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Abstract

Due to the large number of parameters, the infer-
ence phase of Large Language Models (LLMs) is
resource-intensive. However, not all requests posed
to LLMs are equally difficult to handle. Through
analysis, we show that for some tasks, LLMs can
achieve results comparable to the final output at
some intermediate layers. That is, not all layers of
LLMs are necessary during inference. If we can
predict at which layer the inferred results match the
final results (produced by evaluating all layers), we
could significantly reduce the inference cost. To this
end, we propose a simple yet effective algorithm
named AdaInfer to adaptively terminate the infer-
ence process for an input instance. AdaInfer relies
on easily obtainable statistical features and classic
classifiers like SVM. Experiments on well-known
LLMs like the Llama2 series and OPT, show that
AdaInfer can achieve an average of 17.8% pruning
ratio, and up to 43% on sentiment tasks, with nearly
no performance drop (<1%). Because AdaInfer
does not alter LLM parameters, the LLMs incorpo-
rated with AdaInfer maintain generalizability across
tasks.

1 Introduction
LLMs have demonstrated impressive performance on var-
ious downstream tasks using evaluation protocols such as
zero-shot, few-shot, and fine-tuning. Example applications
include text generation, question answering, and sentiment
analysis. Notably, the in-context learning ability allows
LLMs to adapt to various different tasks using input-output
examples without parameter updates. However, the in-
ference phases of LLMs are typically very expensive due
to their large number of parameters [Pope et al., 2023;
Liu et al., 2023]. Specifically, the inference time complex-
ity for typical large models with a Transformer structure is
LSd(d + S) per single inference, where L, S, and d repre-
sent the number of layers, sequence length, and hidden size,
respectively [Touvron et al., 2023].

*Corresponding authors.

Existing solutions to achieve more efficient inference in
LLMs include model pruning [Ma et al., 2023; Kim et al.,
2024] and sparse models [LeCun et al., 1989; Liu et al., 2023].
Both solutions alter LLM parameters and may risk compromis-
ing generalization ability. Additionally, different LLM designs
pose compatibility challenges with other acceleration meth-
ods. Hence, an ideal efficient LLM inference should use fewer
computational resources while maintaining generalization and
in-context learning abilities [Liu et al., 2023].

If we draw an analogy between LLM inference and the
human thinking process [Salthouse, 1996; Deary et al., 2001],
where simple questions can be answered quickly and com-
plex questions require more time for reasoning, we may
expect LLMs not to use the same inference power to han-
dle all tasks. Previous work [Teerapittayanon et al., 2016;
Huang et al., 2017] show that “easy” tasks activate at shal-
lower layers while “hard” ones activate at deeper layers. For
LLM training, a growth strategy [Li et al., 2023] adds param-
eters in stages to reduce the overall training cost, i.e., not all
training instances use the same set of parameters. Hence, we
consider that adjusting the parameters during inference based
on the difficulty level of a task may be an effective way for
efficient inference.

To this end, we conduct a statistical analysis to examine
the correlation between the results obtained in intermediate
layers and those in the final layers across various tasks. We
made two observations: (i) not all layers of LLMs are nec-
essary during inference, i.e., early stopping works, and (ii)
simpler tasks require fewer layers, while more complex tasks
require more layers of inference. The key to achieving ef-
ficient LLM inference then becomes when to stop the infer-
ence process adaptively based on the input instance. Inter-
estingly, exploring adaptive inference may bridge LLMs with
the brain’s information processing [Hubel and Wiesel, 1962;
Murata et al., 2000], aiding in the analysis of activated net-
work modules during sample processing [Han et al., 2021]
and identifying crucial input components that affect the final
prediction.

In this paper, we present AdaInfer, a simple yet effective
algorithm for instance-aware adaptive inference. The core
of AdaInfer lies in data-driven decision-making. We begin
by performing a statistical analysis on each block feature
of LLMs, such as logits, hidden states, mlp, and attention
activation values. Consequently, we choose logits to construct
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features and employ classical statistical classifiers, SVM and
CRF, to predict the optimal layer at which to stop the inference.
Experiments on well-known LLMs (i.e., Llama2 series and
OPT) show that AdaInfer can achieve an average of 17.8%
pruning ratio, and up to 43% on sentiment tasks, with nearly
no performance drop (<1%). The cost of collecting the small
set of statistical features and running AdaInfer is negligible
compared to the cost of LLM inference.

AdaInfer is an early stop strategy that optimizes efficiency
without altering the model’s parameters. Therefore, AdaIn-
fer does not affect the model’s generalization and in-context
learning abilities. Furthermore, being orthogonal to other
model acceleration techniques, AdaInfer offers the potential
for further enhancing inference efficiency.

2 Related Work
We study how to leverage the representation of LLM to achieve
adaptive inference. Our problem setting and methods are
closely connected to many existing research areas.

Dynamic depth. This involves two methods: Early Exit
(EE) and Skip Layer. EE first appeared in CNN/DNN networks
for visual tasks [Bolukbasi et al., 2017; Huang et al., 2017;
Teerapittayanon et al., 2016]. Subsequently, it was utilized
to accelerate the inference of encoder-only architectures in
BERT [Li et al., 2020; Liu et al., 2020; Li et al., 2021].
Recently, [Schuster et al., 2022; Varshney et al., 2023] dis-
cussed confidence-based EE for LM adaptive inference. Our
proposed AdaInfer closely aligns with the EE concept. We
apply EE to mainstream decoder-only LLMs, which adhere
to the scaling law but suffer from high inference costs due
to their large parameter count. Skip Layer dynamically
omits the execution of middle layers (or modules) for an in-
put token, facilitated by a binary router [Zeng et al., 2023;
Raposo et al., 2024], or layer pruning [Kim et al., 2024;
Men et al., 2024; Ma et al., 2023]. The main difference
between our method and theirs is that we achieve instance-
wise inference (i.e., dynamic pruning ratio tailored to specific
tasks) without altering the model parameters, which is crucial
for current LLMs. To the best of our knowledge, this is the
first attempt to discover that each block’s logits are crucial
elements for EE classifiers in LLMs, and we incorporate this
insight as a fundamental design choice in AdaInfer.

Speculative decoding. Unlike traditional autoregressive de-
coding, which generates tokens one by one, speculative de-
coding uses a smaller, faster “draft” model to predict mul-
tiple tokens at once [Leviathan et al., 2023; Chen et al.,
2023]. In contrast, our approach only requires one tar-
get model. Self-speculative decoding [Zhang et al., 2024;
Elhoushi et al., 2024] employs a pruned target model as the
draft model. Our approach differs in layer selection strat-
egy (probability features vs. multiple Bayesian searches) and
focus (emphasizing the initial generation stage, while they
concentrate on the generate stage). This distinction is further
highlighted in our experiments.

Knowledge elicitation and honesty. The goal of it is to
elicit latent knowledge from a superhuman machine learning
model even under worst case assumptions [Christiano et al.,

1 6 11 16 21 26 31
Layer-Index
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Figure 1: Accuracies obtained by inference at each decoder layer
with the Llama2-7B model (32 layers). The solid line represents the
sentiment analysis task, and the dashed line represents the MMLU
task.

2022]. Techniques like the logit lens and tuned lens [Bel-
rose et al., 2023; Nostalgebraist, 2020] trace the prediction
trajectory of intermediate layers by converting hidden states
into distributions over the vocabulary. Our work builds on
these lens techniques and can be seen as their practical appli-
cation—adaptive inference.

3 Efficiency Analysis of LLM Inference
Before presenting the statistical observations and insights on
LLM inference, we first briefly review LLM’s critical compo-
nents.

3.1 Preliminary: LLM Building Blocks
Modern LLMs, rooted in the Transformer architec-
ture [Vaswani et al., 2017], can be trained with various un-
supervised training objectives. In this paper, we focus on
mainstream LLMs like GPT and the Llama series. These mod-
els are built with a decoder-only structure and are pre-trained
with a full language modeling objective, computing loss on
all tokens. Their key components can be broken down into
the following blocks: Tokenizer and Embedding Layer, De-
coder Block, and Classification Layer. The tokenization and
embedding layer converts input text into numerical vectors
h0, enabling effective processing and analysis of textual data.
The decoder block F processes h0 through self-attention and
feedforward neural networks, allowing the model to focus on
the most relevant parts of the input. Lastly, the classification
layer, or the LM head layer, maps decoder output hL into a
vocabulary-wide probability distribution p to facilitate word
prediction. These blocks facilitate LLMs in efficiently han-
dling NLP downstream tasks, with a primary emphasis on the
decoder block.

During inference, each input instance passes through the
decoder block F , layer by layer, until the last layer:

hℓ+1 = hℓ + Fℓ(hℓ), ℓ ∈ {1, . . . , L} (1)

where hℓ ∈ Rd is the hidden state at block ℓ. Hence, the in-
ference complexity is linearly related to the number of decoder
layers L in the decoder block. The decoder block of earlier
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models typically comprised 6 layers, whereas current open-
source models have many more. For example, Llama2-7B has
32 layers and Llama2-13B features 40 decoder layers [Tou-
vron et al., 2023].

3.2 Not all Layers are Necessary
To explore the possibility of skipping some intermediate layers
during inference, we conduct experiments on two tasks: senti-
ment analysis [Socher et al., 2013] and MMLU [Hendrycks
et al., 2021]. We examine the accuracies obtained by stop-
ping inference at each decoding layer and compare them with
the final results, i.e., without stopping inference. The exper-
iments were conducted on both Llama2-7B (32 layers) and
Llama2-13B (40 layers), and the same observations hold.
Observation 1. Not all layers of LLMs are necessary during
inference: Early Stopping works.

Using the SST-2 dataset [Socher et al., 2013], we conduct
sentiment classification experiments on the Llama2-13B (40
layers) model. We perform inference at each layer with a
batch size of 1 and record the results. On average, an early
exit at layer 21 (with a variance of 5.1) achieves comparable
accuracy to the final layer output. Interestingly, simpler inputs
like ‘I like Camera A’ activate only 18 layers, while more
complex inputs like ‘Camera A is better than Camera B in
picture quality’ activate about 24 layers. Early stop works on
the Llama2-7B model as well.
Observation 2. Simpler tasks require fewer layers for infer-
ence, while complex tasks go deeper.

Figure 1 plots the accuracies by stopping inference at differ-
ent decoding layers on a Llama2-7B. For the task of sentiment
analysis, the accuracy matches that of the final layer by the
24th layer, represented by solid lines in the figure. For MMLU,
a complex task, accuracy tends to improve with deeper lay-
ers. A similar trend holds across all four tested settings, from
0-shot to 3-shot learning.
Insight. Both observations are intuitive and, in fact, not
new. Similar findings have been made in visual tasks with
convolutional neural networks [Teerapittayanon et al., 2016;
Huang et al., 2017] and sentence classification with BERT [Liu
et al., 2020]. We extend these observations to decoder-only
LLM inferences.

Based on the two observations, we understand that (i) early
stopping works, allowing us to reduce inference costs by stop-
ping at certain decoding layers without compromising model
accuracy, and (ii) the number of optimal decoding layers for
inference is instance-dependent. The number of optimal de-
coding layers varies across tasks and even across instances of
the same task. Recall the two example sentences for sentiment
analysis discussed in Observatoin 1. This means that the layer
at which inference stops must be dynamically determined (or
predicted) for each input instance.

4 AdaInfer: Adaptive Inferences
Modifying LLM parameters may require additional training
and pose a potential risk of compromising the model’s gen-
eralization capabilities. In designing AdaInfer, we embrace
a cost-effective approach that preserves the model’s innate

I like Camera A.

Camera A is better 
than Camera B in 
picture quality.

STOP

Simplify and write the 
result with a rational 
denominator:

STOP

forward statistic
classifier

feature 
vector

embedding
layer

decoder 
block

skipped 
block

classification
layer

Sentiment task

MMLU task

STOP

729
!

(a) AdaInfer processes three input instances for two tasks, with infer-
ence stopping at different decoding layers.

Avg. layer:19.3, Variance: 1.7 
51.2% FLOPsSentiment task

MMLU task

Llama2-13B 40 layers
100% FLOPs

Avg. layer: 32.4, Variance: 16.7 
84.1% FLOPs

(b) Effectiveness in reducing computational costs with early stopping
during inference.

Figure 2: An illustration of AdaInfer’s processing and computational
savings.

abilities without altering its parameters. The main idea is to
capture signals at each decoding layer and make predictions
on whether to stop the inference at the current layer.

The workflow of AdaInfer is depicted in Figure 2a with
three example input instances. At each decoding layer, a Fea-
ture Selection component crafts a feature vector for the current
input instance. A binary Classifier then predicts whether to
stop the inference, i.e., bypass subsequent decoder layers.

4.1 Feature Selection
LLMs capture coarse-grained features in their initial layers and
develop more detailed, fine-grained representations in deeper
layers [Nostalgebraist, 2020; Belrose et al., 2023]. This pro-
cess is facilitated by the repeated application of multi-head
attention mechanisms and the use of residual connections.
However, there is a lack of features to demonstrate at which
stage the representation is sufficient for the current task. Fur-
thermore, these features need to be inherently universal to
ensure compatibility across various LLMs.

As a part of feature engineering, we conduct a visual analy-
sis of diverse features from each decoding layer (or decoding
block illustrated in Figure 2a) of LLMs. Our examination
focused specifically on:

• Gap: Measures the prediction confidence of the cur-
rent block ℓ for the next token. It is defined as
Pℓ(top token)− Pℓ(second token), where Pℓ represents
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(a) Sentiment Task (b) MMLU Task

Figure 3: Changes of feature values along the 40 decoding layers in
Llama2-13B model.

the probability distribution produced by block ℓ: Pℓ =
softmax(LM head(hℓ)), Pℓ ∈ R|V |, with |V | denoting
the vocabulary size.

• Top Prob: The probability estimate Pℓ(top token) for
the most likely next token according to the current block.

• Cosine Similarities: Cosine similarity scores between
the current and previous blocks, calculated for attention
values (attn), multi-layer perceptron outputs (mlp), and
hidden states.

• Probs KL: The KL divergence between the probability
distributions Pℓ and Pℓ−1.

Again, we use the sentiment and MMLU tasks on the
Llama2-13B (40 layers) model for feature analysis, shown
in Figure 3. Observe the following trends: (1) across tasks,
both “gap” and “top prob” gradually increase alone the infer-
ence phase, stabilizing in the deeper layers. (2) The activation
of “gap” and “top prob” varies across layers for different
tasks. These phenomenons are also evident in the Llama2-7B,
OPT-13B [Zhang et al., 2022], and GPT-J [Wang and Komat-
suzaki, 2021]. The feature analysis suggests that “gap” and
“top prob” can serve as universal features for the inference-
stopping signal. Notably, these two values remain consistent
across two diverse tasks, indicating a versatile discriminating
power applicable to various tasks. Factor studies in subse-
quent experiments also show that other features (e.g., cosine
similarities) exhibit subtle differences across layers.

4.2 Classifier
The classifier determines if the signal is compelling enough
to warrant an early termination of the process. There are
many choices for classifiers, ranging from rule-based classi-
fiers [Huang et al., 2017; Yang et al., 2020; Wang et al., 2022]
to gating functions [Lin et al., 2017; Bejnordi et al., 2019]. In
our context, classical statistical classification methods are a
good option due to their efficiency and their ability to handle
simple input features (i.e., “gap” and “top prob”) for a binary
classification task.

Given one instance, we obtain the feature vector xd using
the feature selection module. If the current layer’s output ŷ
provides the correct answer y, the associated label yc is a

Model Params Tokens Layer Num.

EleutherAI/GPT-J 6B 0.4T 28
Meta/OPT 13B 0.18T 40
Meta/Llama 2 7B 2T 32
Meta/Llama 2 13B 2T 40
Meta/Llama 2 70B 2T 80

Table 1: Overview of the LLMs used in experiments with AdaInfer.

positive example; otherwise, it is a negative example. For
LLMs trained to predict the next token, if the next token ŷ
predicted based on an intermediate decoding layer’s output is
the same as the token y predicted by the last decoding layer’s
output, then the layer’s label yc = 1.

yc =

{
1 if ŷ = y,

0 otherwise.
(2)

Thus, for an L-layer LLM, each input instance x yields L pairs
of ⟨xd, yc⟩. The details of creating training data for the clas-
sifier are provided. In our implementation, we consider two
types of classifiers: Support Vector Machines (SVM) [Hearst
et al., 1998] and Conditional Random Fields (CRF) [Lafferty
et al., 2001]. SVM does not rely on the context of sequences,
while CRF incorporates sequence modeling along the decod-
ing layers.

5 Experiments
We now conduct experiments with AdaInfer on well-known
LLMs across various tasks. Specifically, we evaluate the
zero/few-shot learning capabilities, with two primary types of
tasks.
Question Answering Tasks. (1) MMLU [Hendrycks et al.,
2021] encompasses 57 tasks across humanities, social sciences,
STEM, and more, requiring world knowledge and problem-
solving capabilities. (2) CommonsenseQA [Talmor et al., ]
tests for commonsense knowledge through multiple-choice
questions. (3) SQuAD [Rajpurkar et al., 2016] serves as a
reading comprehension benchmark, with questions based on
Wikipedia articles and answers either segments of passage or
marked as unanswerable.
Text Classification Tasks. (1) SST-2 [Socher et al., 2013]
involves sentiment analysis of movie reviews with binary “pos-
itive” or “negative” labels. (2) AG News [Zhang et al., 2015]
classifies news headlines and article sentences into Business,
Science/Technology, Sports, and World categories.

5.1 Experiment Settings
Large Language Models. We select well-established large
language models as the backbone for AdaInfer. Specifically,
we utilize OPT [Zhang et al., 2022] and the Llama 2 se-
ries [Touvron et al., 2023] from Meta, along with GPT-J
[Wang and Komatsuzaki, 2021] from EleutherAI. Detailed
information about these models is provided in Table 1. These
models vary in terms of the number of parameters, ranging
from 6B to 70B, and the number of layers, ranging from 28
layers to 80 layers. These models exhibit subtle differences in
architectural design and training data volume.
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Method P. Ratio(↑) MMLU CommonsenseQA SQuAD Sentiment AG News
Acc(↑) #Avg.L(↓) Var Acc(↑) #Avg.L(↓) Var Acc(↑) #Avg.L(↓) Var Acc(↑) #Avg.L(↓) Var Acc(↑) #Avg.L(↓) Var

Llama2 7B (32 Layers)
Dense 0 43.05 32 – 53.50 32 – 48.08 32 – 95.20 32 – 79.65 32 –
ShortGPTp 28.13 21.52 23 – 33.52 23 – 10.60 23 – 93.48 23 – 56.90 23 –
ShortGPT5 15.63 29.95 27 – 41.90 27 – 12.97 27 – 90.40 27 – 53.25 27 –
ShortGPT3 9.38 37.39 29 – 53.22 29 – 14.32 29 – 94.17 29 – 71.28 29 –
AdaInfer 9.66 → 35.71 43.73 28.91 4.97 53.00 27.90 5.93 45.82 26.77 11.88 95.30 20.57 5.10 79.72 29.20 2.70

Llama2 13B (40 Layers)
Dense 0 53.31 40 – 64.92 40 – 52.90 40 – 95.90 40 – 77.53 40 –
ShortGPTp 25 45.12 30 – 65.00 30 – 13.32 30 – 84.38 30 – 55.90 30 –
ShortGPT5 12.50 46.64 35 – 64.45 35 – 16.35 35 – 89.80 35 – 70.17 35 –
ShortGPT3 7.50 47.22 37 – 64.47 37 – 17.25 37 – 95.90 37 – 75.47 37 –
AdaInfer 9.13 → 43.33 52.44 36.35 8.15 62.48 34.60 10.20 48.35 31.18 31.75 92.65 22.67 8.10 76.43 34.02 24.18

OPT 13B (40 Layers)
Dense 0 23.60 40 – 21.45 40 – 26.12 40 – 92.58 40 – 72.83 40 –
ShortGPTp 25 10.17 30 – 11.50 30 – 0.65 30 – 14.72 30 – 2.27 30 –
ShortGPT5 12.50 22.92 35 – 19.12 35 – 22.12 35 – 86.33 35 – 49.42 35 –
ShortGPT3 7.50 23.05 37 – 19.68 37 – 24.65 37 – 91.35 37 – 66.62 37 –
AdaInfer 9.75 → 22.63 22.59 32.37 7.92 21.62 33.33 12.12 25.95 34.20 13.50 92.97 30.95 5.77 72.83 39.00 0.00

Table 2: Performance and computational efficiency in multi-tasks. Accuracy (%) is denoted by ‘Acc’. Results of few-shot learning with sample
sizes of {5, 10, 15, 20} are reported in average values. ShortGPTp follows the orignal paper’s setting; ShortGPT5 and ShortGPT3 are to skip
the last 5 and 3 decoding layers, respectively. The best and second-best performance in each section are highlighted.

Classifier Configuration. We utilized the sklearn library for
training SVM1 and CRF2, adhering to their default configu-
rations. SVM and CRF are computationally efficient, with
low training and inference costs. In contrast, large models like
LLaMA2 require much more computation due to deeper lay-
ers, higher dimensions, and longer sequences, making SVM
and CRF lightweight by comparison.

In-Context Learning Setting. We evaluate AdaInfer under
zero-shot and few-shot scenarios, using sample sizes of 5, 10,
15, and 20. For zero-shot, the input is the test set’s xq. For
few-shot, training set examples are added to xq . For in-context
learning prompts, we use a default template: Q : {xk}\nA :
{yk}\n\n, concatenating random xk and yk samples from
task-specific training sets.

Metrics. We report the top-1 accuracy on the test set fol-
lowing function vectors [Todd et al., ] (HELM implemen-
tation)3. For computational efficiency, we follow previous
work [Ma et al., 2023; Schuster et al., 2022; Elbayad et al.,
2019] and report the pruning ratio (P. Ratio) and the average
number of activated layers (#Avg. L) for each task, along
with their variance (Var). These metrics directly measure
complexity reduction, avoiding conflation with implementa-
tion or infrastructure-specific details [Dehghani et al., 2021].
Considering the conditional checks and classifier computation
involved in AdaInfer, we also compare the actual speed of
AdaInfer in real-world scenarios with Dense implementation,
reporting wall-clock time [Dehghani et al., 2021].

Baseline Method: ShortGPT and Speculative Decoding.
We compare AdaInfer with the structured pruning method
ShortGPT [Men et al., 2024], which prunes redundant layers

1https://scikit-learn.org/stable/modules/svm.html
2https://sklearn-crfsuite.readthedocs.io/en/latest/
3https://huggingface.co/blog/open-llm-leaderboard-mmlu

in LLMs based on similarity scores. For the OPT model,
we calculate redundant layers as outlined in the paper. For
the LLama model, we use the same layers reported. Note
that these model pruning methods apply a static pruning ratio
across all tasks, whereas our AdaInfer adaptively performs
model pruning based on input.

5.2 Main Results
The main results of AdaInfer are presented in Table 2. Con-
ducted in few-shot settings, these experiments show the Top-1
accuracy, pruning ratios, average active layers for each task,
and their variance. From the perspective of performance and
computational efficiency, we draw the following experimental
conclusions.
AdaInfer has minimum impact on performance (<1%).
Table 2 shows that the Top-1 accuracy of AdaInfer remains
within a very narrow margin of less than 1% for all tasks
compared to dense models, i.e., without early exit. In con-
trast, ShortGPT, following the paper’s setting and denoted
as ShortGPTp, experiences a significant performance drop
for almost all tasks 4. Since AdaInfer adaptively skips de-
coding layers, the number of layers skipped varies for dif-
ferent instances and across different tasks. For a fair com-
parison, we have also evaluated ShortGPT5 and ShortGPT3,
which skip the last 5 and 3 decoding layers, respectively. The
numbers of skipped layers are chosen to match the over-
all range of layers skipped by AdaInfer. This allows for
a more comprehensive comparison with methods that use
a fixed pruning ratio [Yang et al., 2024; Ma et al., 2023;
Men et al., 2024]. The results in Table 2 demonstrate that
AdaInfer surpasses both settings.

4We noted a decline in the performance of the reproduced Short-
GPT on the SQuAD dataset when the prompts increased to 10, 15,
20 shots.
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Task Llama2 7B (FP32) Llama2 13B (FP16)
Dense AdaInfer Speed up Dense AdaInfer Speed up

MMLU 796.53 781.31 1.02x 339.19 320.46 1.05x
Sentiment 41.18 39.69 1.04x 28.18 21.76 1.30x

Table 3: Wall-clock time (s) and actual speedup for 358 test samples
from MMLU and 245 test samples from Sentiment Tasks.

Figure 4: SVM confusion matrix.

In short, AdaInfer achieves adaptive inference while main-
taining LLM capabilities and in-context learning abilities with-
out modifying model parameters. This finding is promising,
especially in light of our Observation 1, where we demonstrate
the feasibility of implementing early exit strategies while pre-
serving performance. As shown in Table 2, AdaInfer even
surpasses the last layer accuracy for certain tasks. This sug-
gests that deep layers may over-represent certain instances,
potentially impeding performance during LLM inference.

Pruning ratio ranges from 9% to 43%, average 17.8%.
We report the average and variance of the activated layers for
each task and compute the pruning ratios in Table 2. The
pruning ratios vary from task to task, ranging from 9% to 43%,
a clear indication of AdaInfer assesseing different early exit
layer configurations for different task inputs. More layers are
skipped for simple tasks like sentiment analysis task, where
a 43% reduction in computational cost can be achieved on
Llama2-13B. For more complex question answering tasks, the
savings range from 9% to 20%.

Wall-clock time. Next, we study the end-to-end runtime of
AdaInfer. Table 3 compares the runtime of AdaInfer with a
dense implementation on MMLU and Sentiment tasks (5-shot,
batch size set to 1), using 6× V 100 (32GB). We observed a
1.03x speed up on MMLU and 1.17x speed up on Sentiment
when applying AdaInfer. That is, despite AdaInfer converting
hidden states to logits at each block through the LM head
layer, it only utilizes the last token’s hidden state, which is
independent of the input sequence length. Consequently, this
computation cost is minimal (0.03% of the total FLOPs for
transformer inference). Meanwhile, statistical classifiers like
SVM have much lower computational costs compared to LLM
inference, highlighting the computational efficiency potential
of AdaInfer.

5.3 Analysis of SVM Classifier
Analysis of AdaInfer’s theoretical upper bound and fea-
ture engineering. To understand AdaInfer’s performance
limits, we first analyze the theoretical upper bound of early

Senti. AG News CoQA SQuAD MMLU0
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Theoretical optimum
(Minimal activated layers)
Base features
(Tn: Top prob at n layer,
Gn: prob gap at n layer)

6 features
(Tn, Gn, Tn Tn 1,
Gn Gn 1, Tn×Gn,
(Tn Tn 1) × (Gn Gn 1))
8 features
(6 Features + token freq
+ token ID match)

Figure 5: Theoretical upper bound of AdaInfer and feature engi-
neering. “Senti.” refers to the sentiment classification task; “CoQA”
refers to CommonsenseQA.

Feature Sentiment MMLU
Base Features (gap, top prob) 94.90 41.13

+attn 94.90 41.13
+hidden state 67.53 41.13

+mlp 67.88 41.93

Table 4: Comparative analysis of SVM performance with incremental
feature addition in sentiment and MMLU/anatomy tasks.

stopping. On the LLaMA-7B (32-layer) model, we record
predictions at each layer for test samples. For each sample,
we define its theoretical optimal activation layer as the earliest
layer that outputs the correct token. As shown in Figure 5,
AdaInfer’s average activation layer is 3-5 layers behind the
theoretical optimum. The high variance in theoretical opti-
mal layers indicates that samples within the same task require
different computational depths.

For feature selection, we gradually expand from basic fea-
tures. The main experiments only use two features from decod-
ing layer n: the highest probability value Tn and probability
gap Gn. We then extend to six features (Tn, Gn, Tn − Tn−1,
Gn−Gn−1, Tn×Gn, (Tn−Tn−1)× (Gn−Gn−1)). Finally,
we add token frequency and token consistency to form an eight-
feature combination. As shown in Figure 5, adding features
improves performance. However, the gap to theoretical upper
bound remains, suggesting room for further optimization.

We also examine intermediate features, including cosine
similarities between blocks (attention values, MLP, and hid-
den states), as discussed in Section 4.1. Table 4 shows that
attention values have no impact, while MLP and hidden states
negatively affect results, consistent with Figure 3. We believe
logits effectively measure forward progress, whereas changes
in other features reflect additional factors.

Classifier performance. Figure 4 presents the confusion
matrices of our SVM classifier on Sentiment Analysis and
AG News tasks. The SVM was trained with only two basic
features. For Llama2-7B, the classifier achieves high true
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(b) Alternative exit strategies (c) Generalization study (d) Compared with draft&verify(a) Eval across scaling law
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Figure 6: Fine-grained results. “Senti” refers to the sentiment classification task, “CoQA” refers to CommonsenseQA, and “AGN” refers to AG
News task.

negatives (3,858 for Sentiment, 42,706 for AG News) and true
positives (2,358 and 2,185). The performance improves on
Llama2-13B. Here, we see higher true positives. The true
negative rates remain high. These high true negative rates
show that the classifier is conservative in making stopping
decisions. This helps maintain output quality. The results
confirm that our simple feature selection is effective.

5.4 Fine-grained Results
Evaluation across scaling law. Table 2 reports results on
7B/13B-sized Llama2 and OPT models. In experiments with
the Llama2 70B version, we observe that in a zero-shot setting,
AdaInfer matches or slightly exceeds the dense model while
reducing computational costs by 10% to 50%. However, in
the few-shot setting, despite similar reductions in computation,
AdaInfer’s accuracy shows a 1% to 25% drop across different
tasks compared to the dense model, i.e., without early exit.
This calls for more feature engineering for larger models, such
as the 70B or even larger scales. Improving AdaInfer to adapt
to these larger models is a direction for our future research.
The results of all LLMs are summarized in Figure 6(a).

Evaluation on Alternative Exit Strategies. In Main Ta-
ble 2, we employ SVM as the classifier for AdaInfer. To
explore the impact of alternative exit strategies, we imple-
mented AdaInfer with a GAP threshold set at 0.8 (stopping
inference when the current block’s GAP feature exceeds 0.8)
and AdaInfer with CRF as the classifier. Figure 6(b) shows that
both GAP and CRF reduce computational costs by 3% to 50%
while maintaining comparable LLM performance. Notably,
in the zero-shot setting, GAP outperforms CRF, suggesting a
relatively weak dependency between block features.

LLM Block Features and Sequential Processing. An in-
triguing finding emerges from our experiments. Despite CRF’s
specialization in sequence modeling, when modeling feature
sequences block-by-block in zero-shot scenarios, it underper-
forms compared to a simpler SVM classifier. This reveals the
block features extracted by LLMs appear to exhibit relative
temporal independence. Second, rather than explicit tempo-
ral relationship modeling, LLMs may rely more heavily on
distributed representations acquired during pretraining for pro-
cessing sequential information. In other words, the features
from individual LLM blocks may not necessarily maintain in-
herent temporal relationships. This suggests that LLM perfor-
mance improvements are substantially driven by architectural

design choices and large-scale pretraining approaches.
Classifier Generalization Study We train the AdaInfer clas-
sifier on 6 randomly selected datasets from a pool of 71 sub-
datasets. To evaluate generalization, we conduct three tests:

• Intra-Task: Testing sentiment task using sentiment-
trained classifier.

• Inter-Task: Testing sentiment using classifier trained on
knowledge QA.

• Inter-Model: Testing sentiment on Llama2-13B using
Llama2-7B-trained classifier.

Results in Figure 6(c) show that SVM exhibits strong intra-
task and inter-task generalization, aligning with our main find-
ings. However, CRF suffers from premature termination in
intra-task settings, likely due to overfitting to local features.
Inter-model generalization shows moderate accuracy due to
variations in logit distributions across models. Based on re-
sults from Tables 2, SVM remains the optimal classifier for
AdaInfer.
Compared with Self-Speculative Decoding Our experi-
ments focus on multiple-choice tasks, where we generate
the first token for each input with dynamic depths. In
contrast, the draft&verify method [Zhang et al., 2024;
Elhoushi et al., 2024] generates the first token for all inputs
using full static depth. For comparison, we also employ a
5-shot prompt (with fixed random seeds) and skip layers as
described in their papers. This targeted approach, as shown in
Figure 6(d), enables AdaInfer to achieve a dynamic pruning
ratio and outperform draft&verify in first token generation
settings.

6 Conclusion
In this paper, we show that not all layers are needed during
LLM inference. We introduce AdaInfer, a simple yet effective
algorithm that dynamically decides when to stop inference
based on each input. The decision is made by a lightweight
classifier using two intuitive features: the top token’s proba-
bility and its gap with the second-ranked token. While not
exhaustive, these features enable significant efficiency gains
without altering model parameters. AdaInfer prunes an aver-
age of 17.8% of layers (up to 43%) with minimal performance
loss (<1%). It is especially effective for workloads with many
easy tasks and is compatible with other acceleration methods,
offering a new direction for efficient inference.
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