
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Modular Deep Reinforcement Learning for Multi-Workload Offloading in Edge
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Abstract
Dynamic edge networks revolutionize mobile edge
computing by enabling real-time applications in in-
telligent transportation, augmented reality, and in-
dustrial Internet of Things (IoT). Efficient work-
load offloading in dynamic edge networks is cru-
cial for addressing the increasing demands of time-
varying workloads while contending with limited
computational and communication resources. Ex-
isting deep reinforcement learning (DRL)-based of-
floading decision-making schemes are inadequate
for managing scenarios involving multiple work-
loads and edge servers, particularly when faced
with time-varying workload arrivals and fluctu-
ating channel states. To this end, we propose
a flexible module weighted fusion DRL frame-
work (DRL-MWF) for scalable and robust multi-
workload offloading in edge environments. Unlike
traditional monolithic networks, DRL-MWF em-
ploys a weighted fusion modular architecture that
adapts flexibly to diverse workload distributions.
Specifically, DRL-MWF introduces a state repre-
sentation and normalization strategy to model state
and workload characteristics, enabling precise and
adaptive decision-making. Furthermore, we design
two key mechanisms: a weighted policy correc-
tion method to stabilize learning and a prioritized
experience replay with weighted importance sam-
pling to accelerate convergence by emphasizing
critical transitions. Extensive evaluations on real-
world datasets demonstrate that DRL-MWF consis-
tently outperforms state-of-the-art baselines. These
results reveal DRL-MWF’s potential to transform
workload offloading in next-generation edge com-
puting systems, ensuring high performance in dy-
namic scenarios.

1 Introduction
In recent years, the proliferation of wireless devices (WDs)
has led to an unprecedented increase in the generation of real-
time workloads [Zhang and Debroy, 2023]. These WDs fre-

∗The corresponding author

quently encounter considerable challenges due to their lim-
ited computational power and battery life, rendering them
incapable of processing all workloads locally [Chen et al.,
2024]. Mobile edge computing (MEC) has emerged as a
promising solution, allowing for the offloading of workloads
from WDs to nearby MEC servers [Yu et al., 2024]. This
policy improves computational efficiency, minimizes latency,
and enhances the overall user experience [Qu et al., 2024].

In dynamic MEC environment, the key problem lies in
determining the offloading decision-making for workloads
[Feng et al., 2022] or resource allocation policy [Zhang et
al., 2023], which must take into account the prevailing com-
putation and communication conditions of the MEC servers
(such as channel state and energy availability) alongside time-
varying workloads (like workload size and deadlines), with
the objective of minimizing the cost of finishing workloads
[Luo et al., 2021]. The traditional heuristic [Almadhor et al.,
2022] or convex optimization algorithm [Tan et al., 2022] can
implement the workload offloading or resource allocation de-
cision in the reliable MEC model environment. To this end,
when faced with the complex environment of multiple work-
loads and multiple MEC servers, the aforementioned methods
struggle to make near-optimal offloading or allocating deci-
sions to minimize the system cost. Fortunately, deep rein-
forcement learning (DRL) emerges as an effective solution to
these challenges, owing to its robust decision-making capa-
bilities [Yang et al., 2024].

Currently, there are many efforts dedicated to developing
DRL-based computation offloading strategies, e.g., vehicu-
lar edge computing [Shi et al., 2022; Hazarika et al., 2022],
collaborative edge computing [Ren et al., 2024; Zhang et
al., 2024]. However, most related works focus on scenarios
involving a single MEC server or address situations where
the workloads exhibit low complexity. In addition, research
has been conducted on workload offloading strategies involv-
ing multiple edge servers, as illustrated in studies [Xu et al.,
2023]. Nevertheless, these studies universally assume that
there is no interaction among MEC servers and a static envi-
ronment for MEC, making it challenging to address the de-
mands posed by complex multi-workloads. Consequently,
it is the general trend to study workload offloading in envi-
ronments with numerous time-varying workloads and multi-
ple edge servers, characterized by fluctuating channel states.
Complex multi-workload offloading within a collaborative
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framework of multiple MEC servers presents several signifi-
cant challenges. Figure 1 illustrates the primary challenges.
The first is the heterogeneity of workloads. Workloads gener-
ated by WDs exhibit diverse categories, sizes, required CPU
cycles, deadlines, etc. This diversity poses significant chal-
lenges in tackling workloads as different characteristics de-
mand varying computation resources and processing meth-
ods, making it difficult to manage and schedule them in a uni-
fied manner. The second is the homogeneity of agents. Neu-
ral network (NN) structures employed in DRL for agents tend
to be similar, without considering the reuse of different net-
works for different workloads. This implies that agents may
not perform optimally when confronted with diverse complex
workloads, as they lack the flexibility to adequately address
the specific requirements associated with different workload
types. The third is the inefficiency of action exploration. In
a dynamic MEC environment, random sampling or uniform
sampling is not applicable and leads to high deviations. such
inefficient sampling strategies may hinder the agents’ abil-
ity to identify optimal action plans, as they do not accurately
represent the true value of various actions within a complex
environment, thereby impacting the system’s overall perfor-
mance and efficiency.

Figure 1: Issues of computation offloading in complex multi-
workload, multi-MEC environment including: (1) The heterogene-
ity of workloads. (2) The homogeneity of agents. (3) The ineffi-
ciency of action exploration.

In terms of the above issues, we conceive and design the
solution, summarized as follows: State representation. We
perform state representation for the state features and work-
load features of the workloads, and delineate each workload
individually. This approach allows for a more comprehen-
sive and accurate depiction of workloads and their states,
yielding valuable insights for subsequent decision-making
and facilitating improved management of workload hetero-
geneity. Multi-module reuse in policy networks. We imple-
ment multi-module reuse in the policy networks of DRL. This
enables the agent to flexibly select and combine appropriate
modules according to the characteristics of different work-
loads, thereby enhancing the agent’s ability to process dif-

ferent types of workloads and addressing the issues caused
by the homogeneity of agents. Prioritized experience replay
with weighted importance sampling. Agents can utilize expe-
rience samples more effectively during the learning process.
Through weighted sampling of experiences and preferentially
replaying those experiences that are more valuable for learn-
ing, it helps to improve the efficiency of action exploration,
reduce sampling deviations, and enable the agent to quickly
learn the optimal action strategy in complex environments.

To the best of our knowledge, we are the first to propose
DRL-based state representation, policy network modulariza-
tion and prioritized experience replay with importance sam-
pling. A flexible module weighted fusion DRL with state
representation for multi-workload offloading policy (DRL-
MWF) in edge network is presented to learn the optimal of-
floading decision-making policy for minimizing the weighted
average cost for finishing workloads. The main contributions
of our work are summed up as follows:

• We propose a representation learning-based state rep-
resentation method for multi-workload and multi-MEC
environments. Different from the conventional image-
based representation policy, we characterize and normal-
ize the features of computation and communication re-
sources for MEC server, as well as workload features of
WDs respectively to adapt to the proposed DRL-MWF’s
policy network.

• We formulate DRL-MWF, and redesign its policy net-
work on the basis of soft actior-critic (SAC) to execute
offloading decision-making actions with adaptive mod-
ule fusion. The learning efficiency of DRL-MWF can
be enhanced through the reuse and composition of its
modules.

• We develop a twin critic network that facilitates module
composition to address the overestimation challenges as-
sociated with the policy network, arising from modu-
lar reuse and composition, thereby enhancing the sta-
bility of DRL-MWF. In addition, we propose a priori-
tized experience replay with weighted importance sam-
pling for DRL-MWF, aimed at improving the tradeoff
between exploration and exploitation, and adapting to
multi-workload offloading decision-making contexts in
diverse MEC server environments.

• We conduct comprehensive experiments to validate the
convergence and advantage of DRL-MWF compared to
five other benchmarks in terms of the average cumula-
tive reward, the ratio of unfinished workloads.

2 Related Work
DRL focused on how the agent took a series of actions in
an environment to maximize the expected cumulative re-
ward by learning and approximating of intricate state rep-
resentations as well as value functions from deep neu-
ral network [François-Lavet et al., 2018]. DRL consisted
of value-based scheme (deep Q-Network (DQN) [Mnih et
al., 2015], double deep Q-Network (DDQN) [Van Has-
selt et al., 2016], dueling deep Q-Network [Wang et al.,
2016]) and policy-based scheme (Actor-Critic [Peters and
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Schaal, 2008], SAC [Haarnoja et al., 2018], proximal policy
optimization(PPO)[Schulman et al., 2017]). DRL had been
proved to be useful for controlling the discrete and continu-
ous actions, such as: [Xiang et al., 2023], [Yang et al., 2020].
Because of its powerful decision-making ability, DRL was
extensively applied in the field of MEC for workload offload-
ing and resource allocation.

Currently, several studies had explored DRL-based work-
load offloading in the MEC environment. [Aghapour et al.,
2023] formulated a DRL-based policy to optimize computa-
tion offload and resource allocation decision-making selec-
tion. [Huang et al., 2024] combined directed acyclic graphs
(DAGs) and DRL to optimize the offloading scheme in the
MEC framework. [Consul et al., 2024] proposed federated
reinforcement learning (FRL)-based offloading strategy to
tackle the tasks from WDs. [Ling et al., 2024] implemented
PPO-based optimization method to address the computation
resource allocation issue. However, the MEC environments
set by the aforementioned works were relatively simple, and
the multi time-varying workloads or channel states were not
considered.

To sum up, we proposed DRL-MWF offloading scheme
tailored for intricate multi-workload scenarios in the MEC
environment. First, we considered the state representation for
complex features of multi-workload and MEC environment.
Different from most existing representation learning for com-
plex image-based workloads, we could characterize the state
of workloads and environments, thereby enabling DRL to ac-
commodate multi-workload learning. Second, Multitasking
was heterogeneous, but the WDs were similar. Assigning
each WD or MEC server as an independent learning agent
resulted in reduced learning efficiency. We designed network
modularization and weighted combination for specific mod-
ules to improve the efficiency of DRL’s learning. Third, we
employed prioritized experience replay coupled with impor-
tance sampling to facilitate the exploration of actions taken by
the scheduling agent, thereby enhancing the learning effect.

3 System Model and Problem Formulation
3.1 System Model
As illustrated in Fig.2, our focus is on the offloading of mul-
tiple workloads in an MEC environment that comprises var-
ious WDs and multiple MEC servers. There are W WDs
and M MEC servers connected to M base stations (BSs) 1,
meeting W = {1, 2, · · · ,W}, M = {1, 2, · · · ,M}. WD w
generates different K sub-workloads Kw = {1, 2, · · · ,Kw},
that must be processed within the stringent deadline. How-
ever, given the constraints of computing capacity and battery
life, WDs cannot tackle all generated workload sets, a sig-
nificant portion of the sub-workloads must be offloaded to
the MEC servers for processing. MEC server m contains
several core components: a computing unit,a communica-
tion unit and a workload scheduling unit. The computing
unit is responsible for processing the received workloads in
the buffer queue from WDs. The communication unit fa-
cilitates data transmission between the WDs and the MEC

1Note that each MEC server is associated with a BS; in this con-
text, we refer to them as MEC servers instead of BSs.

servers. The workload scheduling unit manages the schedul-
ing of various workloads, taking into account the available
computation resources of the current MEC server. Without
loss of generality, WD w may select an appropriate offload-
ing strategy to optimize system performance. A conventional
method involves the complete offloading of all workloads to
one MEC server; however, due to the intricate nature of these
workload sets, we explore the option of utilizing edge collab-
orative processing. The sub-workloads in the workload set
from each WD are assigned to several MEC servers, our at-
tention shifts to their processing on multiple MEC servers,
which encompasses resource distribution of MEC servers for
finishing workloads. To this end, xkw,m is introduced to de-
note the offloading decision variable, and ykw,m signifies the
ratio of computational resources allocated for the execution of
sub-workload kw generated by WD w. The decision variable
xkw,m ∈ {0, 1, 2, · · · ,M} means whether the workload gen-
erated by WD m can be executed locally (when xkw,m = 0)
or offloaded to MEC server m (when xkw,m = m). The de-
cision variable ykw,m ∈ [0, 1] is the ratio of allocated compu-
tational resources at MEC server m.

Figure 2: Multi-workload offloading with multi-WD and multi-edge
server in MEC environment.

Communication Model
Due to the limitation of the computation capacity of the local
WD, workloads can be transmitted (offloaded) to the MEC
server via the wireless network for execution. Initially, we
discretize a continuous time interval T into discrete time slots
t, meeting t ∈ T . Similar to [Wu et al., 2019], we consider
that each MEC server operates on one of the bandwidth sub-
carriers that are accessible. As a result, the communication
method is established as orthogonal frequency division multi-
ple access (OFDMA). The total bandwidth available between
the WDs and MEC server m is designated as Bm. According
to Shannon’s theorem, the transmission rate between WD w
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and MEC server m in time slot t can be given by

Rw,m(t) = Bm log2

(
1 +

pw,m(t)hw,m (t)

σm(t)2

)
, (1)

where pw,m(t) represents the transmission power for offload-
ing workloads. hw,m stands for the channel states between
WD w and MEC server m, meeting the Gaussian Markov au-
toregressive model [Ke et al., 2020]:

hw,m (t+ 1) = ρmhw,m(t) +
√
1− ρ2mem (t) , (2)

where ρm means the path-loss coefficient, describing signal
attenuation as it propagates between WD w and MEC m,
which is close to 1. em(t) is an error term that follows a com-
plex Gaussian distribution, independent of the channel state.

Computation Model
We redefine the sub-workload generated by WD w in the
time slot t as the tuple kw(t) = ⟨ksw(t), kcw(t), kDw (t)⟩, where
kw(t) ∈ Kw. ksw(t) denotes the size of workload kw(t),
ksw(t) represents the number of required CPU cycles for
kw(t), and kDw (t) means the deadline for finishing kw(t).

Local Computation. As described in section 3.1, while
xw,m = 0, the processor of WD w can accomplish the sub-
workload kw(t) it generates. To this end, the latency llckw

(t)

consists of the local execution latency llc,exekw
(t) and the queue

waiting latency llc,queuekw
(t), which can be calculated by

llc,exekw
(t) =

ksw(t)k
c
w(t)

Fw
, llc,queuekw

(t) =
Qw(t)k

c
w(t)

Fw
, (3)

where Qkw(t) is the size of workloads queue at WD w in the
time slot t, and Fw is the available computation frequency of
WD w.

The energy consumption elckw
(t) can be given by

elc,exekw
(t) = κw(F

w)2ksw(t)k
c
w(t), (4)

where κw is the effective switching capacitance who depends
on the computation ability of local processor. Since the queue
waiting latency are far less the execution latency, which can
be ignored [Van Huynh et al., 2022].

Offloading to MEC server. While xkw,m ̸= 0, it is neces-
sary to offload the sub-workload kw(t) from WD w to MEC
server for execution. Therefore, the latency loffkw,m(t) consists
of the transmission latency loff,trankw,m (t), the execution latency
loff,exekw,m (t) and the queue waiting latency loff,queuekw,m (t), which
can be calculated by

loff,trankw,m (t) =
ksw(t)

Rw,m(t)
, loff,exekw,m (t) =

ksw(t)k
c
w(t)

ykw,mFm
,

loff,queuekw,m (t) =
Qs

kw,m(t)kcw(t)

ykw,mFm
.

(5)

To this end, the energy consumption eoffm (t) includes the
transmission energy consumption eoff,tranm (t) and the execu-
tion energy consumption eoff,exekw,m (t) can be derived by

eoff,trankw,m (t) = pw,m(t)loff,trankw,m (t),

eoff,exekw,m (t) = κm(ykw,mFm)2ksw(t)k
c
w(t).

(6)

3.2 Problem Formulation
In this study, we define the optimization objective as finding
the optimal workload offload selection xkw,m and the ratio
of allocated computation resource ykw,m for the MEC server
throughout the whole time period T , with the aim of mini-
mizing the weighted average latency and energy consumption
costs of the MEC system. Hence, the optimization objective
function can be derived as

C(t) = β1l(t) + β2e(t), (7)

where l(t) means the average latency of all W WDs,
meeting l(t) = [

∑
w∈W

∑
kw∈Kw

(1 − xkw,m)llckw
(t) +

(xkw,m/m)loffkw,m(t)]/W , and e(t) is the average energy con-
sumption. β1, β2 are the weighted parameters for latency cost
and energy consumption cost, meeting β1 + β2 = 1.

Furthermore, the optimization problem can be described as

P1 : min
(xkw,m,ykw,m)

E

[
lim
t→∞

1

T

T∑
t=1

C(t)

]
, (8)

s.t. xkw,m ∈ [0, 1, · · · ,M ], ∀kw ∈ Kw,m ∈ M,

(C1)
0 < ykw,m ≤ 1, ∀kw ∈ Kw,m ∈ M, (C2)
Fw ≤ Fw,max, ∀kw ∈ Kw, (C3)

loffkw,m(t) ≤ KD
w (t), ∀kw ∈ Kw. (C4)

4 Multi-workload Offloading Policy with
DRL-MWF

As outlined in Section 3.2, P1 is an NP-hard problem, posing
significant challenges for conventional convex optimization
techniques or heuristic methods. The complexity arises from
the dynamic nature of the MEC environment, characterized
by factors such as the time-varying arrival workloads from
WDs and varying channel states between the WDs and MEC
servers. Consequently, we transform the optimization prob-
lem P1 into a Markov decision process (MDP) and define the
tuple ⟨S,A, P,R, γ⟩. The state s(t) in state space S in the
time slot t can be characterized as

s(t) = {ksw(t), kcw(t), kDw (t), Bm, Fw, Fm,

Qkw(t), Qkw,m(t) |kw ∈ Kw, w ∈ W}.
(9)

Hence, The action a(t) in action space A in the time slot t
can be defined as

a(t) = {xkw,m, ykw,m|kw ∈ Kw, w ∈ W}. (10)

Furthermore, the reward r(t) ∈ R can be defined as
r(t) = −C(t) + I(.)p, where I(.) is the indicator function
which means whether the workload is completed within the
deadline. The term p represents the penalty factor associated
with any incomplete workload. In this way, the problem of
minimizing the weighted average cost is transformed into ob-
taining the maximum expected cumulative reward; P1 can be
transformed into P2:

P2 : argmax
π

Ea∼π

[
lim
t→∞

1

T

T∑
t=1

γt−1r(t)

]
. (11)
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Figure 3: Structure of the proposed DRL-MWF. On the left is the state representation and module fusion of the policy network, and on the
right is the twin critic networks and the priority experience replay with importance sampling.

Due to the change of environment, we cannot obtain the
state transition probability matrix P . Therefore, we convert
the MDP to DRL, and propose the DRL-MWF according to
the multi-workload inputs and dynamic channel states.

Figure 3 illustrates the DRL-MWF framework, highlight-
ing state representation and module fusion strategies. Build-
ing upon SAC, we initially modularize the actor network for
multi-task complex MEC scenarios, and design a twin critic
network to solve the overestimation issue while enhancing
the stability of the evaluation strategy for the multi-module
of actor. In terms of policy network, there are two net-
works: a state representation network and a workload sched-
ule network. In each time slot, the state s(t) is divided
into two parts, the state s1(t) related to the environment and
the state s2(t) related to the workload. We represent s1(t)
and s2(t) as V s

1 and V s
2 with two-layer multilayer percep-

tron (MLP) and one-layer MLP, one fully connected layer,
respectively. For the represented state vector V s

1 , we im-
plement AvgL1Norm to prevent representation collapse and
unify the vector scale by V s

1

||V s
1 ||1/D , where D is the dimen-

sion. To this end, the schedule network obtains the repre-
sented and normalized states V s

1 and V s
2 with D-dimension

vector and further output the probability vector by ReLU
function. The probability vectors for the first layer and the
l + 1-layer can be computed as p1 = FC1

d(ReLU(V
s
1 , V s

2 ))

and pl+1 = FCl
d(ReLU(p

lV s
1 , V s

2 )), respectively. In terms
of policy network, there are L layers and K modules in each

layer and the state representation for module k in layer l can
be written as V l

j =
∑

k∈K S(pl−1(j, k))ReLU(W l−1
k V l−1

k ),
where S is the Softmax function and W l−1

k is the weighted
matrix. This means that we can select modules of each layer
based on probability, realize module reuse, and improve the
efficiency of network training. Finally, the last layer outputs
the action by mean and variance.

To ensure the reuse efficiency of the proposed DRL-
MWF’s policy module, we propose the following two im-
provement strategies to enhance the network training effec-
tiveness and algorithm performance.

First, leveraging the twin critic networks of SAC, we mod-
ify the maximum entropy objective function and incorporate
stability constraints to minimize the subsequent loss function
aimed at preventing overestimation:

L(Qi) = E(s(t),a(t),r(t),s′(t))

[
(y −Qi(s(t), a(t)))

2
]
, (12)

where y = r(t) + γ ·mini=1,2 Qj(s
′(t), µ(s′(t)) +N ).

Therefore, the objective function of policy network is
updated by J(π) = Es∼ρπ,a∼π[Q(s, a) − α log π(a|s) −
λd∆(s, a)], where λd means the weighted adjusting coeffi-
cient. ∆(s, a) is the deviation correction term which can
be estimated by multiple sampling, satisfying ∆(s, a) =
1
N

∑
i∈N (max(Q+

1i, Q
+
2i)−Q(st, at). Q+

1i, Q
+
2i stand for

the estimations of the Q function. This approach allows for
the mitigation of Q-function overestimation, thereby enhanc-
ing the stability of policy optimization.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Second, beyond regulating the balance between explo-
ration and exploitation in the policy through the temperature
parameter α of the traditional SAC, we also develop a priority
experience replay mechanism utilizing weighted importance
sampling to further enhance policy exploration by:

L(Q) =
∑
d∈D

pd · Ld, (13)

where Ld means the loss of sample d. pd signifies the priority
of sample which can be obtained through TD Error as pd =
|∆d|+ ϵ. ∆d stands for the TD error of sample d, ϵ is a small
constant used to ensure that the priority is not zero.

We employ the sampled experiences to update the learning
process; however, it is necessary to adjust the learning rate.
Consequently, we introduce weighted importance sampling
to maintain the unbiased nature of the learning process. the
actual importance weight associated with the sampled expe-
rience is denoted as ωd, which can be expressed as,

ωd =
( 1

N
· 1

pd

)β
, (14)

where β is another hyperparameter used to control the scaling
of the importance weight. During the actual training process,
the loss function is adjusted by incorporating the weighted
TD error and loss, updated by L(Q) =

∑
d∈D ωd · Ld.

5 Experiments
In this section, we first introduce the datasets for multi-
workload, multi-edge server in dynamic MEC environment,
then describe the experiment setups, metrics and benchmarks.
Finally, we analysis evaluation results from the convergence
and performance of DRL-MWF.

5.1 Datasets
We utilize a universal EUA dataset [Lai et al., 2018] com-
prising 125 MEC Servers/BSs and 816 WDs located in Mel-
bourne street district. We initialize 5 BSs equipped with MEC
servers and 50 WDs from EUA dataset. For the size ksw(t)
and required CPU cycles kcw(t) of workloads, we employ
the UE application data [Rojas, 2023] and the SPEC CPU
95 benchmark [Phansalkar et al., 2005] to simulate multiple
workloads in the MEC environment.

5.2 Environment Settings and Metrics
Regarding the workload distribution, the sizes of three sub-
workloads are set as 1 ∼ 4Mb, 3 ∼ 6Mb, 5 ∼ 8Mb from UE
application dataset. Additionally, the required CPU cycles
per bit for three sub-workloads are set as 800, 1000, 1200
from SPEC CPU 95 benchmark dataset. Table 1 lists addi-
tional key parameters in the environment. For DRL-MWF,
the parameters include the number of training episodes, the
learning rates for both the actor and critic, the discount fac-
tor, the size of experience memory, the number of modules,
and the number of layers in the actor’s network, which are set
to 1000, 0.0001, 0.001, 0.9, 10000, 3, 2, respectively.

To assess the convergence of DRL-MWF, we utilize the
average cumulative reward [Ke et al., 2022], represented
as RACR = 1

T

∑
t∈T r(t). In terms of the performance

Parameter description Value
Kw Number of sub-workloads 3
Bm Bandwidth 10MHz
pw,m Transmission power 1W
T Number of time slots 100
ρm path-loss 0.95
σm(t) AWGN -100dBm
Qw, Qm Size of queue at WD/MEC 50/500
p Penalty factor kDw (t)

Table 1: List of the main parameters

comparison of DRL-MWF against benchmarks, we evaluate
not only RACR, but also the average latency cost CALC =
1
T

∑
t∈T l(t), the average energy consumption cost CAEC =

1
T

∑
t∈T e(t), and the ratio of unfinished workloads URUW

calculated by dividing the number of unfinished workloads
by the total workloads [Tang and Wong, 2020].

5.3 Benchmarks
We introduce five benchmarks for comparative analysis: (1)
DQN-LSTM [Tang and Wong, 2020], where Dueling DQN is
employed for MEC selection decisions, and LSTM is used to
forecast the MEC server’s task queue information. (2) MCO-
DRL [Ke et al., 2022], which combines DDQN and gated
recurrent unit (GRU) to facilitate workload offloading to the
MEC server while estimating both the workload size queue.
(3) SAC [Shi et al., 2020], which proposes a computation of-
floading policy based on SAC aimed at reducing the average
latency of tasks. (4) PPO [Shang et al., 2024], which imple-
ments a computation offloading policy utilizing PPO to min-
imize the weighted costs. (5) TD7 [Fujimoto et al., 2023], an
emerging DRL strategy designed for multi-task management,
is applied for the first time in MEC environment.

5.4 Evaluation Results
Convergence analysis of DRL-MWF. Firstly, we analyze
the convergence of DRL-MWF. RACR represents the average
cumulative reward with penalty terms p for unfinished work-
loads, enabling the evaluation of DRL-MWF’s convergence.

(a) Deadline kD
w (t) (b) Weighted factors λd, ωd

Figure 4: Convergence of DRL-MWF. (a) Deadline kD
w (t) for fin-

ishing workload kw(t) generated by WD w. (b) Proposed two key
mechanisms: the weighted policy correction factor λd and impor-
tance sampling factor ωd for prioritized experience replay.

Figure 4 reveals the convergence of DRL-MWF under dif-
ferent parameters. As shown in Fig.4(a), DRL-MWF can
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Metrics Average cumulative reward RACR±95% confidence interval (CI)
Datasets(EUA) MEC2-WD10 MEC3-WD15 MEC3-WD30 MEC5-WD25 MEC5-WD50 MEC8-WD40 MEC8-WD80
DQN-LSTM -10.62±0.012 -10.70±0.012 -10.72±0.015 -10.66±0.014 -10.96±0.015 -11.23±0.015 -13.34±0.016
MCO-DRL -9.91±0.010 -9.87±0.013 -9.92±0.016 -9.97±0.015 -10.01±0.012 -10.34±0.011 -12.42±0.016
SAC -9.37±0.010 -9.63±0.011 -9.88±0.013 -10.25±0.012 -10.42±0.012 -10.37±0.014 -13.76±0.017
PPO -10.02±0.013 -9.95±0.015 -10.26±0.013 -10.96±0.015 -10.31±0.014 -10.34±0.012 -12.82±0.018
TD7 -9.36±0.015 -9.41±0.012 -9.53±0.015 -9.39±0.012 -9.60±0.013 -9.58±0.011 -11.13±0.013
DRL-MWF -8.58±0.013 -8.24±0.014 -8.70±0.011 -8.39±0.009 -8.88±0.011 -8.77±0.009 -9.72±0.012

Table 2: The performance of different comparison algorithms in different MEC environment using EUA datasets. Each algorithm undergoes
10 epoches of training under 7 different numbers of MEC servers and WDs, with 10 random seeds and 1000 episodes in one epoch. The
average cumulative reward RACR±95% CI as the performance evaluation.

converge under four different deadline settings which re-
flects the effectiveness of the proposed modular DRL. When
kDw (t) = 6, a significant number of workloads fail to be com-
pleted within the stringent deadline, leading to latency penal-
ties and a decrease in RACR. As kDw (t) gradually increases
from 8 to 12, MEC servers can fully schedule their own re-
sources, which in turn enhances the workload completion ra-
tio and leads to an increase in RACR. kDw (t) is set as 10 in
this work. As revealed in Fig.4(b), we compare DRL-MWF
with the weighted policy correction factor λd and importance
sampling factor ωd for prioritized experience replay and with-
out λd and ωd. Although DRL-MWF can converge without
λd and ωd due to the modular structure, the performance of
DRL-MWF without λd and ωd is worse than that of DRL-
MWF with λd and ωd in terms of RACR, which verifies the
key of introducing two important mechanisms2.

Performance comparison with benchmarks. Table 2 il-
lustrates the performance of benchmarks and our proposed
DRL-MWF in terms of average cumulative rewards RACR ±
95% confidence interval (CI). The performance of each algo-
rithm varies across different combinations of MEC servers
and WDs. For instance, in dataset with MEC2-WD10,
the proposed DRL-MWF performs best with RACR of -
8.58±0.013 because of the advantages of state representa-
tion and module grouping. As the configuration of datasets
changes, the performance rankings of the algorithms also
change. However, the performance of DRL-MWF with
weighted modules is relatively stable across various configu-
rations, and its RACR remains at a relatively high level com-
pared to other benchmarks. Priority experience replay with
importance sampling and maximum entropy revision mecha-
nism ensure the effectiveness and stability of DRL-MWF.

Figure 5 illustrates the comparison on six algorithms with
different probability of arriving workloads. From Fig.4(a),
DRL-MWF has a greater RACR in any cases. With an in-
crease in the probability of incoming workloads, RACR of
DRL-MWF does not show a sharply decreasing trend due
to the state representation and module fusion. The relation-
ship between CALC and the probability of arriving workloads
is depicted in Fig.5(b). Compared with other benchmarks,
DRL-MWF shows relatively high RACR at increased prob-

2DRL-MWF focuses on exploration at the beginning of training,
setting λd to 0.2. The over-estimation of Q-value is noticeable. λd

gradually increases from 0.2 to 0.7. For the importance factor ωd, β
in Eq.14 is initially set as 0.5 to enhance exploration, then gradually
increased to prioritize experiences, finally reaching 1.

ability of arriving workloads; however, this advantage di-
minishes progressively as the probability declines. Fig.5(c)
presents CAEC of six algorithms. DRL-MWF retains lower
CAEC throughout the process, indicating its advantage in en-
ergy conservation. Fig.5(d) illustrates that the probability
of arriving workloads influences URUW. DRL-MWF shows
superior performance in controlling the ratio of unfinished
workloads under different probability of arriving workloads.

Figure 5: Comparison on six algorithms with different probability
of arriving workloads. (a) Average cumulative reward RACR. (b)
Average latency cost CALC. (c) Average energy cost CAEC. (d)
Ratio of unfinished workloads URUW.

6 Conclusion
In this work, to address the state representation of heteroge-
neous workloads, multi-agent training difficulties, and effi-
ciency of action exploration of DRL-based offloading meth-
ods in multi-workload MEC environment, we proposed a
flexible modular DRL with state representation for multi-
workload offloading policy (DRL-MWF). DRL-MWF can
implement state representation and normalization, and mod-
ularize the policy network, then utilize policy function
weighted correct and priority experience replay with impor-
tance sampling to improve the efficiency and stability of train-
ing. Experiment results show that DRL-MWF can converge
in a certain number of episodes and whose performance is
better than that of DRL-based workload offloading schemes.
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