:g,

20: Compute wy1, vi41 using Eq. (10)

21: end for

not only consider the gradient information but also utilize the
curvature information of the loss function, leading to faster
convergence rates.

At the start of a new update epoch, we incorporate a reset
step before applying the gradient descent in the new embed-
ded space. We update the feature mapping ¢; but reset A;
and w;. This step is taken to ensure that our starting point
cannot be influenced by the adversary. By leveraging efficient
second-order updates, we can effectively converge to the opti-
mal hypothesis within the current subspace. Furthermore, the
reset of the descent procedure when transitioning between sub-
spaces ensures a stable starting point and maintains a bounded
regret throughout the entire process. We summarize the above
stages into Algorithm 1.

The incremental update of the feature mapping, combined
with the reset mechanism, ensures that we can effectively cap-
ture changes in user preferences over time. More specifically,
our algorithm updates the feature vector to reflect the user’s
current state, while resetting the Hessian matrix mitigates the
influence of outdated data on the learner.

3.5 Complexity Analysis of FORKS

Given the budget of B, FORKS consists of three parts: (1) the
first stage using KOGD, (2) the updating round in the second
stage, and (3) the regular round in the second stage. At the
first stage (|SV] < B), FORKS has constant time O(B) and
space complexities O(B) per round.

The main computational complexity of FORKS during the
update round stems from the matrix decomposition and inver-
sion procedures. These processes are necessary for updating
the feature mapping and performing second-order updates,
respectively. TISVD reduces the time complexity of @,

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

decomposition from O(s3) to O(s,k + k?), where s, is the
sketch size of S}, and £ is the rank in TISVD. A naive imple-
mentation of the second-order update requires O(k3) per-step
time and has a space complexity of O(k?) necessary to store
the Hessian A;. By taking advantage of the fact that A; is
rank-1 updated, we can reduce the per-step cost to O(k?).

We denote the update cycle as p and p = B+ | (T — B)/p].
To summarize, the time complexity of FORKS at each updat-
ing round is

O (1 + spk® + smspk + k%),

and the space complexity is O(u + s,k + S5, + k), where
Sy 18 the sketch size of \S,,.

The primary time consumption for the online learning al-
gorithm occurs during regular rounds. At each regular round,
the time complexity of FORKS is O(s,,,k + k2). Given that
Sm < 8p < B, our algorithm achieves a time complexity of
O(Bk+k?) per step. The current state-of-the-art second-order
online kernel learning method, PROS-N-KONS, presents a
time complexity of O(B?) per step in its budget version [Ca-
landriello et al., 2017al. Moreover, due to the changing size
of the subspace from online sampling, PROS-N-KONS must
perform a complete SVD at each step. In contrast, FORKS
introduces substantial advancements by reducing the time
complexity from O(B?) to O(Bk + k?).

4 Regret Analysis

In this section, we provide the regret analysis for the proposed
second-order online kernel learning algorithm. We begin by
making the following assumptions about the loss functions.

Assumption 1 (Lipschitz Continuity). ¢ is Lipschitz continu-
ous with the Lipschitz constant Ly, i.e., |[V(w)|y < Liip.

Assumption 2 (Directional Curvature). Let Lcyy > 0. Then,
for any vectors w1, ws and the convex function £, denote that

A = {(wy) — L(ws), we have

L ur
A > (Vﬁ(wg),wl — w2> + % (Vﬁ(wg),wl — ’UJ2>2 X

In practical scenarios, the assumption of strong convexity
may not always hold as it imposes constraints on the convexity
of losses in all directions. A more feasible approach is to relax
this assumption by demanding strong convexity only in the
gradient direction, which is a weaker condition as indicated by
the two assumptions above. For example, exp-concave losses
like squared loss and squared hinge loss satisfy Assumption 2.

Assumption 3 (Matrix Product Preserving). Let S, € RT*s»
be a sketch matrix, U,, € RT*Sm be g matrix with orthonor-
mal columns, Unl1 € RT*(T=sm) pe another matrix satisfy-
ing UnU! + UX(UNT = Iy and U] UL = O, and 6;
(i = 1, 2) be the failure probabilities defined as follows:

Pr > <&, i=1,2,
{ 2|| Bl |1 Ail1 % bisp [~

where Ay = Uy, By = Ip, Ay = U-(UnY) K, B, =
U'T K € RT*T jg q kernel matrix.

m’

The conditions stated in Assumption 3 can be satisfied by
SJILT matrix [Woodruff, 2014]. Given the loss ¢;(w;) =
C(fe) = L(fe(xe),yt), VYt € [T] satisfies Assumption 1 and
Assumption 2, we bound the following regret:

T
Regr(f*) =Y lla(wy) — &(f7)],

t=1

where f* = argmingcq 23:1 £(f) denotes the optimal
hypothesis in hindsight in the original RKHS.

Let K € RT*T be a kernel matrix with (x;, z;) < 1 for
all i, 5. Let p = |6(T — B)| denote the update cycle, where
0 € (0,1), and let k represent the rank in TISVD. Additionally,
define Ccop as the coherence of the intersection matrix of K,
which is constructed using B + | (T — B)/p] examples. Let
v; be the i-th singular vector of K, the coherence is given by:

_(B+1/6 ,
Ccon = (rank(K)> max [|vill3-

Note that C'cop is independent of T when p = |6(T — B)].
We demonstrate the regret upper bound of FORKS as follows
Theorem 1 (Regret Bound of FORKS). Let g, €p € (0,1).

Set the number of submatrices in SILT as D = ©(log>(s)).
Suppose the parameters for updating A in FORKS satisfy
n; = 0and 0; > Loy > 0. Assume the eigenvalues of K
decay polynomially with decay rate 3 > 1, and that the SJILT
S, satisfies Assumption 3 with failure probabilities 1,02 €
(0, 1). If the sketch sizes of S, and S, satisfy

sp = Q (s polylog(smdy ') /€d) s sm = Q(Coonk logk).
Then, with probability at least 1 — 6,

aD?
R * < w
egr(f*) < 9 + 2 Lo

A
0 (log) + 17713, +

c -8
1>\+ © (‘/E) + %

1 (3 B+|T-B)p
AB—1)\ 2 T '
where § = 6o+ 01+ 062, Dy, denotes the diameter of the weight

vector space of the hypothesis on the incremental sketches, and
€ is defined as:

T 2
Ve=2y /= + /2 (& +260+2)
0162 02

With ¥ = S,/ Sp.

proof sketch. Let w* denote the optimal hypothesis on the
incremental sketches in hindsight, we decompose the instanta-
neous regret £ (w;) — £;(w*) into two terms as follows

Zt(wt) — Et(w,’f) =+ ét('wf) — Zt(w*) .

Term 1: Optimization Error

Term 2: Estimation Error

The optimization error stems from the optimization step of
second-order online gradient descent, while the estimation
error arises from the incremental matrix sketching and the
truncated singular values in TISVD. We provide upper bounds
for the errors and present the detailed proof in Appendix C.1.

O

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Remark 2 (Assumption of polynomial decay). The assump-
tion of polynomial eigenvalue decay for the kernel matrix
is widely applicable and holds for various types of kernels,
including shift-invariant, finite-rank, and convolution ker-
nels [Liu and Liao, 2015; Belkin, 2018]. This decay property
guarantees that the accumulated truncated singular values of
TISVD can be upper bounded by the number of update rounds.

Remark 3 (Convex case). Note that when Lcy, = 0, Assump-
tion 2 essentially enforces convexity. In the worst case when
Lcyy = 0, the regret bound in the convex case degenerates to

O(VT). The detailed proof is included in Appendix C.2.

By configuring the update cycle as p = [6(T — B)],
where § € (0,1), and setting the sketch size ratio to v =
O(log(T)/+/T), we derive an upper bound on regret of

O(Ti log T') for second-order online kernel learning. In con-
trast, the regret bound for first-order online kernel learning
is O(\/T), while requiring a budget of B = O(T) [Lu et al.,
2016al], making it less favorable than FORKS.

Under the assumption that the eigenvalues of the kernel
matrix decay polynomially with rate /3, the regret bound for
the existing second-order online kernel learning algorithm

PROS-N-KONS [Calandriello et al., 2017a] is O(T% log® T),
which is highly sensitive to the eigenvalue decay rate 3. In
practical streaming scenarios, however, ensuring a sufficiently
rapid decay of the kernel matrix is often unrealistic. When the
properties of the streaming matrix are less favorable, such as
in the case where 5 < 4, the regret of PROS-N-KONS can be
worse than that of FORKS.

5 Experiments

In this section, we conduct experiments to evaluate the perfor-
mance of FORKS on several datasets. The details of datasets
and experimental setup are presented in Appendix D.1, D.2.

5.1 Experiments Under a Fixed Budget

In this section, we demonstrate the performance of FORKS
under a fixed budget, employing six widely recognized clas-
sification benchmarks. We compare FORKS with the ex-
isting budgeted-based online learning algorithms, including
first-order algorithms RBP [Cavallanti et al., 2007], BPA-
S [Wang and Vucetic, 20101, BOGD [Hoi et al., 2012], FOGD,
NOGD [Lu et al., 2016al, Projectron [Orabona et al., 2008],
SkeGD [Zhang and Liao, 2019] and second-order algorithm
PROS-N-KONS [Calandriello et al., 2017a]. All algorithms
are trained using hinge loss, and their performance is measured
by the average online mistake rate.

For all the algorithms, we set a fixed budget B = 50 for
small datasets (N < 10000) and B = 100 for large datasets.

Furthermore, we set buffer size B = 2B,y = 0.2, s, = B,
Sm = 7YSp, O = 0.3, and update cycle p = [N | in SkeGD
and FORKS if not specially specified. For algorithms with
rank-%k approximation, we uniformly set £ = 0.18. Be-
sides, we use the same experimental settings for FOGD (fea-
ture dimension = 4B). The results are presented in Table 1.
Our FORKS shows the best performance on svmguide3,
codrna, w7a, and the suboptimal performance on other
datasets. The update time of FORKS is comparable to that of

the majority of first-order algorithms, including NOGD and
SkeGD. Besides, FORKS is significantly more efficient than
the existing second-order method PROS-N-KONS in large-
scale datasets such as codrna and w7a.

Then, we conduct experiments to evaluate how TISVD
affects the performance of the algorithm. We use the same ex-
perimental setup in codrna and vary the update rate 6 from
0.5 to 0.0005. Figure 2 demonstrates that TISVD maintains
efficient decomposition speed without excessively reducing
performance. Considering that frequent updates can poten-
tially result in an elevated loss, it is essential to carefully
choose an optimal update cycle that strikes a balance between
achieving superior accuracy and maintaining efficiency.

N
'S
'\

S
=

S FORKS with TISVD 2™ —— FORKS with TISVD
£0.3 —=— FORKS with SVD E30 . FORKS with SVD

& g

) ?:1)20

%02 .l &

] = £10

s — 2 |

0155 03 0.1 005001 5¢:3 -3 5e-4 %5 03 01 005001 5e:3 1e:35e-4

(a) average mistake rate (b) average running time

Figure 2: The average mistake rates and average running time w.r.t.
TISVD on codrna.

5.2 Experiments Under Adversarial Environment

To empirically validate the algorithms under an adversarial
environment, we build adversarial datasets using the bench-
mark codrna and german. We compare FORKS with first-
order algorithms BOGD [Hoi et al., 2012], SkeGD [Zhang
and Liao, 2019], NOGD [Lu et al., 2016a] and second-order
algorithm PROS-N-KONS [Calandriello et al., 2017a] un-
der the same budget B = 200. Besides, we set v = 0.2,
sp = 0.75B, s, = 7vsp,k = 0.1B and update cycle p =
|0.005(N — B)] in SkeGD and FORKS. Inspired by the adver-
sarial settings in [Calandriello e al., 2017a; Wang ef al., 2018,;
Zhang and Liao, 2019], we generate an online learning game
with b blocks. At each block, we extract an instance from the
dataset and repeat it for r rounds. In addition, the labels are
flipped in each even block by multiplying them with -1. We
set b = 500, r = 10 for codrna-1 and german—-1.

Experimental results are presented in Table 2. It is observed
that in the adversarial environment, the performance of all
methods significantly decreases with the increase of adversar-
ial changes except for FORKS. This is due to the fact that
FORKS accurately captures the concept drifting through the
incremental update of the sketch matrix and the execution
of rapid second-order gradient descent. Moreover, FORKS
maintains its efficiency comparable to first-order algorithms,
thereby ensuring that improved performance is achieved with-
out sacrificing computational time.

5.3 Experiments on Large-Scale Datasets

In this experiment, we evaluate the efficiency and effectiveness
of FORKS on streaming recommendation. We use KuaiRec,
which is a real-world dataset collected from the recommen-
dation logs of the video-sharing mobile app Kuaishou [Gao
et al., 2022]. We conduct experiments on the dense matrix of

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm german svmguide3 spambase
Mistake rate Time Mistake rate Time Mistake rate Time
RBP 38.830 + 0.152 0.003 29.698 + 1.644 0.003 35461 +0.842 0.025
BPA-S 35.235 4+ 0.944 0.004 29.027 £0.732 0.004 34.394 +2.545 0.039
Projectron 36.875 + 1.403 0.003 25.060 £ 0.373 0.003 32.659 £ 0.914 0.031
BOGD 33.705 £+ 1.446 0.007 29904 +1.653 0.006 32.859 +0.478 0.049
FOGD 30.915 4 0.845 0.025 30.024 £ 0.787 0.022 25.651 +£0.349 0.175
NOGD 26.715 + 0.552 0.014 19.964 +0.077 0.008 31.003 +£0.751 0.077
SkeGD 25.170 + 0.391 0.009 19.976 £ 0.105 0.007 32.413 +1.886 0.067
PROS-N-KONS 31.235 4+ 0.939 1.017 24.529 £ 0.561 0.015 32.227 £ 0.678 6.638
FORKS (Ours) 26.425 4+ 0.562 0.008 19.710 £ 0.557 0.009 30.662 4+ 0.670 0.070
Algorithm codrna w7a ijcnnl
Mistake rate Time Mistake rate Time Mistake rate Time
RBP 22.644 4+ 0.262 0.210 5.963 £+ 0.722 0.945 21.024 £0.578 0.633
BPA-S 17.029 4+ 0.303 0.313 3.001 £ 0.045 1.145 11.114 £ 0.064 0.747
Projectron 19.257 4+ 4.688 0.341 3.174 £ 0.014 0.965 9.478 £ 0.001 0.621
BOGD 17.305 4+ 0.146 0.507 3.548 £ 0.164 0.970 11.559 £0.174 0.724
FOGD 13.103 4+ 0.105 1.480 2.893 + 0.053 2.548 9.674 £ 0.105 3.125
NOGD 17.915 + 3.315 0.869 2.579 £+ 0.007 2.004 9.379 +£ 0.001 1.457
SkeGD 13.274 4+ 0.262 0.779 2.706 + 0.335 2.093 11.898 +1.440 2.216
PROS-N-KONS 13.387 2 0.289 114983 3.016 & 0.007 92.377 9.455 £ 0.001 5.000
FORKS (Ours) 12.795 + 0.360 0.918 2.561 + 0.038 2.240 9.381 +£0.001 2.480

Table 1: Comparisons among first-order algorithms RBP, BPA-S, BOGD, Projectron, NOGD, SkeGD, FOGD and second-order algorithms
PROS-N-KONS, FORKS w.r.t. the mistake rates (%) and the running time (s). The best result is highlighted in bold font, and the second best

result is underlined.

Algorithm codrna-1 german-—1
Mistake rate Time Mistake rate Time
BOGD 26.066 + 1.435 0.029 32.131 £ 1.079 0.042
NOGD 29.780 £+ 1.257 0.024 28.103 £ 1.247 0.040
SkeGD 24.649 +£5.087 0.269 11.026 +=4.018 0.113
PROS-N-KONS 21.299 + 1.364 3.323 17.174 £ 1.437 0.477
FORKS (Ours) 6.752 + 1.647 0.023 5.142 +0.215 0.035

Table 2: Comparisons among BOGD, NOGD, PROS-N-KONS,
SkeGD and our FORKS w.r.t. the mistake rates (%) and the run-
ning time (s). The best result is highlighted in bold font.

KuaiRec, which consists of 4,494, 578 instances with associ-
ated timestamps, making it an ideal benchmark for evaluating
large-scale online learning tasks. We test the performance of
the algorithm used in Section 5.3 under different budgets B
ranging from 100 to 500. To avoid excessive training time, we
use a budgeted version of PROS-N-KONS that stops updating
the dictionary at a maximum budget of By,,x = 100. Since
the buffer size of PROS-N-KONS is data-dependent, we repeat
the training process 20 times to compute the average error rate
and the average time for comparison. In addition to the hinge
loss, we use squared hinge loss to evaluate the performance.

Figure 3 (a) shows the tradeoff between running time and
the average mistake rate in the experiment using hinge loss.
Figure 3 (b) shows the tradeoff between running time and the
average mistake rate in the experiment using squared hinge
loss. We observe that FORKS consistently achieves supe-
rior learning performance while maintaining comparable time
costs to the other first-order algorithms, regardless of the loss
function’s shape. In particular, for squared hinge loss, both
PROS-N-KONS and FORKS significantly outperform first-
order models, highlighting the advantages of second-order

2000] — Bo0D * 2000

NOGD
* PROS-N-KONS
—e— SkeGD

1500

D) 2

21500 2

= —+— FORKS [

©1000 | 1000 T

I::‘s 500 é 500 {
#36 040 044 048 $36 040 044 048

Average Mistake Rate (%) Average Mistake Rate (%)

(a) Hinge loss (b) Squared hinge loss

Figure 3: The tradeoff between running time and the average mistake
rate on KuaiRec. As PROS-N-KONS utilizes an adaptive budget,
thereby being depicted as a single point in the figures.

methods under exp-concave losses. We also observe that
FORKS demonstrates considerably higher efficiency than the
second-order algorithm PROS-N-KONS. Under squared hinge
loss, to achieve a comparable online error rate, FORKS re-
quires only approximately 500 seconds, while PROS-N-KONS
takes over 1500 seconds, resulting in a threefold speedup.

6 Conclusion

This paper introduces FORKS, a fast second-order online
kernel learning approach. By leveraging incremental matrix
sketching and decomposition techniques, FORKS efficiently
addresses the computational challenges inherent in kernel fea-
ture mapping and hypothesis updates. The proposed method
achieves a logarithmic regret bound while maintaining linear
time complexity relative to the budget, significantly improving
the efficiency of existing second-order methods. Extensive
experimental evaluations on various datasets demonstrate the
superior scalability and robustness of our approach.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This research was supported in part by National Science
and Technology Major Project (2022ZD0114802), by Na-
tional Natural Science Foundation of China (No. 92470128,
No. U2241212, No. 62376275), by Beijing Outstanding
Young Scientist Program No.BJJWZYJH012019100020098,
by Huawei-Renmin University joint program on Information
Retrieval. We also wish to acknowledge the support provided
by the fund for building world-class universities (disciplines)
of Renmin University of China, by Engineering Research Cen-
ter of Next-Generation Intelligent Search and Recommenda-
tion, Ministry of Education, by Intelligent Social Governance
Interdisciplinary Platform, Major Innovation & Planning Inter-
disciplinary Platform for the “Double-First Class” Initiative,
Public Policy and Decision-making Research Lab, and Public
Computing Cloud, Renmin University of China. The work
was partially done at Beijing Key Laboratory of Research on
Large Models and Intelligent Governance, MOE Key Lab of
Data Engineering and Knowledge Engineering, Engineering
Research Center of Next-Generation Intelligent Search and
Recommendation, MOE, and Pazhou Laboratory (Huangpu),
Guangzhou, Guangdong 510555, China.

References

[Belkin, 2018] Mikhail Belkin. Approximation beats concen-
tration? an approximation view on inference with smooth
radial kernels. In COLT, volume 75, pages 1348-1361,
2018.

[Calandriello et al., 2017a] Daniele Calandriello, Alessandro
Lazaric, and Michal Valko. Efficient second-order online
kernel learning with adaptive embedding. In NIPS, pages
6140-6150, 2017.

[Calandriello et al., 2017b] Daniele Calandriello, Alessandro
Lazaric, and Michal Valko. Second-order kernel online
convex optimization with adaptive sketching. In ICML,
volume 70, pages 645-653, 2017.

[CAO et al., 2017] Lele CAO, Fuchun SUN, Hongbo LI, and
Wenbing HUANG. Advancing the incremental fusion of
robotic sensory features using online multi-kernel extreme
learning machine. Frontiers of Computer Science, 11:276,
2017.

[Cavallanti et al., 2007] Giovanni Cavallanti, Nicold Cesa-
Bianchi, and Claudio Gentile. Tracking the best hyper-
plane with a simple budget perceptron. Mach. Learn., 69(2-
3):143-167, 2007.

[Charikar et al., 2002] Moses Charikar, Kevin C. Chen, and
Martin Farach-Colton. Finding frequent items in data
streams. In ICALP, volume 2380, pages 693-703, 2002.

[CHEN et al., 2022] Cheng CHEN, Weinan ZHANG, and
Yong YU. Efficient policy evaluation by matrix sketch-
ing. Frontiers of Computer Science, 16:165330, 2022.

[Gao er al., 2022] Chongming Gao, Shijun Li, Wengiang Lei,
Jiawei Chen, Biao Li, Peng Jiang, Xiangnan He, Jiaxin
Mao, and Tat-Seng Chua. Kuairec: A fully-observed
dataset and insights for evaluating recommender systems.
In CIKM, pages 540-550, 2022.

[Hazan er al., 2007] Elad Hazan, Amit Agarwal, and Satyen
Kale. Logarithmic regret algorithms for online convex
optimization. Mach. Learn., 69(2-3):169-192, 2007.

[Hoi et al., 2012] Steven C. H. Hoi, Jialei Wang, Peilin Zhao,
Rong Jin, and Pengcheng Wu. Fast bounded online gra-
dient descent algorithms for scalable kernel-based online
learning. In ICML, 2012.

[Hu et al., 2015] Junjie Hu, Haiqgin Yang, Irwin King,
Michael R. Lyu, and Anthony Man-Cho So. Kernelized
online imbalanced learning with fixed budgets. In AAAI,
pages 2666-2672, 2015.

[Kane and Nelson, 2014] Daniel M. Kane and Jelani Nel-
son. Sparser johnson-lindenstrauss transforms. J. ACM,
61(1):4:1-4:23, 2014.

[Kivinen et al., 2001] Jyrki Kivinen, Alexander J. Smola, and
Robert C. Williamson. Online learning with kernels. In
NIPS, pages 785-792, 2001.

[Liu and Liao, 2015] Yong Liu and Shizhong Liao. Eigenval-
ues ratio for kernel selection of kernel methods. In AAAI,
pages 2814-2820, 2015.

[Lu et al., 2016a] Jing Lu, Steven C. H. Hoi, Jialei Wang,
Peilin Zhao, and Zhiyong Liu. Large scale online kernel
learning. J. Mach. Learn. Res., 17:47:1-47:43, 2016.

[Lu et al., 2016b] Jing Lu, Peilin Zhao, and Steven C. H. Hoi.
Online sparse passive aggressive learning with kernels. In
SDM, pages 675-683, 2016.

[Orabona er al., 2008] Francesco Orabona, Joseph Keshet,
and Barbara Caputo. The projectron: a bounded kernel-
based perceptron. In /ICML, volume 307, pages 720-727,
2008.

[Sahoo et al., 2019] Doyen Sahoo, Steven C. H. Hoi, and Bin
Li. Large scale online multiple kernel regression with
application to time-series prediction. ACM Trans. Knowl.
Discov. Data, 13(1):9:1-9:33, 2019.

[Shalev-Shwartz, 2012] Shai Shalev-Shwartz. Online learn-
ing and online convex optimization. Found. Trends Mach.
Learn., 4(2):107-194, 2012.

[Singh et al., 2012] Abhishek Singh, Narendra Ahuja, and
Pierre Moulin. Online learning with kernels: Overcoming
the growing sum problem. In MLSP, pages 1-6, 2012.

[Wang and Vucetic, 2010] Zhuang Wang and Slobodan
Vucetic. Online passive-aggressive algorithms on a budget.
In AISTATS, volume 9, pages 908-915, 2010.

[Wang et al., 2016] Shusen Wang, Luo Luo, and Zhihua
Zhang. SPSD matrix approximation vis column selection:
Theories, algorithms, and extensions. J. Mach. Learn. Res.,
17:49:1-49:49, 2016.

[Wang et al., 2018] Guanghui Wang, Dakuan Zhao, and Li-
jun Zhang. Minimizing adaptive regret with one gradient
per iteration. In IJCAI, pages 2762-2768, 2018.

[Williams and Seeger, 2000] Christopher K. I. Williams and
Matthias W. Seeger. Using the nystrom method to speed up
kernel machines. In NIPS, pages 682—-688, 2000.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Woodruff, 2014] David P. Woodruff. Sketching as a tool for
numerical linear algebra. Found. Trends Theor. Comput.
Sci., 10(1-2):1-157, 2014.

[Zhang and Liao, 2018] Xiao Zhang and Shizhong Liao. On-

line kernel selection via incremental sketched kernel align-
ment. In IJCAI, pages 3118-3124, 2018.

[Zhang and Liao, 2019] Xiao Zhang and Shizhong Liao. In-
cremental randomized sketching for online kernel learning.
In ICML, volume 97, pages 7394-7403, 2019.

[Zhang et al., 2023] Xiao Zhang, Ninglu Shao, Zihua Si, Jun
Xu, Wenhan Wang, Hanjing Su, and Ji-Rong Wen. Reward
imputation with sketching for contextual batched bandits.
NIPS, pages 64577-64588, 2023.

[Zhdanov and Kalnishkan, 2013] Fedor Zhdanov and Yuri
Kalnishkan. An identity for kernel ridge regression. Theor.
Comput. Sci., 473:157-178, 2013.

[Zhu and Xu, 2015] Changbo Zhu and Huan Xu. Online gra-
dient descent in function space. arXiv, 2015.

[Zinkevich, 2003] Martin Zinkevich. Online convex program-
ming and generalized infinitesimal gradient ascent. In
ICML, pages 928-936, 2003.

