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Abstract
Medical Large Multi-modal Models (LMMs) have
demonstrated remarkable capabilities in medi-
cal data interpretation. However, these mod-
els frequently generate hallucinations contradict-
ing source evidence, particularly due to inadequate
localization reasoning. This work reveals a criti-
cal limitation in current medical LMMs: instead
of analyzing relevant pathological regions, they of-
ten rely on linguistic patterns or attend to irrelevant
image areas when responding to disease-related
queries. To address this, we introduce HEAL-
MedVQA (Hallucination Evaluation via Localiza-
tion MedVQA), a comprehensive benchmark de-
signed to evaluate LMMs’ localization abilities and
hallucination robustness. HEAL-MedVQA fea-
tures (i) two innovative evaluation protocols to as-
sess visual and textual shortcut learning, and (ii) a
dataset of 67K VQA pairs, with doctor-annotated
anatomical segmentation masks for pathological
regions. To improve visual reasoning, we pro-
pose the Localize-before-Answer (LobA) frame-
work, which trains LMMs to localize target re-
gions of interest and self-prompt to emphasize seg-
mented pathological areas, generating grounded
and reliable answers. Experimental results demon-
strate that our approach significantly outperforms
state-of-the-art biomedical LMMs on the challeng-
ing HEAL-MedVQA benchmark, advancing ro-
bustness in medical VQA.

1 Introduction
Large Multimodal Models (LMMs), or Multi-modal Large
Language Models (M-LLMs) [Alayrac et al., 2022; Bai et
al., 2023; Liu et al., 2024b] such as GPT-4V [OpenAI et
al., 2023] achieve superb performance in understanding data
from multiple modalities, such as vision and language, and
generating human-like texts. Leveraging the strong capabil-

ities of those foundational models, recent works [Li et al.,
2024; Chen et al., 2024; Zhang et al., 2023a; Chen et al.,
2023; Moor et al., 2023; Wu et al., 2023b; Wu et al., 2023a;
Yan and Pei, 2022] have developed M-LLMs for medi-
cal imaging applications such as medical Visual Question
Answering (VQA). Recently, many multimodal foundation
models (LLaVA-Med [Li et al., 2024], CheXagent [Chen et
al., 2024], GPT-4 [OpenAI et al., 2023], Gemini [Team et al.,
2023]) have emerged and demonstrated impressive reasoning
and comprehension capabilities on biomedical queries and re-
lated domains. These models can assist clinical professionals
in interpreting and gaining insights on medical images, help-
ing the diagnosis and treatment processes be more efficient.

Due to the sensitive nature of the biomedical domain, the
accuracy and trustworthiness of these foundational models
are important. Though impressive, Large Language Mod-
els (LLMs) and multimodal LLMs are prone to hallucinat-
ing contents. Specifically, the models produce false answers,
which are not grounded in the visual evidence. Given a ques-
tion. “Does the patient have pneumonia in his right lung?”,
many LLMs are prone to answer “Yes” without reasoning the
image content. This behavior arises because the observation
of pneumonia frequently co-occurs with parts of the lung,
leading to spurious correlations instead of rigorous reason-
ing. Fig. 1 illustrates the answer of some open-source LMMs,
and the cross-attention map of the models during generation.
These models tend to hallucinate and attend to irrelevant im-
age regions when answering these questions.

This study shows two types of shortcut learning that cur-
rent multimodal LLMs suffer from: textual and visual short-
cut learning. First, the models attend to non-important text
tokens with higher relevancy score than any image tokens.
As shown in Fig. 1b, the model produces higher relevancy
scores on the token lung than on any image token. Second,
on the image, the model attends to non-queried image regions
(as shown in Fig. 1a). This shows the model learns shortcuts
on irrelevant text and image tokens, instead of basing on the
visual evidence when answering the questions.

To address these concerns, we introduce a new bench-
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Figure 1: An example of Med-VQA from our dataset. We follow LVLM-Interpret [Stan et al., 2024] to visualize a) the attention map of the
image with respect to the model response, and b) the relevancy score between the answer and input words. LLaVA-Med [Li et al., 2024], as
reference model, fails to attend to the region of interest, and its answer has a low relevancy score to the image. Several hallucination reduction
methods can generate responses more relevant to the image, but may not localize the target region.

mark, dubbed HEAL-MedVQA (Hallucination EvAluation
via Localization in Medical VQA), to dissect the LLM’s abil-
ity to localize at visual evidence when answering. Specif-
ically, this paper proposes two evaluation protocols, called
Textual Perturbation Test (TPT) and Visual Perturbation Test
(VPT), which probe LLMs’ sensitivity towards textual and
visual shortcuts. To support this evaluation, we curate adver-
sarial VQAs and procure pixel-level annotations of affected
anatomy regions from three board-certified radiologists from
two large-scale public datasets, MIMIC-CXR [Johnson et al.,
2019] and VinDr-CXR [Nguyen et al., 2020]. In total, we
construct over 60,000 question-answer pairs probing LLM’s
textual and visual shortcut learning. Our curated medical
benchmark provides a structured codebase, facilitating com-
prehensive comparisons of advanced LLMs.

To this end, we propose Localize-before-Answer (LobA),
a framework that forces LMM to generate visual-evidence to-
kens, which is then input to the segmentation decoder to lo-
calize the area of interest before answering. Based on the
localization map, LobA self-prompts to enhance the model’s
attention, forcing it to leverage visual evidence relevant to the
question before answering. In summary, our main contribu-
tions are as follows.

• We introduce HEAL-MedVQA (Hallucination Evalua-
tion via Localization in Medical VQA), a benchmark
that consists of 67K QA pairs, and doctor-annotated seg-
mentation masks with two new evaluation protocols, as-
sessing LLMs’ robustness to textual and visual short-
cut learning. Our benchmark includes comprehensive
comparisons of 8 state-of-the-art LLMs and hallucina-
tion techniques, thus standardizing hallucination and ac-
curacy evaluations of future multi-modal LLMs.

• We propose the Localize-before-Answer (LobA) frame-
work, which forces the model to localize the affected
anatomical regions and self-prompt to enhance attention

on the target regions before answering.

• Our proposed LobA framework significantly surpasses
recent LLMs by up to 5.44%, while showing the highest
robustness to textual and visual shortcut learning.

2 Related Works
Medical Visual Question Answering. Several benchmarks
in Med-VQA propose specialized datasets [Hasan et al.,
2018; Abacha et al., 2019; Abacha et al., 2020; Abacha et
al., 2021]. VQA-RAD [Lau et al., 2018] offers both open-
ended and closed-ended questions. SLAKE [Liu et al., 2021]
develops a bilingual dataset with a knowledge graph. Overall,
existing benchmarks use accuracy as the main metric, which
overlooks the hallucination evaluation of multi-modal LLMs.

A majority of Med-VQA models are finetuned from other
VLMs, namely LLaVA-Med [Li et al., 2024] from LLaVA
[Liu et al., 2024b], CheXagent [Chen et al., 2024] from
BLIP-2 [Li et al., 2023a], or [Zhang et al., 2023a; Chen et al.,
2023; Moor et al., 2023; Wu et al., 2023b; Wu et al., 2023a;
Yan and Pei, 2022; Huy et al., 2025]. Recent approaches,
which localize relevant regions in Med-VQA, have gained at-
tention in recent times [Tascon-Morales et al., 2023; Tascon-
Morales et al., 2024; Zhang et al., 2024a]. However, during
inference time, these VQA models require human-annotated
masks to locate regions of interest. In contrast, our method
explicitly learns to localize during training, bypassing the
need to acquire human annotations when inferring.
Hallucination in VQA. To overcome hallucination, there are
two main approaches. First, data-centric methods focus on
augmenting existing VQA training datasets and propose new
benchmarks for evaluation. In [Li et al., 2023b] and [Liu et
al., 2023], they show that frequently appearing objects tend
to guide models’ answers during inference time more than
absent or less frequent ones. As such, POPE [Li et al., 2023b]
adds adversarial questions asking for the presence of objects
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that are absent from the image. LRV-Instruction [Liu et al.,
2023] introduces negative instructions, which are irrelevant
to the visual content.

Second, model-centric methods focus on modifying the
model architecture to support the visual component. Intern-
VL [Chen and others, 2024], and LLaVA-1.5-HD [Liu et al.,
2024a] scale up the vision foundation model to allow bet-
ter visual understanding. Others, such as [He et al., 2024;
Jain et al., 2024] append several levels of information (seg-
mentation mask, object list, task-based knowledge) to enrich
the visual context. Lastly, several methods propose inference-
based methods, which augment the inference of the pre-
trained LLMs. VCD [Leng et al., 2024] and M3ID [Favero et
al., 2024] aim to ground inference by negating a contrastive
version of the input where the image is distorted or dropped.
OPERA [Huang et al., 2024] discourages overly confident but
erroneous information accumulated in self-attention layers by
applying a penalty. Overall, existing hallucination techniques
are applied on the image level, while neglecting region-level
details. In contrast, we propose to explicitly reason on the
pixel level before answering.

3 Hallucination Evaluation Benchmark
This section introduces HEAL-MedVQA (Hallucination
Evaluation via Localization in Medical VQA) benchmark
consists of 67K QA pairs, and doctor-annotated segmentation
masks with two new evaluation protocols.

3.1 New Evaluation Protocol — Sensitivity Test
Conventional accuracy metrics [Abacha et al., 2019; Liu et
al., 2021; Lau et al., 2018] overlook bias factors influencing
the model’s responses. This paper assesses two key phenom-
ena in medical LMMs:

• Language Shortcut: Despite generating correct an-
swers, the model relies on language shortcuts learnt in
the training dataset, rather than the actual visual content.
For example, given a question “Does the right lower
lung have pneumonia?”, models can answer “Yes” due
to the co-occurrence of lung and pneumonia in the train-
ing set.

• Vision Shortcut: The model can concentrate on non-
relevant regions (as in Fig. 1a). This behavior results in
the unreliability of LMMs, even when providing correct
answers, as they ignore visual evidence.

To this end, we propose two new evaluation protocols, called
Textual Perturbation Test (TPT) and Visual Perturbation Test
(VPT), as shown in Fig. 2.
Textual Perturbation Test. To assess how sensitive a model
is to language biases, we propose to swap the key entities, i.e.,
anatomy or disease, and evaluate the model’s sensitivity to the
perturbed questions. The evaluation protocol is as follows.

• From the test set of binary questions - “Does anatomy
have disease?”, we collect True Positive samples having
correct “Yes” predictions.

• We randomly replace either the anatomy or disease with
another valid co-occurring term. For example, in Fig.
2 (Above), the question “Does left lower lung suffer

Switch 
Disease

Switch 
Anatomy

Does Right Upper Lung suffer 
from Pneumonia?

Yes No

Does Left Lower Lung suffer from Pneumonia?

Yes Yes

Does Left Lower Lung suffer from 
Pulmonary Fibrosis?

Yes No

Does Aorta have Aortic 
Enlargement?

Mask Overlay

Visual Perturbation Test
Aorta of disease-
free image

Textual Perturbation Test

Does Aorta have Aortic 
Enlargement?

Yes YesYes No

LLM’s answer

Groundtruth

Figure 2: Textual and Visual Perturbation Tests. TPT: Replace the
anatomy or disease term in the question. VPT: Swap the region of
interest with the same region from an image of a different class.
We report the percentage of “Yes” → “No” flips to assess model
sensitivity to shortcuts.

from pneumonia?” is replaced by either switching the
anatomy to right upper lung, or to another disease.

• The percentage of “Yes” → “No” flips defines the Tex-
tual Perturbation Test (TPT) score.

Visual Perturbation Test. We propose to assess whether the
model grounds the answer on the anatomical region of in-
terest. Specifically, when querying the presence of a disease
in a particular area, e.g., the left lower lung, we take a seg-
mented region of the left lower lung from another image that
does not share the same diagnosis as the current one. This
segmented region is resized and blended onto the original im-
age. By doing so, we expect the model to focus its attention
on the replaced region of interest to produce the correct diag-
nosis, altering the response from “Yes” to “No”. We define
the visual perturbation test (VPT) score as the percentage of
answers that change from “Yes” to “No” under this protocol.

3.2 Dataset Curation
To assess the LLM’s robustness against both textual and vi-
sual shortcuts, we introduce a new benchmark called HEAL-
MedVQA (Hallucination Evaluation via Localization in Med-
ical VQA). Built upon VinDr-CXR [Nguyen et al., 2020] and
MIMIC-CXR [Johnson et al., 2019], we construct HEAL-
MedVQA by mapping spatial relationships between diseases
and anatomical locations, and probing the model’s robustness
towards disease and location perturbation on both texts and
images. Fig. 4 illustrates our overall pipeline of data construc-
tion. We extract the disease bounding boxes and anatomical
masks from the image. Based on the overlap between disease
and anatomy localization, we determine their spatial relation-
ships. Then, several QA templates are used to generate VQA
samples. This process can be broken down into four main
steps:
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Anatomy
segmentor

Disease
extractor

Positive
disease labels

Filtering

QA
pairs

Anatomy-Disease
Relation Mapper

Does the patient have lung 
opacity in the right upper lung?
The location of right upper lung
is at <SEG>. The answer is yes.

Key entity
extractor

Q: 

A: 

Figure 3: Our data processing pipeline.

Anatomy segmentation. We define 8 main anatomies, e.g.
Right lower lung, Heart, etc., where chest diseases com-
monly occur. On the training set, we obtain the segmentation
mask using a model pre-trained on PAXRay++ dataset [Sei-
bold and others, 2022]. On the test set, we consult three
board-certified radiologists to annotate the segmentation. By
providing doctor-annotated pixel-level segmentation, this re-
search offers a new benchmark to evaluate visual reasoning
and robustness to hallucination of current M-LLMs.

Disease extraction. For the disease bounding boxes, the
VinDr-CXR dataset provides bounding box annotations for
22 medical findings. We train a standard detection model,
YOLOv5 [Jocher et al., 2020], on the dataset and obtain the
bounding boxes on MIMIC-CXR. To reduce false positives,
we extract the disease labels from the associated medical re-
ports and filter out absent diseases.

Anatomy-disease relation mapping. To get the anatomy-
disease relation, we measure the overlap between the disease
bounding box and the anatomical segmentation mask. Since
the disease area is often small compared to the anatomy’s, we
compute the intersection over the disease area, instead of a
union of both. If this IoUdis score between a disease-anatomy
pair is over δ = 0.5, then that disease occurs on that anatomy.

Question Generation. After obtaining a list of dis-
ease–anatomy mappings, we randomly generate 2–5 QA
pairs per image, focusing on two main formats: close-ended
and open-ended, as shown in Fig. 4. Close-ended questions
are binary: “Does anatomy have disease?”, “Is there dis-
ease present in anatomy?”. Each is either a Positive ques-
tion, which queries a disease present in the anatomy, or a
Hallucinated question, which queries a disease that is not
present. Open-ended questions have two types: normal and
abnormality-query questions, which respectively probe re-
gions without and with diseases.

In total, our HEAL-MedVQA dataset comprises 45,331
closed-ended questions and 22,573 open-ended ones. We
compare our benchmark with those previously reported in Ta-
ble 1. To the best of our knowledge, we are the first bench-
mark providing a large-scale dataset with comprehensive hal-
lucination metrics and doctor-annotated masks to evaluate the
hallucination of emerging LLMs.

4 Proposed Method
This section presents our proposed simple-yet-effective
framework, Localize-before-Answer (LobA) to (i) localizes

Figure 4: Four question types in our benchmark.

the queried regions, and then (ii) reweigh the attention to
ground on correct visual evidence before answering. An
overview of the framework is shown in Figure 5.

4.1 Grounded Text Generation
Given an image ximg and a question about it xtext. We train
LLMs to generate an answer ŷtext, while grounding on the
queried region, and producing a segmentation mask M̂ . The
mask M̂ corresponds to both xtext and ŷtext, explaining the
response of the model.

We use a <SEG> token, denoting the token that will be
used in later steps to obtain the segmentation of the relevant
anatomies. Using this token, we instruct LLMs to localize
on visual evidence before answering. As such, we format the
response as “The location of {relevant areas} is at <SEG>”.
For example, if the question is “Are there any abnormalities
at the right lower lung?”, the output of the LMM will be “The
location of the right lower lung is at <SEG>”. Note that,
in our format, the model has to produce the visual evidence
first, before giving the final answers. The LLM is trained to
generate the above response:

ŷtext = LLM(xtext, ximg). (1)

We use the projected hidden state hseg from the <SEG> token
as the query to the segmentation model. This can be formu-
lated as M̂ = Seg(ximg, hseg). Our LLM is trained via the
text objectives. Similar to other LLMs [Touvron et al., 2023;
OpenAI et al., 2023], we formulate the text generation loss
as the cross-entropy loss between the generated text and the
ground truth:

Ltext = CE(ŷtext, ytext). (2)

We combine BCE loss and DICE loss to train the segmenta-
tion module:

Lseg = λBCEBCE(M̂,M) + λDICEDICE(M̂,M). (3)

Finally, the overall objective can be seen as the weighted sum
of the two losses:

L = λtextLtext + λsegLseg. (4)

4.2 Attention Highlighter via Self-Prompting
While the proposed training paradigm allows the model to
localize the region of interest when answering, hallucina-
tion can still occur when the model pays little attention to
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Datasets # Images # QA
pairs

Adversarial
questions Closed-ended Open-ended Visual

grounding Annotation

VQA-Rad [Lau et al., 2018] 315 3.5K % " " % %

SLAKE [Liu et al., 2021] 642 14K % " " %† Mask/Bbox
VQA-Med [Abacha et al., 2021] 5.5K 5.5K % % " % %

PMC-VQA [Zhang et al., 2023b] 149K 227K % " " % %

OmniMedVQA [Hu et al., 2024] 118k 128K % " " % %

CARES [Xia et al., 2024] 18K 41K % " " % %

Halt-MedVQA [Wu et al., 2024] 1736 2359 " " % % %

ProbMed [Yan et al., 2024] 6.3K 57K " " % % %

HEAL-MedVQA (Ours) 34K 67K " " " " Mask

Table 1: Comparison of Med-VQA datasets. † indicates visual annotations for all anatomic regions in the image instead of the one questioned.

Figure 5: The proposed LoBA frameworks consists of two phases. Grounded text generation: during training, our model learns to localize
and segment a region of interest mentioned in the question. Self-prompting: during inferencing, the model attention is calibrated to attend to
the segmented region. With the attention, the model refines and generates visually grounded answers that are more robust to hallucinations.

the image compared to the text. To deal with this, we pro-
pose to highlight the attention on the queried regions by self-
prompting the segmentation map. Our module consists of two
functions: attention reweighting and contrastive decoding.

For attention reweighting, patches of interest xhl are added
extra weight before feeding through the softmax layer so that
those regions get more focus during answer generation. De-
note hj,i the original value of the attention logits of patch j to
patch i, and β the hyperparameter of added weight, then the
new attention weight after reweighting ĥj,i becomes

ĥj,i =

{
hj,i if i /∈ xhl,

hj,i + log β, β > 0 if i ∈ xhl.
(5)

Then the attention probability after Softmax is

ãj,i =
βmi exp (aj,i)∑
k β

mk exp aj,k
. (6)

Here, mi = 1, indicating token i is highlighted, and mi = 0
otherwise. We apply this function to the visual backbone of
M-LLM where the patches of interest are interpolated from
the mask. Applying the reweighted attention Ã, we obtain
the highlighted image tokens x̃img:

x̃img = ÃV. (7)

To further alleviate shortcut learning, we perform con-
trastive decoding [Zhang et al., 2024b], which contrasts the
model decisions after and before highlighting regions of in-
terest. Particularly, we compute the difference between the
token probability after highlighting phl and probability be-
fore highlighting pbh to obtain the decoded probability p:

pbh = p(ŷtext|xtext, ximg)

phl = p(ŷtext|xtext, x̃img)

p = softmax((1 + α) log phl − α log pbh).

(8)

where α is a hyperparameter controlling the degree of
grounding. Applying contrastive decoding minimizes the ef-
fect of other tokens on the model output, preventing halluci-
nation.
Discussion. Although Prompt Highlighter [Zhang et al.,
2024b] also emphasizes the “highlighting” of regions of in-
terest to reduce hallucination, ours differs in two ways. First,
Prompt Highlighter requires human prompting for attention
highlighting, which is expensive in medical image analysis.
In contrast, ours automatically localizes regions of interest,
thus obviating the need for medical professionals to manu-
ally localize regions of interest. Second, while Prompt High-
lighter only enhances attention on the language decoder, our
methodology reweighs attention scores on the visual back-
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Model
MIMIC VinDr

Yes/No Open-ended Yes/No Open-ended
F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

Proprietary Models

Gemini-1.5-Flash-8B [Team et al., 2023] 0.548 0.520 0.569 0.091 0.127 0.024 0.571 0.604 0.543 0.038 0.098 0.023
GPT-4-O [OpenAI et al., 2023] 0.646 0.706 0.556 0.109 0.143 0.089 0.599 0.660 0.487 0.097 0.087 0.069
GPT-4-Vision [OpenAI et al., 2023] 0.521 0.652 0.409 0.087 0.093 0.067 0.568 0.637 0.424 0.074 0.053 0.072

Open-source Models

CheXagent [Chen et al., 2024] 0.677 0.621 0.695 0.425 0.450 0.416 0.610 0.628 0.603 0.374 0.342 0.330
BioMedGPT [Zhang et al., 2023a] 0.708 0.734 0.672 0.397 0.387 0.412 0.624 0.606 0.631 0.289 0.265 0.310
MedFlamingo [Alayrac et al., 2022] 0.562 0.574 0.552 0.365 0.390 0.310 0.584 0.600 0.547 0.301 0.285 0.322
LLaVA-Med [Li et al., 2024] 0.722 0.712 0.709 0.551 0.541 0.565 0.703 0.708 0.699 0.523 0.519 0.530
LISA [Lai et al., 2024] 0.716 0.692 0.728 0.524 0.556 0.511 0.707 0.712 0.694 0.521 0.509 0.534

Adversarial Techniques

PH + LLaVA-Med [Zhang et al., 2024b] 0.735 0.754 0.724 0.563 0.589 0.540 0.716 0.725 0.698 0.522 0.510 0.527
VCD + LLaVA-Med [Leng et al., 2024] 0.716 0.708 0.721 0.566 0.583 0.538 0.652 0.699 0.591 0.501 0.547 0.497
CRG + LLaVA-Med [Zhang et al., 2022] 0.731 0.715 0.725 0.544 0.563 0.554 0.689 0.667 0.702 0.509 0.524 0.494

LobA w/o self-prompt 0.727 0.716 0.731 0.544 0.557 0.535 0.724 0.745 0.706 0.511 0.526 0.507
LobA (Ours) 0.752 0.759 0.743 0.581 0.593 0.572 0.728 0.758 0.711 0.542 0.533 0.560

Table 2: Performance comparison across different models on the proposed HEAL-MedVQA benchmark on MIMIC and VinDr datasets for
Yes/No and Open-ended VQA tasks. Text in bold and underline highlights the best and second best results, respectively.

bone. The deep intervention on the visual backbone is more
effective in mitigating the visual shortcut learning.

5 Experimental Results
In this section, we report the benchmark results of popu-
lar medical LMMs and our very own framework, as well as
further analysis for our curated adversarial grounding VQA
benchmark.

MIMIC VinDr

Method Anatomy Disease Anatomy Disease

Gemini-1.5 0.532 0.510 0.521 0.487
GPT-4-O 0.594 0.603 0.509 0.596
CheXagent 0.621 0.650 0.689 0.650
BioMedGPT 0.687 0.610 0.623 0.612
LLaVA-Med 0.764 0.762 0.751 0.734

PH + LLaVA-Med 0.783 0.774 0.724 0.762
VCD + LLaVA-Med 0.744 0.788 0.740 0.750
CRG + LLaVA-Med 0.731 0.771 0.742 0.738
LobA (Ours) 0.792 0.801 0.770 0.748

Table 3: Textual Perturbation Test on MIMIC and VinDr datasets

MIMIC VinDr

Gemini-1.5 0.410 0.403
GPT-4-O 0.557 0.581
CheXagent 0.631 0.671
BioMedGPT 0.647 0.653
LLaVA-Med 0.696 0.680

PH + LLaVA-Med 0.720 0.698
VCD + LLaVA-Med 0.678 0.654
CRG + LLaVA-Med 0.682 0.693
LobA (Ours) 0.734 0.701

Table 4: Visual Perturbation Test on MIMIC and VinDr datasets

Module Backbone LobA w/o LobA
self-prompt (Ours)

Component Localization % " "

Self-prompt % % "

Perb Test TPT 0.763 0.772 0.797
VPT 0.743 0.738 0.759

F1 Score

MIMIC (Yes/No) 0.722 0.727 0.752
MIMIC (Open-ended) 0.551 0.544 0.581
VinDr (Yes/No) 0.703 0.724 0.728
VinDr (Open-ended) 0.523 0.511 0.542

Table 5: Ablation studies of different components of LobA. The TPT
and VPT scores are averages for MIMIC and VinDr datasets.

Benchmarks. We conduct a thorough and systematic evalu-
ation of the most popular Medical Large Multimodal Models
on our large-scale HEAL-MedVQA benchmark. Specifically,
we utilize 7 state-of-the-art multi-modal LLMs for our eval-
uation protocol, 3 of which are proprietary models: GPT-4o,
GPT-4 Vision [OpenAI et al., 2023] and Gemini 1.5 [Team et
al., 2023] and 4 are open source M-LLMs of the medical do-
main: CheXagent [Chen et al., 2024], LLaVA-Med [Li et al.,
2024], BioMedGPT [Zhang et al., 2023a] and Med-Flamingo
[Alayrac et al., 2022]. We also assess the capabilities of state-
of-the-art adversarial VQA methods, including VCD [Leng
et al., 2024], Prompt Highlighter [Zhang et al., 2024b], and
CRG [Wan et al., 2025].
Implementation Details. Open source multi-modal LLMs
are fine-tuned on our training dataset with LoRA [Hu et al.,
2022] before evaluation. The learning rate is tuned from
the range of values {1e − 4, 1e − 5, 1e − 6}. For LobA
framework, we used LLaVA-Med [Li et al., 2024] as the pre-
trained MLLM and MedSAM [Kirillov et al., 2023] as the
segmentation model. Following [Zhang et al., 2024b], we
select α = 0.3, βV iT = βLLM = 2 as the set of hyperpa-
rameters for the Attention Highlighter module. All models
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are fine-tuned using Transformer, PyTorch and DeepSpeed
frameworks on a single 80GB A100 GPU cluster. During in-
ference, the temperature of all multi-modal LLMs is set to
0.1, and the beam size is set to 1.
Evaluation Metrics. To assess the accuracy of the multi-
modal LLMs, we utilize LLaMa 3.1-8B to extract informa-
tion from the M-LLM’s output, and categorize them into a
set of disease labels. For example, for an open-ended ques-
tion, if the model returns the answer “The heart suffers from
pneumonia, pulmonary fibrosis and nodule/mass” then the
extracted labels by the LLM will be pneumonia, pulmonary
fibrosis, nodule/mass. We report the multi-label precision,
recall, and micro F1 score as the main accuracy metrics.
For hallucination sensitivity analysis, we adopt our proposed
evaluation metrics, Textual Perturbation Test (TPT), and Vi-
sual Perturbation Test (VPT) scores, as discussed in Sec. 3.1.
Experimental Results and Discussion. VQA Accuracy. As
shown in Table 2, proprietary models achieve sub-optimal
accuracy. Most models have accuracy less than 50% on bi-
nary Yes/No questions and less than 10% for open-ended
questions. This shows the challenging nature of our HEAL-
MedVQA benchmark, requiring the model to be robust
against visual and textual shortcut learning. Our proposed
framework consistently outperforms recent advances in M-
LLMs and adversarial VQA techniques even after fine-tuning
them. Notably, the proposed LoBA outperforms the state-of-
the-art Prompt Highlighter [Zhang et al., 2024b] by 3.19%
and 3.63% on Open-ended questions for VinDr and MIMIC-
CXR, respectively. Injecting grounding prior, as in our pro-
posal, boosts the VQA accuracy.

Textual Perturbation Test. Table 3 reports the sensitivity
of each model to textual language bias. The higher the per-
centage is, the more robust a model is against textual shortcut
bias. Our proposed framework achieves the highest sensitiv-
ity measure overall, with the ratio of changed answers dras-
tically increasing by up to 3.89% compared to CRG [Wan et
al., 2025]. Enforcing visual reasoning via highlighted atten-
tion to the queried regions, as in our proposal, alleviates the
shortcut learning. Lastly, fine-tuned open-source models are
generally more robust than closed-source models like GPT-
4-O, showing that fine-tuning LLMs on our adversarial data
remedies hallucination.

Visual Perturbation Test. Table 4 reports the visual sensi-
tivity score, with the score defined as the number of changed
answers when the original image is overlaid with a healthy lo-
calized anatomy. Most multi-modal LLMs in our benchmark
shift their answer around 40-70% of the time. Our method
is the most sensitive to the change in the localized area, in-
creasing the number of visually dependent answers by 1.94%
compared to Prompt Highlighter [Zhang et al., 2024b].

Ablation studies. Table 5 reports the effects of each compo-
nent in our framework: the LLaVA-Med backbone, Grounded
Text Generation (GTG) module, and the full framework with
self-prompting. Applying GTG improves the model’s per-
formance in some categories, showing the effectiveness of
localization-aware training. With the self-prompting frame-
work, the accuracy and textual/visual robustness improve
greatly, most evidently increasing 4.45% in TPT score, and
2.73% on MIMIC-CXR dataset Yes/No F1 Score.

Figure 6: Qualitative case study of both question types

Qualitative analysis. Fig. 6 showcases our LobA and some
other LMM’s response on some qualitative examples, as well
as the visual attention maps on the input images. We can see
that LobA manages to query the attention weights much more
intuitively compared to LLaVA-Med or LISA. While others’
attentions are scattered into many irrelevant areas, in the first
example LobA’s main attention weights are allocated around
the right lower lung area, and the second example is near the
left upper lung. Thanks to the grounding generation module,
followed by LobA’s self-prompting module to automatically
re-weight the attention to the area of interest, the model is
able to have better visual reasoning capabilities, leading to
more accurate answers compared with other methods.

6 Conclusion
This paper introduces Heal-MedVQA, a new large-scale
Medical Visual Question Answering Benchmark with over
67,000 question-answer pairs, which queries diseases at lo-
cal anatomies, evaluates LMM’s capabilities to localize at
grounded visual evidence when answering. In addition,
we present the Localize-before-Answer (LobA) framework,
which trains the LMMs to segment the region of interest and
re-adjust their attention for more emphasis on the segmented
pathological areas, leading to more reliable answers. Our ex-
perimental results showed that our framework LobA outper-
formed state-of-the-art medical LMMs on Heal-MedVQA,
proving its robustness and localization capabilities.
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