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Abstract

Road networks are the vein of modern cities. Yet,
maintaining up-to-date and accurate road network
information is a persistent challenge, especially in
areas with rapid urban changes or limited surveying
resources. Crowdsourced trajectories, e.g., from
GPS records collected by mobile devices and ve-
hicles, have emerged as a powerful data source for
continuously mapping the urban areas. However,
the inherent noise, irregular and often sparse sam-
pling rates, and the vast variability in movement
patterns make the problem of road network gener-
ation from trajectories a non-trivial task. Existing
methods often approach this from an appearance-
based perspective: they typically render trajecto-
ries as 2D density maps and then employ heuris-
tic algorithms to extract road networks - leading
to inevitable information loss and thus poor per-
formance especially when trajectories are sparse or
ambiguities present, e.g. flyovers. In this paper,
we propose a novel approach, called GraphWalker,
to generate high-fidelity road network graphs from
raw trajectories in an end-to-end manner. We
achieve this by designing a bespoke latent diffusion
transformer T2W-DiT, which treats input trajec-
tories as generation conditions, and gradually de-
noises samples from a latent space to obtain the cor-
responding walks on the underlying road network
graph - then assemble them together as the final
road network. Extensive experiments on multiple
datasets demonstrate the proposed GraphWalker
can effectively generate high quality road networks
from noisy and sparse trajectories, showcasing sig-
nificant improvements over state-of-the-art.

1 Introduction
Road networks are fundamental to the functioning of our
cities, supporting the efficient flow of goods and people, fa-
cilitating trade and economic growth, and enabling access
to essential daily services. With cities expanding and road
configurations evolving at a rapid pace, obtaining accurate

∗Corresponding author.
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Figure 1: The proposed GraphWalker (top) vs. appearance-based
methods (bottom) when generating road networks from trajectories.

digital representation of road networks has become increas-
ingly vital yet difficult. In practice, roads in the real world
may exhibit complex topologies, whose pattern can vary a
lot across different regions. Traditional approaches for road
network generation often rely on survey and/or remote sens-
ing, using satellite or aerial images to manually or semi-
automatically identify road segments [Huang et al., 2020].
Although being able to offer the bird’s-eye view of the land-
scapes, these approaches are often time-consuming and cost-
intensive - high-resolution imagery can be expensive to ac-
quire, while updates may not be frequent enough to reflect
the rapid road infrastructure changes. The recent widespread
use of location-aware devices, such as mobile phones and
vehicles with GPS, has generated an abundance of crowd-
sourced trajectories when their users move across the urban
space, offering a unique view of the structures of the real-
world road network. Such data can provide near-continuous
insights on how people or vehicles may move on the roads,
and thus extracting road networks from that becomes a more
cost-effective way than the traditional approaches. To gen-
erate road networks, existing methods [Hong et al., 2024]
typically project the trajectories on a 2D plane, where the
location points of the trajectories are overlayed as density
maps. These density maps are then converted to a heatmap
with standard computer vision techniques, where each pixel
encodes the likelihood of a valid road presents, i.e. an occu-
pancy grid. They then apply heuristic-based algorithms such
as non-maiximum suppression to extract road networks from
the computed heatmaps, often in the format of a graph where
vertices are road junctions while edges are segments.
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These approaches, although more efficient than survey or
remote sensing, are still lacking in many aspects. Firstly, dis-
cretizing individual location points into heatmaps inevitably
causes information loss due to limited resolution, while the
directional information encoded naturally in trajectories has
been ignored, which are valuable to infer road segment prop-
erties, e.g., one-way roads. Secondly, these appearance-based
approaches tend to be sensitive to the quality of trajectories -
they may work with dense and accurate trajectory - but in
reality location data such as GPS records are likely to suf-
fer from positional errors and irregular sampling rates, result-
ing in disjoint or misaligned roads generated. Finally, only
looking at 2D heatmaps these approach often fail to discover
non-trivial road topologies. With heuristic-based algorithms
like corner/edge detection, it is impossible to tell if an inter-
section of two lines is a normal road junction or rather an
overpass/underpass, as illustrated in Fig. 1.

In this paper, we aim to overcome the shortcomings of ex-
isting solutions, and design an end-to-end approach for high-
fidelity road network generation. Instead of directly trying to
knead trajectories into a road network graph, let us first take
a step back and consider the inverse problem of generating
noisy trajectories from a known road network graph. For a
given road network graph, one can easily generate a trajectory
by: i) select a finite sequence of edges which joins a sequence
of vertices (referred to as a walk in graph theory); and ii) sam-
pling noisy location points according to the edges of the se-
lected walk. This indicates if there is a way to reverse this
process, for any trajectory we can discover the correspond-
ing walk describing how it has traversed the underlying road
network. Then with sufficiently many trajectories one can
generate a large amount of walks, each of which corresponds
to a subgraph of the actual road network, and we should be
able to reconstruct the final road network graph from them.

Building upon this insight, we propose a novel road net-
work generation framework, called GraphWalker 1, based
on latent diffusion model (LDM) [Rombach et al., 2022].
We formulate the problem of road network generation from
trajectories under the umbrella of denoising diffusion-based
generative modeling. Essentially, we view trajectories as the
noisy and “interpolated” version of corresponding walks on
the graph, where GraphWalker is designed to generate those
walks and assemble them into a valid road network graph.
Concretely, we first train a Walk-to-Graph Variational Au-
toencoder (W2G-VAE) that can represent arbitrary walks on
the road network graph in a latent space, and later recon-
struct the graph from walk embeddings. Then we design a
novel Trajectory-to-Walk Diffusion Transformer (T2W-DiT)
that can generate valid latent walk embeddings with input tra-
jectories as conditions, which are then decoded into actual
walks by the previously trained W2G-VAE and assembled
into the final road network graph via an end-to-end trainable
neural network. In this way, we cast the problem of generat-
ing road networks from trajectories into a generative denois-
ing process, and circumvent the challenges of directly recon-
structing the whole graph by considering walks in a latent
space as the intermediate representations. The technical con-
tributions of this paper can be summarized as follows:

1Code at: https://github.com/JinmingWang/GraphWalker.

• To the best of our knowledge, we are the first to for-
mulate the task of road network generation from tra-
jectories with end-to-end trainable denoising diffusion-
based generative modeling. Unlike existing solutions
that rely heavily on hand-crafted heuristic algorithms,
our approach generates high-fidelity road networks di-
rectly from noisy trajectories via recovering the corre-
sponding walks.

• We design a new generative framework GraphWalker
based on LDM, which features a cross-domain VAE
named W2G-VAE and a novel T2W-DiT, both bespoke
for this particular task. The encoder of W2G-VAE maps
walks into a latent space, from which the latter T2W-
DiT gradually generates walk embeddings given the in-
put trajectories as conditions, while the W2G-VAE de-
coder recovers valid walks from the generated embed-
dings and reconstructs the final road networks.

• Extensive experiments conducted on diverse real-
world datasets show that GraphWalker outperforms
both appearance-based methods and state-of-the-art
diffusion-based graph generation approaches, demon-
strating significant improvements in generation accuracy
and superior robustness with limited trajectory data and
unusual road topologies present.

2 Preliminaries
2.1 Problem Formulation
Trajectory. Let p = (longitude, latitude) be a GPS point.
We define a trajectory τ as an ordered set of location points
τ = {p1, p2, ..., pN}, which are often sampled from the con-
tinuous motion when an agent is moving across the space e.g.,
on a road network.
Road Network Graph. Following existing literature, we
consider road network as a graph, where nodes are junc-
tions and edges are road segments between two junctions.
Instead of using the adjacency matrix representation, which
often fails to capture many key properties of real-world road
networks such as curved road segments, self-loops and mul-
tiple segments between two junctions, in this paper we adopt
an edge-list representation. Concretely, we define road net-
work graph as G = {e1, e2, ..., e|G|}, where each edge
e = {p1, p2, ..., pK} is a polyline containing K points. In
our implementation for simplicity we assume a fixed K for
all edges. The vertices of the graph are then the collection
of start and end points of the polylines, i.e. p1 and pK of
each e. Note that G encodes both topological and absolute
location information: each edge contains the locations of two
junctions (p1 and pK).
Trajectory Walk. For a given trajectory τ , when mapped
to the known road network graph G, the finite sequence of
edges that τ traverses is defined as its walk w = {ei|i ∈
[1, |w|]} on G, where |w| is the number of edges τ visited.
In this paper we assume for any trajectory τ there is always a
corresponding walk w exists, i.e. many to one mapping.
End-to-End Road Network Generation. Given the input
set of trajectories τ = {τ1, τ2, ..., τM}, the problem of end-
to-end road network generation aims to find a function f that

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/JinmingWang/GraphWalker


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

WalksTrajectories(a)

(b)

Conditioning

Diffusion

Denoising

Output Graph

W2GVAE Decoder

Walks
Embedding

Noise

Generated WalksClustered Edges

Inference

Training

Cluster
Averaging 
Module

Edge
Clustering

Module

Transformer
Backbone

𝝁

𝝈

W2GVAE
Encoder

T2WDiT

Figure 2: Overview of GraphWalker framework. (a) Trajecotries to walks embeddings. (b) Graph generation from walk embeddings.

directly generates the underlying road network graph G on
which the trajectories have traversed, i.e. f(τ ) → G.

2.2 Diffusion Models
A discrete-time diffusion model [Ho et al., 2020] defines a
two-process paradigm. Given a clean data sample x0 ∼
pdata(x), the forward process gradually transforms it into
Gaussian noise over T steps according to a predefined sched-
ule β1, . . . , βT . At each step t, the noised sample is drawn
from q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI). This process

can also be expressed directly in terms of x0: q(xt|x0) =

N (xt;
√
ᾱtx0, (1− ᾱt)I), where ᾱt =

∏t
i=1(1− βi).

The reverse process learns to denoise: a neural network
ϵθ(xt, t) is trained to estimate the noise added at each step.
This is done by minimizing the loss Et,x0,ϵ|ϵ− ϵθ(

√
ᾱtx0 +√

1− ᾱtϵ, t)|2. Once trained, the model can generate sam-
ples by iteratively applying the denoising step starting from
Gaussian noise. Conditioning information (e.g., labels or
other signals c) can be included during both training and sam-
pling by extending the network to ϵθ(xt, t, c).

To reduce computational cost while retaining high out-
put quality, latent diffusion models (LDMs) [Rombach et al.,
2022] perform the diffusion process in a compressed latent
space. An autoencoder is used to map input data into low-
dimensional latent representations, where the denoising net-
work operates. During generation, latent samples are first
produced by the diffusion model, then decoded back into the
original data space by the decoder.

3 Methodology
3.1 GraphWalker Overview
A naive solution to generate a road network graph from a
set of trajectories in an end-to-end manner is to simply feed
the trajectories to generative models such as GANs or dif-
fusion models [Goodfellow et al., 2014; Ho et al., 2020].
However, this approach often fails to produce high-fidelity
road network graphs, since the input trajectories are typically
noisy - the locations of trajectory points may be imprecise
(e.g., due to GPS drift), while their distribution can be sparse

and/or skewed - thus simply overlying them together as the
input of generative models will propagate or even enlarge
such noises, leading to inferior results. To address this, we
consider a different bottom-up approach. We observe that, al-
though noisy, for a given road network graph G, a trajectory
τi can be viewed as a noisy version of a partial graph traver-
sal, i.e. it is possible to recover a walk wi on the graph that
corresponds exactly to τi. Once we are able to discover all the
graph walks corresponding to input trajectories, it is also pos-
sible to assemble those into a consistent G, e.g. by merging
duplicate edges/nodes.

GraphWalker follows this intuition and addresses the
road network generation task in two stages: i) trajectories
to walk embeddings; and ii) graph generation from walk em-
beddings, as illustrated in Fig. 2. In the first stage, we train
a Walk-to-Graph Variational Autoencoder (W2G-VAE) that
can encode arbitrary walks on G into a latent space, and later
decode G from this space. Then for each input trajectory,
we feed it as the condition to a LDM named Trajectories-
to-Walks Diffusion Transformer (T2W-DiT) that operates in
such space, and generates embeddings of the corresponding
walks. In the latter stage, we use the trained decoder of our
W2G-VAE to recover walks from their latent representations,
and assemble them into the complete graph G. We now elab-
orate on each stage in more detail.

3.2 Trajectories to Walk Embeddings
Let τ = {τ1, τ2, ...τM} be a set of M trajectories, and
w = {w1, w2, ...wM} be the corresponding walks on the
known road network graph G. As explained above, the first
stage of GraphWalker is to construct a latent space Z of walks
in which: i) any walk can be mapped to its latent represen-
tations; and ii) sampling a latent vector from this continu-
ous space (e.g. with appropriate denoising process) can lead
to a valid walk embedding - meaning that the space should
be smooth under interpolation and/or extrapolation. Note
that the input walks, by definition, are chain-like structures.
Therefore, we design our W2G-VAE encoder with simple yet
effective 1D ResNet [He et al., 2015], which essentially ap-
plies variational regularization given w. Note that for the de-
coding part of our W2G-VAE, instead of recovering only the
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Figure 3: Architecture details of T2W-DiT, with NESA module
highlighted on the right.

walks as in standard VAE, we consider an augmented decoder
to directly reconstruct G, where modules assembling walks to
graph are also end-to-end learnable. We will discuss the de-
coder details in the following Sec. 3.3.

Now we have a latent space Z induced by our W2G-VAE,
which in theory, should be able to encode all possible walks
on the road network graph G. The next step is to generate
valid walk embeddings, i.e., a sequence of latent vector in
Z , given input trajectories τ . We design T2W-DiT, which is
able to generate latent walk embeddings from Z conditioned
on given trajectories. Essentially, our T2W-DiT starts from a
Gaussian noise in Z , gradually performs denoising with input
trajectories τ as the condition, and outputs latent embeddings
z ∈ Z corresponding to τ . When incorporating τ as con-
ditions, our T2W-DiT first concatenates features from τ and
the sampled latent embedding, and then applies a 1D ResNet
block to process the concatenated feature sequences. We also
design modules in our model to be permutation invariant to
ensure that the generated embeddings, and also the final road
network graph will not be affected by the order of input tra-
jectories.

To capture the non-trivial spatio-temporal correlations in
trajectories and walks, instead of using Multi-head Self-
Attention (MHSA) with layer normalization, which is a stan-
dard practice in DiTs, we bespoke our T2W-DiT with Neg-
ative Euclidean Self-attention (NESA), and consider feature
but not layer normalization. Concretely, we first replace the
standard layer normalization with feature normalization as
follows:

yi =
x:,i − µi√
σ2
i + ϵ

· γ + β (1)

where x ∈ RM×D represents the input features, assum-
ing we have M trajectories as input conditions and D is
the feature dimensions. µi = 1

L

∑L
j=1 xj,i and σ2

i =
1
L

∑L
j=1 (xj,i − µi)

2 are the mean and variance of the i-th
feature, and ϵ is a small constant (set to 10−5) to avoid divi-
sion by zero. Then the NESA is defined as:

softmax

(
−dist(q, k)2

s2

)
v (2)

where q, k, v are the projections of the input feature x, anal-
ogous to query, key and value in the standard MHSA. The

operation dist(·, ·) computes the Euclidean distance between
each pair of tokens, and s is a learnable parameter controlling
the decay rate with respect to the distance. Note that here
NESA does not work well with the standard layer normal-
ization, which will result in tokens with similar distances in
Euclidean spaces - leading to very close scores across tokens.
Detailed architecture of the proposed T2W-DiT is shown in
Fig. 3, with NESA module highlighted on the right.

3.3 Graph Generation From Walk Embeddings
Now given the M input trajectories τ = {τ1, τ2, ..., τM}, our
T2W-DiT has recovered the corresponding latent walk em-
beddings z = {z1, z2, ..., zM}. The next stage is to gener-
ate the final road network graph G from z. As mentioned in
Sec. 3.2, instead of employing a standard VAE decoder that
only reconstructs walks and manually assembles the road net-
work G later, our W2G-VAE considers an augmented decoder
that is end-to-end trainable, and can directly output G. Con-
cretely, our decoder uses a transformer backbone to firstly
generate the corresponding walks w = {w1, w2, ..., wM},
which are then fed into an edge clustering module. Within
that, the edges of all walks in w are firstly disassembled into
individual edge candidates, which are then clustered based
on their similarities. Let E denote the set of edge candi-
dates. The edge clustering module constructs a matrix P ∈
R|E|×|E|×4K , where each element of P is the concatenation
of two edge candidates (K location points in each edge, with
(x,y) coordinates). It then processes P with an MLP and a
sigmoid activation function, outputting a symmetric affinity
matrix A ∈ R|E|×|E|. Each element Aij ∈ (0, 1) represents
the likelihood that the i-th and j-th candidates should belong
to the same cluster. With A one can infer the cluster structures
among E, e.g., if we consider the affinity between edges as
a binary relationship (exists when the affinity score is above
a pre-defined threshold), one can discover the cluster that ei
belongs to in by looking at its transitive closure.

Let C ⊆ E be a cluster of edge candidates, and AC is a
sub-matrix of A, containing only the affinity scores between
those edge candidates in C. Let AC

uv be the largest value in
AC , meaning that eu and ev are the most similar candidates.
We then perform a row-wise softmax on the u-th row - ACu,:

becomes a probability distribution, which can be seen as the
weights of each candidate contributing to the cluster center.
Now we can compute the cluster centre by averaging the lo-
cation points between all edge candidates eu ∈ C, weighted
by the normalized ACu,: . We iteratively perform the above
for all clusters in E, and obtain a new set of edges, one of
each cluster, which is exactly the desired road network G.

3.4 Training
Our approach adopts the standard simulation-free LDM
training paradigm. Concretely, we first pre-train W2G-
VAE with w sampled from a known road network graph
G. During training, we consider the following three
loss functions: i) KL-divergence as in typical VAE train-
ing: − 1

2

∑n
i=1

(
1 + log σ2

i − µ2
i − σ2

i

)
, where µ and σ are

the mean and logarithmic variance of the latent embed-
ding z; ii) MSE loss to ensure correct reconstruction of
walks: 1

M

∑M
i=1 (wi − ŵi)

2, where wi and ŵi denote
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Trained on: TYO TYO TYO SHA SHA SHA LAS LAS LAS
Metric Tested on: TYO SHA LAS TYO SHA LAS TYO SHA LAS

TR2RM 0.381 0.474 0.480 0.389 0.427 0.470 0.375 0.467 0.471
DF-DRUNet 0.400 0.455 0.479 0.397 0.409 0.471 0.389 0.412 0.449

Hungarian MAE SmallMap 0.364 0.508 0.525 0.364 0.537 0.550 0.351 0.554 0.553
Graphusion 0.396 0.552 0.504 0.410 0.415 0.434 0.412 0.426 0.412
GraphWalker 0.378 0.411 0.415 0.349 0.241 0.286 0.365 0.251 0.299

TR2RM 0.334 0.507 0.489 0.344 0.452 0.485 0.316 0.502 0.486
DF-DRUNet 0.369 0.481 0.501 0.362 0.428 0.500 0.346 0.432 0.479

Hungarian MSE SmallMap 0.305 0.542 0.530 0.301 0.577 0.564 0.282 0.595 0.563
Graphusion 0.348 0.613 0.552 0.371 0.485 0.471 0.374 0.482 0.450
GraphWalker 0.377 0.456 0.449 0.329 0.272 0.312 0.350 0.284 0.330

TR2RM 0.453 0.777 0.751 0.460 0.785 0.759 0.468 0.798 0.745
DF-DRUNet 0.448 0.788 0.732 0.440 0.793 0.740 0.452 0.775 0.721

Chamfer MAE SmallMap 0.440 0.800 0.707 0.440 0.802 0.702 0.444 0.804 0.703
Graphusion 0.488 0.897 0.787 0.520 0.826 0.728 0.515 0.808 0.672
GraphWalker 0.291 0.521 0.454 0.332 0.456 0.420 0.315 0.445 0.418

TR2RM 0.232 0.659 0.570 0.228 0.689 0.590 0.236 0.705 0.579
DF-DRUNet 0.227 0.672 0.563 0.217 0.707 0.574 0.232 0.658 0.543

Chamfer MSE SmallMap 0.219 0.669 0.521 0.223 0.675 0.530 0.216 0.671 0.523
Graphusion 0.270 0.818 0.646 0.291 0.856 0.614 0.295 0.829 0.576
GraphWalker 0.177 0.456 0.368 0.183 0.437 0.357 0.176 0.427 0.362

Wasserstein TR2RM 0.250 0.848 0.572 0.293 0.998 0.746 0.272 0.942 0.706
Distance of DF-DRUNet 0.286 0.846 0.602 0.294 1.076 0.740 0.268 0.969 0.730
Edge Length SmallMap 0.227 0.820 0.509 0.238 0.777 0.532 0.221 0.740 0.519
Distributions Graphusion 0.206 0.733 0.567 0.293 0.747 0.499 0.330 0.776 0.491

GraphWalker 0.173 0.624 0.453 0.185 0.626 0.462 0.182 0.622 0.452

Table 1: Performance comparison when competing approaches are trained and tested with data collected from different cities: Tokyo (TYO),
Shanghai (SHA) and Las Vegas (LAS). Best in red while second best in blue.

the ground truth and predicted walks; and iii) a binary
cross-entropy loss to measure graph reconstruction quality:
− 1

M

∑
i,j

(
Aij log Âij + (1−Aij) log(1− Âij)

)
, where A

and Â are the affinity matrices, calculated from the ground
truth w and the reconstructed ŵ respectively. The final loss
used for W2G-VAE training is a linear combination of the
above three functions.

Then we fix the parameters of W2G-VAE and follow the
standard training procedures for diffusion models to train our
T2W-DiT. In particular, we encode w into latent encodings
z with the pre-trained W2G-VAE, and add noise through the
forward diffusion process at a randomly selected timestep t to
obtain zt - then T2W-DiT is trained to predict the added noise
ϵ using the MSE loss: 1

M

∑M
i=1 (ϵi − ϵ̂i)

2, where ϵi and ϵ̂i are
the ground truth and predicted noise for the i-th data point.

4 Evaluation
4.1 Experimental Settings
Datasets. We evaluate the proposed GraphWalker on real-
world datasets collected from three different cities: Tokyo
(TYO), Shanghai (SHA) and Las Vegas (LAS). To ensure
fair comparison with the appearance-based road network
generation approaches, which requires both trajectory data
and aerial or satellite images, we follow the existing litera-
ture [Hong et al., 2024] and synthesize trajectories with re-
spect to the ground truth road network. This also allows
us to have trajectories with diverse motion patterns cover-

ing different areas across the cities, which is often limited in
most of the publicly available trajectory datasets [Didi, 2017;
Crailtap, 2018; Zheng et al., 2011]. Concretely, for an
area within the city specified by a bounding box of cer-
tain size, we collect its road network data using Open-
StreetMap [OpenStreetMap contributors, 2017], and aerial
images from Google Maps [Google, nd]. To generate trajec-
tories, we employ the recent work ControlTraj, a diffusion-
based trajectory generation technique [Zhu et al., 2024],
which can generate human-directed, high-fidelity trajectories
constrained by the road network topology. For numerical sta-
bility, the generated location coordinates (in the format of
GPS coordinates) are z-score normalized. We apply standard
data augmentation techniques such as random rotations and
flips, while also randomly shuffling the order of data to facil-
itate permutation-invariant learning.
Baselines. We compare the proposed approach against four
strong baselines. i) TR2RM [Yang et al., 2024b], which
uses AD-LinkNet to process aerial images and trajectory den-
sity maps and capture multi-scale geographical features. ii)
DF-DRUNet [Li et al., 2024], which employs two separate
UNet [Ronneberger et al., 2015] to process aerial image and
trajectory density maps, and then combine them with Gated
Fusion Modules. iii) SmallMap [Hong et al., 2024], which
uses GANs to generate trajectories heatmaps and resolve ir-
regularities in generated roads. Note that all the above base-
lines are appearance-based, i.e., eventually they need to ex-
tract road network graphs with heuristic algorithms like thin-
ning, corner detection and flood-fill. We also consider a state-
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Figure 4: Performance of competing approaches when tested with data from areas of different sizes.
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Figure 5: Performance of competing approaches when tested with different amounts of input trajectories.

of-the-art diffusion-based approach: iv) Graphusion [Yang
et al., 2024a], which is a generic graph generation approach
based on LDM. We adapt Graphusion to work in our set-
tings, and feed trajectories as the conditions into its gener-
ation process. Note that unlike the proposed approach, Gra-
phusion does not consider walks, and its VAE directly en-
codes/decodes the entire graph.

Metrics. We consider the following metrics, Firstly, we
care about the correct ordering and alignment between the
generated edges and the ground truth. Therefore we first
perform Hungarian algorithm to discover the optimal one-to-
one mapping between the generated and ground truth edges,
and then evaluate Mean Absolute Error (MAE) and Mean
Squared Error (MSE) for each matched pair. This gives us
two metrics: i) Hungarian MAE; and ii) Hungarian MSE.
On the other hand, we are also interested in the point-wise
matching error in both directions, and thus we also consider
Chamfer Loss, resulting in two additional metrics: iii) Cham-
fer MAE and iv) Chamfer MSE. Finally, we consider the
v) Wasserstein Distance between the distributions of edge
lengths in the generated and ground truth graphs, which de-
scribes the global structural consistency of road network pro-
duced by different algorithms.

4.2 Results
Overall Performance. We evaluate the competing ap-
proaches with data across three different cities, each of which
is trained on one city and tested on all three, to study their
performance when generalized to unseen settings with het-
erogeneous road network topologies. The results are shown
in Table 1. As we can see, appearance-based approaches
generally underperform the proposed GraphWalker in most
settings, despite TR2RM and DF-DRUNet which also use
aerial images during generation. Surprisingly, the more re-
cent diffusion-based Graphusion fails to demonstrate signifi-
cant improvements over the existing appearance-based meth-
ods, indicating that although powerful, without careful cus-
tomization LDM are not directly applicable to address the
problem of road network generation from trajectories. On

the other hand, the proposed GraphWalker outperforms all
baselines in most cases, showcasing that our W2G-VAE and
T2W-DiT, when work in tandem, can effectively generate
high-fidelity road networks from noisy trajectories. In par-
ticular, GraphWalker consistently performs well when tested
on different cities other than training - demonstrating up to
33% improvement over the baselines.
Performance vs. Area Sizes. In this experiment, we inves-
tigate how competing approaches perform when generating
road networks for an area (bounding box) of different sizes.
Specifically, we use data from a bounding box of approxi-
mately 250m×250m for training, and evaluate the quality of
the generated road networks in areas of four different sizes, as
shown in Fig. 4. We observe that most of the approaches ex-
cept Graphusion enjoy an improved performance as the size
increases, most likely due to the fact that more information is
available in larger areas despite the noise in trajectories, i.e.
the signal-to-noise ratio increases. Graphusion fails in such
cases, potentially due to their diffusion models may not be
robust enough when road network topologies change signif-
icantly as the area expands. Note that the proposed Graph-
Walker consistently outperforms all baselines in most cases,
showing much lower errors especially in settings that they
have not been trained on.
Performance vs. Limited Data. This experiment studies
how competing approaches perform when input trajectories
are limited. This is common in practice as real-world trajecto-
ries are often unevenly distributed across the cities: some ar-
eas may only have a few sparse trajectories available. In such
cases, as shown in Fig. 6 (3rd row), the appearance-based ap-
proaches struggle to recover meaningful road networks. To
evaluate quantitatively, we train all approaches with 48 tra-
jectories, and during generation provide them with different
amount of input trajectories. As shown in 5, the genera-
tion accuracy of appearance-based baselines degrades dras-
tically with fewer input trajectories, while Graphusion and
our GraphWalker maintain strong performance. This con-
firms that diffusion-based approaches are inherently robust to
limited input data - the proposed GraphWalker is still the best
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Figure 6: Visualization of road networks generated by appearance-based baselines and our GraphWalker when challenging cases present.

Method Time VAE FLOPs DiT FLOPs

TR2RM 0.106s - -
DF-DRUNet 0.084s - -
SmallMap 0.085s - -
Graphusion 0.141s 50G 28G

GraphWalker 0.165s 32G 29G

Table 2: Inference time and model FLOPs of different approaches.

overall with much lower errors.

Robustness to Non-trivial Topology Patterns. In practice,
road networks may exhibit complex topology patterns that are
challenging to discover only from a bird’s-eye view. In this
experiment, we show that appearance-based approaches can-
not recover road networks with non-trivial topology patterns.
The results of different cases are visualized in Fig. 6. For in-
stance, those baselines may generate erroneous road networks
when there are multiple road segments between two junctions
(row 1), there are overpasses/underpasses (row 2 and 3), or
just roads with self-loops (row 4). On the contrary, we see
that the proposed GraphWalker (column 4) is robust to such
challenging cases and can generate graphs that are very close
to the ground truth (column 5).

Computational Efficiency. Diffusion models can be more
computationally intensive compared to appearance-based
methods. In Table 2, we show the wall-clock inference time
per input trajectory (averaged over 1000 randomly selected
trajectories, measured on a single NVIDIA 4090 GPU). We
also compute the FLOPS of both the VAE and DiT of our
approach and also the diffusion-based Graphusion.

5 Related Work
Road Network Generation. Early road network genera-
tion methods rely on heuristic algorithms [Biagioni and
Eriksson, 2012; Stanojevic et al., 2018; Gao et al., 2022;
He et al., 2018]. They are mainly based on trajectory data
and human flow data. Benefit from the advancement in deep
learning, many methods adopt CNNs to infer road networks
from aerial imagery, such as SOC-RoadNet [Zhou et al.,
2022], CasNet [Cheng et al., 2017] and SII-Net [Tao et al.,

2019]. RoadTracer [Bastani et al., 2018] proposed an itera-
tive graph construction algorithm, which is capable of accu-
rately deriving the graph from the semantic segmentation out-
put guided by a CNN decision function. Some other methods
argue that adopting both remote sensing images and trajec-
tory data makes the solution more robust, including DuARE
[Yang et al., 2022], TR2RM [Yang et al., 2024b] and DF-
DRUnet [Li et al., 2024]. Moreover, some methods leverage
power content generation tools such as generative adversarial
network (GAN) [Goodfellow et al., 2014; Yao et al., 2024;
Li et al., 2022] and diffusion models [Gu et al., 2024].
Graph Generation. Graph generation methods are popu-
lar in the chemistry and biology fields, where they are used
to predict protein and molecular structures. They can be cate-
gorized into five classes based on the generative model used.
The auto-regressive methods, including GraphRNN [You et
al., 2018] and MolecularRNN [Popova et al., 2019]. The
VAE-based methods, such as GraphVAE [Simonovsky and
Komodakis, 2018], CGVAE [Liu et al., 2019] and Graphite
[Grover et al., 2019]. The normalizing flow based methods,
including MoFlow [Zang and Wang, 2020] and GraphDF
[Luo et al., 2021]. The GAN based methods, such as Graph-
GAN [Wang et al., 2017] and Mol-CycleGAN [Maziarka
et al., 2020]. Finally, the diffusion model based methods in-
cluding GraphGDP [Huang et al., 2022], EDP-GNN [Niu et
al., 2020] and Graphusion [Yang et al., 2024a].

6 Conclusion
This paper proposes GraphWalker, a novel end-to-end train-
able framework for high-fidelity road network generation
from noisy trajectories. We draw from the powerful latent
diffusion models, and design a bespoke cross-domain VAE,
W2G-VAE, as well as a novel diffusion transformer T2W-
DiT, that can iteratively recover the road network graph via
denoising walk embeddings in a latent space with the input
trajectories as conditions. Extensive experiments with real-
world trajectories collected from three different cities show
that GraphWalker consistently outperforms both appearance-
based and state-of-the-art diffusion-based baselines, and is
more robust under different settings such as heterogenous
area sizes, limited input data and challenging road topologies.
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