
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Global Information Compensation Network for Image Denoising

Shifei Ding1,2 , Qidong Wang1,2 , Lili Guo1,2∗

1School of Computer Science and Technology, China University of Mining and Technology
2Mine Digitization Engineering Research Center of Ministry of Education, China University of Mining

and Technology
dingsf@cumt.edu.cn, 1730853234@qq.com, liliguo@cumt.edu.cn

Abstract
In image denoising research, discriminative mod-
els have achieved impressive results which mainly
owes to the powerful ability of convolutional net-
works in local feature extraction. However, there
is still room for improvement due to insufficient
utilization of global information. Although using
fully connected layers or increasing network depth
can supplement global information, this results in
a significant increase in parameters and computa-
tional cost. To address these issues, we propose a
global information compensation network (GICN)
for image denoising in this paper. Firstly, at the
shallow network part, we propose a global feature
mining block that enhances the network’s ability
to extract global information by combining non-
local blocks and the Fourier transform while im-
proving the interpretability of the model. Sec-
ondly, between the encoder and decoder, we pro-
pose a cross-scale feature aggregation block to fuse
information at different scales. Finally, we em-
ploy attention blocks to improve skip connections
to better capture long-distance dependencies. Ex-
tensive experimental results show that our proposed
GICN effectively compensates for global informa-
tion, achieves a balance between denoising effi-
ciency and effect, and surpasses mainstream meth-
ods in multiple benchmark tests.

1 Introduction
As an indispensable information carrier, images play an im-
portant role in recording and conveying content. However,
due to the influence of multiple complex factors from equip-
ment and the outside world, images will inevitably be mixed
with varying degrees of noise. In order to grasp more use-
ful information from images, people are becoming increas-
ingly demanding about image quality. Image denoising, as
one of the low-level visual research, indirectly affects the ef-
fects of many important visual tasks [Brempong et al., 2022;
Cheng et al., 2024] and has practical value in many fields [Li
et al., 2023; Cui et al., 2024]. Therefore, research on image

∗Corresponding author.

denoising technology has always been a significant topic in
the field of computer vision and image processing.

In early research, traditional image denoising methods
can be broadly categorized into spatial-domain approaches
[Hawwar and Reza, 2002; Buades et al., 2005], transform-
domain techniques [Starck et al., 2002; Dabov et al., 2007;
Maggioni et al., 2012], and sparsity-based methods [Elad
and Aharon, 2006; Lu et al., 2015]. While these methods
achieved certain levels of noise suppression, they often strug-
gled with increasing image complexity, high computational
costs, and limited scalability. Moreover, traditional tech-
niques typically lack robustness against diverse and complex
noise patterns, making them less suitable for real-world sce-
narios. With the advent of deep learning, many of these limi-
tations have been effectively addressed, ushering in a new era
of data-driven denoising strategies.

Building on this foundation, convolutional neural network
(CNN)-based denoising methods have demonstrated signifi-
cant advantages. The local receptive field in a convolutional
neural network (CNN) is one of the key factors for its ef-
fectiveness. The convolutional layer of CNN uses small and
local convolution kernels to extract local features of the im-
age. These local receptive fields allow the network to fo-
cus on the local structure and texture of the image, helping
to capture the changes in noise within local areas, which is
very useful for removing local noise. Deep methods such as
deep convolutional denoising network (DnCNN) [Zhang et
al., 2017a], FFDNet [Zhang et al., 2018], and IRCNN [Zhang
et al., 2017b] all reflect this idea when designing.

Although CNNs have a powerful effect in extracting local
information, relying solely on local information is not enough
to fully remove noise. This limitation arises because the noise
in the image is usually not evenly distributed and may be
stronger in some areas and weaker in other areas. Moreover,
boundary and structural information in the image need to be
preserved. These boundaries and structures may span local
regions, requiring global information to properly protect them
from being mistaken for noise.

To better capture global information, a straightforward ap-
proach is to increase the depth of the network. However, this
often leads to issues such as vanishing gradients and train-
ing instability. In practical applications, excessively deep net-
works are difficult to train and may suffer from overfitting or
convergence problems. A widely adopted and effective alter-
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native is to incorporate residual or dense connections, which
introduce shortcut paths across layers through skip connec-
tions. Recent methods such as RDN [Zhang et al., 2020],
and MWDCNN [Tian et al., 2023] have employed this strat-
egy and demonstrated strong performance. Although these
connections improve information flow by facilitating gradi-
ent propagation and feature reuse, they are not explicitly de-
signed to model long-range dependencies. As a result, their
ability to capture global contextual information remains lim-
ited, which can hinder performance on denoising tasks requir-
ing holistic image understanding.

The self-attention mechanism in Transformers enables the
model to capture global dependencies when processing im-
ages, offering a significant advantage in understanding their
overall structure and content. Recently, several Transformer-
based models—such as Restormer [Zamir et al., 2022],
Uformer [Wang et al., 2022], HWformer [Tian et al., 2024],
and LIDFormer [Zhou et al., 2024]—have been proposed and
have achieved state-of-the-art performance in image restora-
tion tasks. However, a major limitation of these methods
lies in their high computational cost and the large num-
ber of model parameters, which restricts their practicality in
resource-constrained environments.

In this paper, we propose a Global Information
Compensation Network (GICN) for image denoising, which
aims to effectively integrate rich global information from
multiple perspectives while remaining computationally effi-
cient. To achieve this, we develop a comprehensive global
information compensation strategy. Specifically, non-local
mechanisms are employed to capture long-range dependen-
cies between pixels, while Fourier transforms provide com-
plementary global context in the frequency domain. The
combination of these two approaches enables a more thor-
ough understanding of the image’s structure and content. Fur-
thermore, we adopt an encoder-decoder architecture for its
strong feature representation capabilities. Within this frame-
work, the incorporation of dynamic convolutions [Phutke et
al., 2023] and residual blocks allows for more flexible and
adaptive receptive fields. Additionally, cross-scale feature fu-
sion facilitates the extraction of contextual information across
different spatial resolutions. Finally, we enhance global in-
formation flow by introducing attention mechanisms into the
skip connections between the encoder and decoder. This
holistic design enables the model to better leverage global
features while maintaining a lightweight structure. In sum-
mary, the main contributions of this paper can be summarized
as follows:

• We introduce a global feature mining block that com-
bines non-local blocks and Fourier transforms to effec-
tively compensate for global information by capturing
long-distance dependencies between pixels and global
information in the frequency domain.

• Between the encoder and decoder, we propose a cross-
scale feature aggregation block that compensates for
contextual global information by fusing features from
different scales.

• We dynamically balance local and global information by
introducing attention mechanisms in the skip connec-

tions between the encoder and decoder, improving the
utilization efficiency of global information.

• Extensive experiments demonstrate that our proposed
method effectively compensates for global information
and achieves state-of-the-art denoising performance on
multiple synthetic noise datasets and real-world noise
datasets while maintaining high efficiency.

2 Related Work
2.1 CNN Models for Image Denoising
Under the influence of data-driven approaches, CNN-based
methods have achieved remarkable success in image denois-
ing and have become mainstream solutions. Early works
such as MLP [Burger et al., 2012] and TNRD [Chen and
Pock, 2016] demonstrated the potential of learning map-
pings or image priors for denoising. DnCNN [Zhang et al.,
2017a], by integrating residual learning and batch normal-
ization, achieved state-of-the-art performance and established
a strong baseline. Building on this, methods like DudeNet
[Tian et al., 2021] and BRDNet [Tian et al., 2020b] intro-
duced dual-path designs to enhance learning capacity. A key
strength of CNNs lies in their local receptive fields, which
enable the extraction of fine-grained details and effective re-
moval of local noise. However, their limited global per-
ception often leads to incomplete noise removal, especially
around image boundaries and in complex structures. This
highlights the necessity of incorporating global information
to enhance denoising quality and contextual understanding.

Increasing the depth of neural networks can indirectly im-
prove their ability to capture global context. Recent advanced
methods [Zhang et al., 2020; Liu et al., 2020; Tian et al.,
2023] have widely adopted residual and dense connections
to enhance feature propagation and facilitate gradient flow.
However, these techniques do not explicitly introduce global
information. This motivates us to design a dedicated compo-
nent that can effectively extract and integrate global context
into the denoising process.

The encoder-decoder architecture is effective in capturing
contextual information within images. The encoder extracts
local features and transmits contextual cues to the decoder,
facilitating a better understanding of pixel relationships and
improving denoising performance. This structure has been
widely adopted in existing works such as CBDNet [Guo et
al., 2019], SADNet [Chang et al., 2020], DeamNet [Ren et
al., 2021], MPRNet [Zamir et al., 2021], and RFFNet [Wang
et al., 2024]. Inspired by their success, we also adopt an
encoder-decoder framework. However, unlike previous meth-
ods, our design places greater emphasis on global information
compensation through cross-scale information aggregation.

2.2 Attention Mechanism
Attention mechanisms have become essential components in
image restoration due to their ability to selectively empha-
size informative features. For instance, ADNet [Tian et al.,
2020a] introduces attention modules to help denoising net-
works focus on noise patterns embedded in complex back-
grounds. RIDNet [Anwar and Barnes, 2019] leverages fea-
ture attention to capture inter-channel dependencies, while
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Figure 1: Illustration of our proposed global information compensation network (GICN).

FFA-Net [Qin et al., 2020] combines channel and pixel at-
tention for more effective feature fusion in image dehazing.
Recent studies [Wu et al., 2024; Jiang et al., 2025] demon-
strate that integrating various forms of attention can signifi-
cantly enhance the representational capacity of networks and
promote multi-perspective feature modeling, which is partic-
ularly beneficial for image restoration tasks.

In parallel, Transformer-based models [Kim et al., 2024;
Zhou et al., 2024; Tian et al., 2024]—built upon self-attention
mechanisms—have shown remarkable capacity for modeling
long-range dependencies and global context, which is also
crucial in image restoration tasks. Inspired by both CNN-
based and Transformer-based attention designs, we incorpo-
rate attention mechanisms into the skip connections of our
encoder-decoder framework. This enhancement enables bet-
ter global information flow and more effective integration of
low-level and high-level features.

2.3 Leveraging Frequency Domain
Representations in Image Restoration

The use of frequency domain representations has emerged as
a promising direction in image restoration, offering comple-
mentary advantages to spatial-domain learning by capturing
global structures and patterns. WINNet [Huang and Dragotti,
2022] and MWDCNN [Tian et al., 2023] further integrate
wavelet-based representations into deep networks to improve
interpretability and multi-scale feature extraction. In the con-
text of image super-resolution, Fourier-based methods [Fuoli
et al., 2021] have demonstrated their effectiveness in mod-
eling global frequency components that are often difficult to
capture using standard convolutional operations. Motivated
by these findings, we introduce the Fourier transformation as

a complementary module to enhance global information mod-
eling. It helps compensate for the limitations of spatial fea-
tures, particularly in capturing long-range dependencies and
structural consistency.

3 Proposed Method
3.1 Overall Network Architecture
The architecture schematic of the Global Information Com-
pensation Network (GICN) proposed by us is shown in Fig.
1. Its primary design objective is to compensate for global
information for deep networks from multiple aspects. GICN
consists of two main processing sub-networks: global infor-
mation mining in the shallow part and the primary denoising
network. First, we assume the input noisy image is denoted as
IN, the processing in the shallow stage as Fs, the processing
of the primary denoising network as Fm, and the clean image
as IC. The denoising process of GICN can be represented by
the following equation.

FGICN (IN) = Fm (Fs (IN)) . (1)

For the loss function part, similar to mainstream methods,
we adopt the MSE loss as the model’s loss function. The
cost function of GICN can be represented by the following
equation:

JGICN =
1

2
∥IC − FGICN (IN)∥22 , (2)

where JGICN represents the cost function of the GICN, IN
is the input noisy image, FGICN is the overall processing by
GICN, IC is the clean image, and ∥ · ∥2 represents the L2
norm, which measures the difference between the clean im-
age and the output of GICN.
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In the shallow part of the network, we first apply 3x3 con-
volutions to transform the channel dimension to 64. Then,
it is passed in parallel into three network branches. In each
branch, we perform dilated convolutions with different dila-
tion rates of 2, 3, and 5. This allows us to capture features
at different scales, considering both local and global infor-
mation simultaneously. Subsequently, all three branches go
through a global feature mining block for extracting global
information, aiding the network in better understanding the
global context and semantic information of the input image.
Finally, the outputs from the three paths are concatenated us-
ing a Concat operation, enabling the network to simultane-
ously utilize features of different scales and semantics ex-
tracted from different branches, providing abundant global
features for subsequent subnetworks. The above process can
be described by the following equations:

Xd2
2 = DilatedConv(Xconv, 64, 3, dilation = 2), (3)

Xd3
3 = DilatedConv(Xconv, 64, 3, dilation = 3), (4)

Xd5
5 = DilatedConv(Xconv, 64, 3, dilation = 5), (5)

where Xd2
2 , Xd3

3 , and Xd5
5 represent three parallel branches,

each performing dilated convolutions with different dilation
rates.

Xconcat = Concat(Fglobal(X
d2
2 ), Fglobal(X

d3
3 ), Fglobal(X

d5
5 )),

(6)
where Fglobal(X

d
i ) represents the output of the global feature

mining block executed on branch i with dilation rate d.
After processing in the shallow stage, the result is then fed

into the main denoising network, which follows an encoder-
decoder structure with skip connections. In total, there are
4 encoding and 4 decoding stages. In the encoding stages,
the number of channels doubles, and the feature maps are
downscaled, aiding in feature representation learning. In the
decoding stages, the number of channels halves, and the fea-
ture maps are upscaled, achieved through downsampling and
upsampling operations. It is noteworthy that, unlike con-
ventional methods, we utilize Residual Dynamic Convolution
Blocks (RDCB) instead of regular residual blocks, as shown
in Fig. 2. We introduce dynamic convolutions combined with
residual blocks to provide a flexible receptive field, which
helps in capturing both local and global features effectively.
The working process of the RDCB block can be described by
the following equations:

Xdynamic = PReLU(DynamicConv(X, 3× 3)), (7)

Xoutput = X + Conv(Xdynamic, 3× 3), (8)
where Xdynamic represents the output of the PReLU activation
applied to the 3x3 dynamic convolution. The final output fea-
ture map Xoutput is obtained by adding the result of the regular
convolution with Xdynamic to the input feature map X .

In the main denoising network, two other crucial improve-
ments are cross-scale feature aggregation and the incorpora-
tion of channel attention mechanism into skip connections.
The former assists the model in capturing pixel dependencies
at different scales while compensating for global information.
The latter helps the network enhance its utilization of global
information.

Figure 2: Structure illustration of Residual Dynamic Convolution
Block, (a) Represents a Regular Convolution Block, (b) Represents
a Standard Residual Convolution Block, (c) Represents the Residual
Dynamic Convolution Block we designed.

3.2 Global Feature Mining Block
The construction of the Global Feature Mining Block consists
of two parallel branches, as illustrated in Fig. 3. One branch
handles frequency domain information, while the other uti-
lizes a non-local block to process spatial information. The
frequency domain branch first transforms the features into the
frequency domain using Fast Fourier Transform (FFT), fol-
lowed by a 1× 1 convolution. Subsequently, the features are
converted back to channel features through inverse transfor-
mation. The spatial branch employs a non-local block and is
processed through three 1 × 1 convolutions labeled as α, β,
and γ. The α and β branches are combined using element-
wise multiplication (α ⊙ β), and the resulting combination
is further fused with the γ branch using the same operation.
Finally, the result of the combination of α, β, and γ branches,
i.e., (α ⊙ β ⊙ γ) is added to the input features via a residual
connection. Ultimately, the information from both the fre-
quency domain and spatial branches is combined through ad-
dition. These operations enable the organic fusion of spatial
and frequency domain information, enhancing the network’s
perception of global information. The above process, using
a dilated convolution branch with a dilation rate of 2, can be
described by the following equation:

Fr = IFFT(Conv1×1(FFT(Xd2
2 ))), (9)

Sr = ((Convα(Xd2
2 )⊙Convβ(Xd2

2 ))⊙Convγ(Xd2
2 ))+Xd2

2 ,
(10)

Z = Fr + Sr, (11)

where FFT represents Fast Fourier Transform, IFFT rep-
resents Inverse Fast Fourier Transform, Convα,Convβ ,
and Convγ represent convolution operations with different
weights (represented by α, β, γ ).

3.3 Cross-Scale Feature Aggregation Block
To better combine features across different scales, we pro-
pose a cross-scale feature aggregation block, as shown in
Fig. 4. We resize multiple features generated from differ-
ent encoding layers (H×W×C, H/2×W/2×2C, H/4×W/4×4C,
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Figure 3: Illustration of Global Feature Mining Block (GFMB).

H/8×W/8×8C) to a unified scale (H×W×C). This process in-
volves reshaping and using convolution operations to adjust
the resolution and channel count of the feature maps. Then,
by employing additive merging of these features, we can
maintain stable feature dimensions while capturing image de-
tails and contextual information from local to global scales,
thereby enhancing the model’s generalization ability. Finally,
feeding these cross-scale merged features into the last layer
of the decoder enables the decoder to better reconstruct de-
tailed information in the image. These operations can be rep-
resented by the following equations:

F ′
s = Conv(Reshape(Fs, H ×W ), C), (12)

Fmerged =
∑
s

F ′
s, (13)

Foutput = Decoder(Fmerged), (14)
where F ′

s represents the process of adjusting feature maps at
each scale s to a unified scale H ×W ×C. Fmerged describes
the merging of all adjusted feature maps

3.4 Skip Connection Attention Block
In the Skip Connection stage, to enhance the network’s uti-
lization efficiency of global information, we introduced a
channel attention mechanism, as shown in Fig. 5. Firstly, we
perform average pooling on the concatenated results of the
corresponding layers from the encoder and decoder. Then,
we flatten the result through a 1x1 convolution, and finally,
we generate weights through the sigmoid function. This can
be represented by the following equation:

W = sigmoid(Conv(AvgPool(ConcatRes))), (15)
where W represents the Weight, Conv denotes the 1×1 con-
volution operation, AvgPool stands for average pooling, and
ConcatRes signifies the concatenated results from the en-
coder and decoder layers.

Figure 4: Illustration of Cross-Scale Feature Aggregation Block
(CSFAB).

Figure 5: Illustration of Skip Connection Attention.

4 Experiments and Analysis
4.1 Experimental Setup
Training and test datasets. In this paper, we used a com-
posite dataset for Gaussian denoising, consisting of 400 im-
ages from [Martin et al., 2001a], 800 from [Timofte et al.,
2017], and 3000 from [Ma et al., 2016]. Grayscale and color
versions were used separately to train corresponding denois-
ing models. All images were cropped into 96 × 96 patches
with random rotations for data augmentation. For real-world
denoising, we trained on a combination of SIDD [Abdel-
hamed et al., 2018] and RENOIR [Anaya and Barbu, 2018],
using 256× 256 image patches.

In the experiment, we employed four datasets for testing
synthetic noise: BSD68 [Martin et al., 2001b], Kodak24
[Russakovsky et al., 2015], McMaster [Zhang et al., 2011],
and CBSD68 [Martin et al., 2001b]. For real image denois-
ing, we conducted testing using three datasets: SIDD [Abdel-
hamed et al., 2018], Nam [Nam et al., 2016], and PolyU [Xu
et al., 2018].
Implementation Details. We implemented GICN using
PyTorch 1.10 on an NVIDIA RTX 3090 GPU. The model
was trained for 100 epochs with a batch size of 128 using the
Adam optimizer. The initial learning rate was set to 1e-4 and
decayed to 1e-5 after 30 epochs.

4.2 Gaussian Image Denoising
To validate the effectiveness of our proposed GICN, we con-
ducted comparisons with ten state-of-the-art denoising meth-
ods previously introduced. We evaluated performance on four
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Dataset σ DnCNN IRCNN FFDNet RIDNet SADNet DudeNet DeamNet WINNet MWDCNN DRANet GICN

BSD68
15 31.73 31.63 31.64 31.81 31.68 31.78 31.91 31.72 31.77 31.79 31.92
25 29.23 29.15 29.19 29.34 29.31 29.29 29.44 29.27 29.28 29.36 29.46
50 26.23 26.19 26.29 26.40 26.51 26.31 26.54 29.27 26.29 26.47 26.51

Kodak24
35 30.64 30.43 30.56 30.70 30.76 30.69 30.89 30.73 30.88 30.90 30.93
50 29.02 28.81 28.99 29.15 29.17 29.10 N/A 29.18 29.27 29.50 29.61
75 27.58 27.39 27.25 27.35 27.48 27.39 N/A 27.44 27.57 27.59 27.69

McMaster
35 30.91 30.59 30.76 30.81 30.94 30.99 31.09 30.83 31.05 31.08 31.21
50 29.21 28.91 29.14 29.37 29.43 29.12 29.68 29.26 N/A 29.77 29.81
75 27.35 27.32 27.29 27.39 27.48 N/A N/A 27.07 27.37 27.39 27.54

CBSD68
35 29.65 29.50 29.57 29.72 29.78 29.71 29.84 N/A 29.81 29.83 29.87
50 28.01 27.86 27.96 28.03 28.07 28.09 28.21 27.99 28.13 28.37 28.48
75 26.42 26.30 26.24 26.36 26.47 26.40 N/A 26.35 26.40 26.45 26.51

Table 1: Denoising performance (PSNR) for different noise levels (σ) on BSD68, Kodak24, McMaster, and CBSD68 datasets.

Method SIDD Nam PolyU
PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN 38.56 0.910 34.95 0.885 35.74 0.878
CBDNet 38.68 0.909 40.02 0.969 37.85 0.956
RIDNet 38.71 0.913 39.20 0.973 38.07 0.957
DeamNet 39.47 0.955 40.05 0.974 39.20 0.958
SADNet 39.46 0.957 39.89 0.979 39.35 0.958
MPRNet 39.71 0.958 39.97 0.987 39.98 0.972
Uformer-S 39.77 0.970 N/A N/A 39.95 0.976
DRANet 39.50 0.957 39.79 0.974 39.15 0.955
LIDFormer 39.62 0.958 N/A N/A N/A N/A
HWFormer 39.72 0.956 N/A N/A 39.92 0.965
LAN (Restormer) N/A N/A 38.86 0.965 39.30 0.969
GICN 39.73 0.962 40.25 0.987 40.38 0.981

Table 2: Average PSNR (dB) and SSIM results of different methods
for real-world image denoising on SIDD, Nam, and PolyU datasets.

Metric DnCNN DeamNet SADNet MPRNet Uformer GICN

Params (M) 0.56 2.23 4.77 15.74 20.63 2.98
Time (s) 0.01 0.05 0.13 0.28 0.87 0.03

Table 3: Runtime and parameter comparisons of selected state-of-
the-art image denoising methods on 256 × 256 resolution inputs
using an RTX 3090 GPU.

publicly available datasets. For grayscale image denoising,
we used the BSD68 dataset with noise levels σ = 15, 25, 50.
For color image denoising, we tested on three datasets un-
der noise levels σ = 35, 50, 75. The experimental results
are summarized in Table 1. Quantitative analysis reveals that
GICN consistently outperforms all compared methods across
different scenarios, notably surpassing the advanced MWD-
CNN, SADNet [Chang et al., 2020], and DRANet [Wu et al.,
2024] by up to 0.35 dB. Moreover, our method maintains ro-
bust denoising performance even under high noise levels.

In addition to quantitative comparisons, we visualized the
denoised images obtained from our method and other ap-
proaches. The results are shown in Fig. 6. Upon observation,
it is evident that our method preserves more textures and edge
details compared to the other methods.

4.3 Real-World Image Denoising
We compare our proposed GICN with advanced methods
to validate its real noise reduction capability. Specifically,
we compare against DnCNN [Zhang et al., 2017a], CBD-
Net [Anwar and Barnes, 2019], RIDNet [Anwar and Barnes,
2019], DeamNet [Ren et al., 2021], SADNet [Chang et al.,
2020], MPRNet [Zamir et al., 2021], Uformer-S [Wang et
al., 2022], DRANet [Wu et al., 2024], LIDFormer [Zhou et
al., 2024], HWFormer[Tian et al., 2024]and LAN [Kim et al.,
2024]. The experimental results are shown in Table 2 and 3.
We can conclude that GICN outperforms other state-of-the-
art methods on both datasets, notably excelling on the Nam
and PolyU datasets. On the SIDD dataset, achieving perfor-
mance similar to Uformer-S, while significantly reducing the
number of parameters compared to Uformer-S, balances both
denoising performance and computational resources. In sum-
mary, it can be demonstrated that GICN exhibits excellent
denoising performance.

4.4 Ablation Studies
We conducted ablation studies to evaluate the individual and
combined contributions of the proposed GFMB, CSFAB, and
SK-Att modules, as well as to assess the impact of DRCB. To
ensure fairness and clarity, experiments were performed un-
der two settings: Gaussian noise with σ = 15 on the BSD68
dataset, and real-world noise on the Nam dataset. The aver-
age PSNR, SSIM, and model parameter counts are reported
in Tables 4 and 5.

Effectiveness of GFMB. The impact of GFMB is assessed
by conducting experiments involving the removal of this
module, as shown in the experimental results in Tables 4 and
5. It can be observed that when GFMB is removed from
GICN, the performance decreases from 31.92dB to 31.81dB
on the Gaussian synthetic noise test dataset. The change is
even more pronounced on the real noise dataset, indicating
that this module contributes to performance improvement by
providing the model with more comprehensive global infor-
mation. Furthermore, when GFMB is removed in conjunction
with other components, the performance experiences further
varying degrees of decline, suggesting its combined interac-
tion with other components.
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Figure 6: Visual comparisons of various denoising methods. The noise level is σ = 25.

Effectiveness of CSFAB. Observing Table 5, it can be
noted that when we remove CSFAB from GICN, there is a
performance decrease of 0.10dB. This indicates that cross-
scale feature aggregation plays a positive role in enhancing
denoising performance. Similarly, CSFAB, in combination
with other components, also plays an important role in en-
hancing performance.
Effectiveness of SK-Att. SK-Att is a lightweight compo-
nent designed to improve the utilization of global information
in the skip connection part through channel attention mech-
anisms. According to Tables 4 and 5, SK-Att, at the cost of
adding an additional 0.04 million parameters, leads to a per-
formance improvement of 0.06dB on the BSD68 dataset and
0.14dB on the Nam dataset. This demonstrates the efficacy of
this module. Furthermore, when we simultaneously remove
GFMB, CSFAB, and SK-Att, the performance is the poor-
est on both test sets, indicating that the combination of these
three components is the most effective.
Effectiveness of RDCB. To assess the contribution of
RDCB, we replaced it with a standard RCB and evaluated
performance under the same conditions. We found that the
parameters used by RDCB and RCB were similar, but when
using the conventional RCB, GICN’s performance decreased
by 0.04dB in synthetic noise tasks and 0.08dB in real noise
tasks. This indirectly demonstrates that RDCB is superior to
RCB in our architecture. Therefore, we use RDCB to build
the backbone denoising network.

5 Conclusions
In this paper, we propose a Global Information Compen-
sation Network (GICN) for image denoising, which inte-
grates frequency-domain modeling, multi-scale feature ag-
gregation, and attention mechanisms to better handle complex
noise. Specifically, we design a global feature mining mod-
ule that combines non-local operations with Fourier trans-
forms to capture long-range dependencies; a cross-scale ag-
gregation module to enhance semantic context representation;

Model PSNR Params

GICN without GFMB 31.81 2.84M
Replace RDCB with RCB 31.88 2.97M
GICN without CSFAB 31.82 2.75M
GICN without SK-Att 31.86 2.94M
GICN without GFMB and CSFAB 31.72 2.61M
GICN without GFMB and SK-Att 31.75 2.80M
GICN without CSFAB and SK-Att 31.77 2.71M
GICN without GFMB, CSFAB, and SK-Att 31.67 2.57M
GICN 31.92 2.98M

Table 4: Ablation study on the individual and combined impact of
key modules in GICN under a noise level of 15 on the BSD68 test
dataset.

Model PSNR Params

GICN without GFMB 40.09 2.84M
Replace RDCB with RCB 40.17 2.97M
GICN without CSFAB 40.15 2.75M
GICN without SK-Att 40.11 2.94M
GICN without GFMB and CSFAB 39.96 2.61M
GICN without GFMB and SK-Att 39.92 2.80M
GICN without CSFAB and SK-Att 40.02 2.71M
GICN without GFMB, CSFAB, and SK-Att 39.85 2.57M
GICN 40.25 2.98M

Table 5: Ablation study on the individual and combined impact of
key modules in GICN on the real-world denoising dataset Nam.

and attention-based skip connections to dynamically fuse lo-
cal and global features. Experiments on both synthetic and
real-world datasets demonstrate that GICN outperforms ex-
isting methods, with ablation studies validating the contribu-
tion of each module. Compared to Transformer-based mod-
els, GICN offers competitive global modeling with signifi-
cantly lower computational cost, achieving a better trade-off
between performance and efficiency.
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