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Abstract

In planning and reinforcement learning, the identi-
fication of common subgoal structures across prob-
lems is important when goals are to be achieved
over long horizons. Recently, it has been shown
that such structures can be expressed as feature-
based rules, called sketches, over a number of clas-
sical planning domains. These sketches split prob-
lems into subproblems which then become solvable
in low polynomial time by a greedy sequence of
IW (k) searches. Methods for learning sketches us-
ing feature pools and min-SAT solvers have been
developed, yet they face two key limitations: scal-
ability and expressivity. In this work, we address
these limitations by formulating the problem of
learning sketch decompositions as a deep reinforce-
ment learning (DRL) task, where general policies
are sought in a modified planning problem where
the successor states of a state s are defined as
those reachable from s through an IW(k) search.
The sketch decompositions obtained through this
method are experimentally evaluated across vari-
ous domains, and problems are regarded as solved
by the decomposition when the goal is reached
through a greedy sequence of IW(k) searches.
While our DRL approach for learning sketch de-
compositions does not yield interpretable sketches
in the form of rules, we demonstrate that the re-
sulting decompositions can often be understood in
a crisp manner.

1 Introduction

A common challenge in planning and reinforcement learn-
ing is achieving goals that require many actions. Addressing
this challenge typically involves learning useful subgoals or
hierarchical policies that abstract primitive actions [Sutton et
al., 1999; McGovern and Barto, 2001; Kulkarni et al., 2016;
Park et al., 2024]. Yet the principles underlying the corre-
sponding problem decompositions are not well understood.
Consequently, methods for learning subgoals and hierarchical
policies often lack robustness, working effectively in some
domains while failing completely in others, without a clear
explanation for these differences in performance. Recently,

a powerful language for expressing, learning, and under-
standing general problem decompositions has been proposed
[Bonet and Geffner, 2021; Drexler et al., 2022]. A sketch de-
composition for a class of problems Q defines a set of subgoal
states G(s) for each reachable state s in an instance P € Q.
In any state s, the planner’s task is not to reach the distant
problem goal but to move to a closer subgoal state in G(s).

The concept of a goal being easily reachable or not is for-
malized through the notion of problem width [Lipovetzky and
Geffner, 2012; Bonet and Geffner, 2024]. A class of problems
with width bounded by a constant k£ can be solved optimally
by the IW (k) algorithm in time exponential in k. Many plan-
ning domains have a width no greater than 2 when goals are
restricted to single atoms. A sketch decomposition G(-) di-
vides problems P in class Q into subproblems P[s, G(s)],
which resemble P but with initial state s and goal states G (s).
If all these subproblems have width bounded by £, the decom-
position width over Q is bounded by k, allowing the problems
in Q to be solved by a greedy sequence of IW (k) calls, pro-
vided the decomposition is acyclic and safe, meaning no sub-
goal cycles or dead-end states among the subgoals [Bonet and
Geftner, 2021].

Methods for learning safe, acyclic sketch decompositions
with bounded width, represented by a set of sketch rules,
have been developed [Drexler et al., 2022; Drexler et al.,
2023], following techniques previously used for learning gen-
eral policies [Frances er al., 2021]. These learning methods
rely on feature pools derived from domain predicates and a
min-cost SAT solver, leading to two key limitations: scalabil-
ity and expressivity. Large feature pools enhance expressivity
but result in large theories that are difficult for combinatorial
solvers to handle.

In this work, we address these limitations by framing the
problem of learning sketch decompositions as one of learn-
ing general policies in a deep reinforcement learning (DRL)
context!. Here, feature pools are not made explicit, and com-
binatorial solvers are unnecessary. We build on a novel obser-
vation connecting sketch decompositions with general poli-
cies and leverage an existing implementation for learning
general policies via DRL [Stahlberg ef al., 2023]. The re-
sulting method learns sketch decompositions bounded by a

! Appendix available on arXiv (arxiv.org/abs/2412.08574), code
and data available on Zenodo (zenodo.org/records/15614893).
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given width parameter k£ and uses them to search for goals
across various domains through a greedy sequence of IW (k)
searches. Unlike symbolic methods, the DRL approach does
not produce rule-based sketches but neural network classi-
fiers. However, as we will demonstrate, while interpreting
these classifiers is not straightforward, it is often possible to
understand the resulting decompositions in a crisp manner.

The structure of the paper is as follows. We begin with
an illustrative example and relevant background. We then
present the proposed formulation, followed by experiments,
an analysis of the decompositions found, related work, and a
concluding discussion.

2 Example

The Delivery domain, similar to the Taxi domain in hierar-
chical reinforcement learning, involves N packages spread
across an n X m grid, with an agent tasked to deliver them,
one by one, to a target cell. The sketch decomposition G,
where s’ € G3(s) if the number of undelivered packages u(-)
is smaller in s’ than in s, yields subproblems P[s, Ga(s)] of
width bounded by 2, solved optimally by IW(2). The sub-
problems P[s, G2(s)] are like P but with initial state s and
goal states Go(s). Similarly, the sketch decomposition G,
where s’ € G1(s) if either u(s’) < u(s) and a package is
held in s, or u(s") = u(s) and a package is not held in s but
is held in §’, produces subproblems P[s, G1(s)] of width 1,
solvable optimally by IW(1).
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Figure 1: Left. A 5 x 5 Delivery instance with 4 packages, 1 agent,
and target cell (circle). Right. Number of subgoals resulting from
learned decompositions GG, via DRL over test instances as function
of number N of packages. For k = 1, problems are solved by 2NV
calls to IW(1); while for k = 2, by N calls to IW(2).

A previous approach learns such decompositions using fea-
ture pools, a width parameter k € {1,2}, and combinatorial
methods [Drexler et al., 2022]. The decompositions are rep-
resented implicitly by collections of skefch rules. This work
is aimed at learning similar width-k decompositions G(s)
but using neural networks trained via reinforcement learning.
While the learned representations will not be as transparent,
we will see that the resulting decompositions often are. Figure
1 shows indeed the number of IW(1) and IW(2) calls needed
to solve Delivery instances as a function of the number of
packages N after learning two general domain decomposi-
tions (G1 and G4 via deep reinforcement learning. The num-
ber of calls, 2N and N, match exactly the number of calls that
would be needed to solve these instances using the sketch de-
compositions defined above, despite using no rule-based rep-

resentation or explicit feature pool, but solely a neural net
trained via RL.

3 Background

We briefly review classical planning, the notion of width,
general policies and sketches, and methods for learning
them, following Lipovetzky and Geffner [2012], Frances et
al. [2021], Bonet and Geffner [2021], Drexler et al. [2022],
and Stahlberg et al. [2023].

3.1 Classical and Generalized Planning

A planning problem or instance is a pair P = (D, I) where D
is a first-order domain with action schemas defined over pred-
icates, and I contains the objects in the instance and two sets
of ground atoms defined over the objects and predicates defin-
ing the initial and goal situations Init and Goal. An instance
P defines a state model S(P) = (5, so, G, Act, A, f) where
the states in S are the possible sets of ground atoms, each one
capturing the atoms that are true in the state. The initial state
so is Init, the set of goal states G are those that include the
goal atoms Goal, and the actions Act are the ground actions
obtained from the schemas and objects. The ground actions
in A(s) are the ones that are applicable in a state s; namely,
those whose preconditions are (true) in s, and the state transi-
tion function f maps a state s and an action a € A(s) into the
successor state s’ = f(a, s). A plan 7 for P is a sequence of
actions ay, - - . , a,, that is executable in sy and maps the initial
state so into a goal state; i.e., a; € A(s;), siv1 = f(aq, 8;),
and s,4+1 € G. A state s is solvable if there exists a plan
starting at s, otherwise it is a dead-end. The cost of a plan
is assumed to be given by its length, and a plan is optimal if
there is no shorter plan.

A generalized planning problem instead is given by a col-
lection Q of instances P = (D, I) from a given domain; for
example, all instances of Blocks world where the goal just
involves on atoms. The solution of a generalized problem is
not an open-loop action sequence but a closed loop policy as
detailed below. In general, the instances in Q are assumed to
be solvable, and moreover, the set Q is normally assumed to
be closed in the sense that if P is in Q with initial state sq
and P’ is P but with a solvable initial state reachable from
S0, then P’ is assumed to be in Q as well.

3.2 Width

The simplest width-based search procedure is IW(1), a mod-
ified breadth-first search over the rooted directed graph asso-
ciated with the state model S(P). It prunes newly generated
states that fail to make an atom true for the first time in the
search. IW(k), for k > 1, extends this concept by pruning
states that do not make a collection of up to k atoms true for
the first time. These algorithms can be alternatively concep-
tualized using the notion of state novelty. In this view, IW (k)
prunes states with novelty greater than k, where a state’s nov-
elty is defined by the size of the smallest set of atoms true
in that state and false in all previously generated states. Cen-
tral to these algorithms is the concept of problem width. The
width of a problem P is determined by the size of the smallest
chain of atom tuples %, . . . t,, that is admissible in P and has
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size max; |t;| [Lipovetzky and Geffner, 2012]. For instance,
Blocks World instances with atomic goals on(z,y) and De-
livery instances with goals at(pkg, loc) have width 2 or less.

IW (k) algorithms find optimal (shortest) solutions in time
and space exponential to the problem width. However, plan-
ning problems with multiple conjunctive goals often lack
a bounded width (i.e., width independent of the instance
size). To address this, a variant called SIW was developed.
SIW greedily seeks a sequence of IW calls, each decreas-
ing the number #g¢g of unachieved atomic goals [Lipovet-
zky and Geffner, 2012]. It starts with TW(1), escalating to
IW(2) and beyond if IW (1) fails to reach a state that decreases
#g¢. While SIW exploits a particular problem decomposition
based on unachieved goals, this approach is not universally
effective due to potential high-width or unsolvable subprob-
lems. Complete, width-based search algorithms incorporate
novelty measures within a best-first search [Lipovetzky and
Geffner, 2017; Frances et al., 2017].

For convenience, the width of problems P that can be
solved in at most one step, is said to have width 0. Hence,
IW(0) is defined as breadth-first search that prunes all and
only nodes at depth greater than 1, and IW (k) is adjusted to
never prune nodes at level 1.

3.3 General Policies and Sketches

A simple but powerful way to express the solutions to gen-
eralized planning problems Q made up of a collection of in-
stances P, is by means of rules of the form C' — FE defined
over a set of features ® [Bonet and Geffner, 2018]. A state
pair [s, s'] satisfies the rule if C'is true in s and the features in
® change value when moving from s to s’ in agreement with
E. For example, E can express that a numerical feature must
increase its value, and that a Boolean feature must become
true, etc. A set of rules R defines a non-deterministic gen-
eral policy  for Q which in any reachable state s in P € Q
selects the successor states s’ of s when the state pair [s, s']
satisfies a rule in R. The transitions (s, s’) are then called -
transitions, and the policy 7 solves an instance P € Q if all
the 7-trajectories that start in the initial state of P reach a goal
state. 2

The same language used to define general policies can be
used to define sketch decompositions. Indeed, a set of rules R
defines the subproblems P[s, Gg(s)] over the reachable non-
goal states s of instances P € O, which are like P but with
initial state s and goal states s’ € G(s) for the state pairs
[s, §'] that satisfy a rule in R. The width of the decomposition
is the maximum width of the subproblems P[s, Gr(s)], P €
@, and the decomposition is safe and acyclic in Q if there is
no sequence of (subgoal) states si,..., 8y, Sit1 € GR(8:)
and n > 1, in any P € Q that starts in a reachable, alive
state s1 (not a dead-end, not a goal), and ends in a dead-end
state s, or in the same state s, = s;. Here G'};(s) stands
for the states s’ € Gg(s) that are closest to s. If the decom-
position resulting from the rules R is safe, acyclic, and has

>These general policies do not map states directly to actions.
Instead, they select state transitions and, only indirectly, actions.
This choice is convenient for relating general policies and sketches
[Bonet and Geffner, 2021].

Algorithm 1 Actor-Critic RL for generalized planning

1: Input: Training MDPs { M, },, each with state priors p;
2: Input: Policy (s’ | s) with parameters

3: Input: Value function V (s) with parameters w

4: Ouput: Policy 7(s’ | s)

5: Parameters: Step sizes a, 5 > 0, discount factor y

6: Initialize parameters 6 and w

7: Loop forever:

8:  Sample MDP index i € {1,...,n}

9: Sample non-goal state S in M; with probability p;
10: Sample state S’ from N (.S) with prob. (S’ | S)
11: Letd =14~V (S') = V(S)

12: w4 w+ BoVV(S)
13: 0+ 0 —adViegn(S'|S)
14: If S’ is a goal state, w < w — BV (S")VV(S')

width bounded by k, then the problems P € Q can be solved
by a slight variant of the SIW algorithm where a sequence of
IW (k) calls is used to move iteratively and optimally from
a state s; to a subgoal state s;11 € GRr(s;), starting from
the initial state of P and ending in a goal state [Bonet and
Geffner, 2021].

3.4 Learning General Policies through DRL

Rule-based policies and sketches can be learned without su-
pervision by solving a min-cost SAT problem over the state
transitions of a collection of small training instances P from
Q and a pool of features derived from domain predicates
and a fixed set of grammar rules based on description log-
ics [Bonet et al., 2019; Drexler et al., 2022]. However, some
domains require highly expressive features, which necessitate
the application of numerous grammar rules, leading to large
feature pools that challenge combinatorial solvers.?

To address this limitation, a recent approach introduced
learning general policies in a deep reinforcement learning
(DRL) setting [Stahlberg et al., 2023]. This approach em-
ploys a standard actor-critic RL algorithm [Sutton and Barto,
1998] with the policy and value functions (s’ | s) and V (s)
represented by neural networks. As shown in Fig. 1, gradi-
ent descent updates the parameters 6 and w of the policy and
value functions. The key difference from standard actor-critic
codes is that 7 selects the next state from possible successors
N (s) instead of the next action.

The learned policy functions generalize to larger domain
instances than those used in training. This generalization is
achieved by encoding the policy and value functions in terms
of a relational GNN, which generates real-vector embeddings
f#(0) for each object in the instance [Scarselli er al., 2008;
Hamilton, 2020]. Suitable readout functions then map these
embeddings into the values V' (s) and probabilities 7 (s’ | s).

3A second type of expressive limitation, not discussed here, in-
volves domains where rule-based policies and sketches may require
features beyond the capabilities of standard description logic gram-
mars, which are generally fragments of first-order logic with two
variables and counting. This limitation also affects non-symbolic ap-
proaches based on GNNs [Stahlberg er al., 2022; Horéik and Sir,
2024].
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4 Learning Decompositions via DRL

The contribution of this paper is a novel scheme for learning
how to decompose planning problems into subproblems that
can be solved through iterative applications of the IW (k) al-
gorithm. Decomposing problems into subproblems is crucial,
but the principles guiding such decompositions are not well-
defined. Our goal is to achieve decompositions that are gen-
eral (applicable across a class of problems Q), safe (avoiding
dead-ends), acyclic, and have width bounded by k. Addition-
ally, we aim to learn these decompositions without relying
on combinatorial solvers or explicit feature pools, leverag-
ing the relationship between sketch compositions and general
policies, as well as the method reviewed above for learning
general policies through DRL.

It is known that general policies are sketch decompositions
of zero width, which are safe and acyclic [Bonet and Geffner,
2024]. Our new observation is that safe, acyclic sketch de-
compositions with approximate width £ > 0 for a class of
problems P € Q can be derived from general policies over a
slightly different class of problems P, € Oy, where the set
of successor states N (s) in P is replaced by the set Ni(s) of
states reachable from s via IW(k):

Ny (s) == {s" | &' is reachable from s via IW(k)}. (1)

The successor states s’ that the policy 7(s’ | s) selects in Py,
will be subgoal states s’ in P that can be reached from s via
IW (k). The decomposition’s width is approximately bounded
by k because while a width bounded by & guarantees reacha-
bility via IW(k), the reverse is not necessarily true.*

The modification of the DRL algorithm from [Stahlberg et
al., 2023] to learn safe and acyclic decompositions of width
k over a class of problems P € Q is straightforward: the
only change required is to replace the set of successor states
N(s) in line 10 of Algorithm 1 with the set Nj(s) reachable
from s via IW (k). This extended set of successor states is then
used in the softmax normalization to yield the probabilities
(s’ | s). Action costs are assumed to be all 1 for reaching
either N or Nj successors.

Let 7(s" | s) be the general stochastic policy learned by the
algorithm in Fig. 1 after replacing N (s) with N(s). The re-
sulting decomposition G (-) can then be defined in two ways:
greedily, as the singleton sets:

Gi(s) ={s"}, s =argmaxn(s' | s), )
s’€Ng(s)

and stochastically, as the singleton sets:
Gr(s)={s},s ~m(s"|s),s € Ni(s). 3)

In the first case, a single subgoal state s’ for s is chosen as
the most likely state in Ny(s) according to the learned policy
m; in the second, case, s’ is sampled stochastically from the
set N (s) with probability 7(s’ | s). In P, s’ may not be a
direct successor of s but can be reached from s via IW(k).
Intuitively, to decompose the problem, we are allowing the

*Lipovetzky and Geffner [2012] refer to reachability via IW (k)
as effective width k, which is not a robust notion of width, as it is
influenced by the order in which child nodes are explored in the
breadth-first search.

“agent” to make IW (k) “jumps” in P following the learned
policy for Py, where such “jumps” are primitive actions.

If the policy 7 solves the problem P}, then the decompo-
sition GJ will be safe and acyclic. A sequence of subgoal
states sg,S1,...,8, With n > 1 and s;41 € GJ(s;) for
1t =1,...,n—1, cannot be cyclic or unsafe, as that would im-
ply the existence of 7-trajectories that do not reach the goal,
contradicting the assumption that 7w solves Pj. Additionally,
this implies the subproblems P[s, G} (s)] to have an approx-
imate width bounded by k, as G} (s) € Ny(s) only includes
states reachable from s via IW (k).

In summary, Algorithm 1 is adapted with minor modifi-
cations to learn a safe, acyclic, and width-k decomposition
Gy(s) for a class of problems Q, though without formal guar-
antees.> The only change involves replacing the set of succes-
sor states N(s) in P € Q with the set Ny (s) defined in (1).
The learned stochastic general policy 7 for the resulting class
of problems P, € Q) defines the decomposition G, = G7,
over @ as described in (3).

At test time, the decomposition G7, is evaluated by running
the IW (k) algorithm sequentially from a state s to a state s’
in G7(s) until reaching the goal or a maximum number of
IW (k) calls. We refer to this algorithm, which applies IW (k)
searches to the decomposition G7(s) based on the learned
policy m, as SIW” (k). Unlike the SIW algorithm, SIW™ (k)
performs a greedy sequence of IW(k) searches rather than
IW searches, requiring each search to end in a state within
G7 (s), not merely a state where the number of unachieved
top goals has decreased. Moreover, unlike SIW, SIW™ (k) re-
quires IW (k) searches to run to completion, as this is neces-
sary for determining the extended set of successors N (s) in
the decomposition G, (s) defined in (1).

S Experiments

The experiments aim to address several key questions. First,
are the learned decompositions G, = G both general
and effective? Specifically, can the (larger) test instances be
solved by a greedy sequence of IW (k) calls? This question is
non-trivial, as success with & = 1 would imply solving in-
stances with linear memory relative to the number of atoms
by running IW(1) sequentially, a significant contrast to solv-
ing instances via exponential time and memory search. Sec-
ond, can the resulting decompositions, represented in the neu-
ral network, be understood and interpreted? This is also chal-
lenging, as there is no guarantee that the learned decomposi-
tions will be meaningful. To answer the first question, we will
examine the coverage of the SIW” (k) algorithm using the
learned decomposition G7, the number of ITW (k) calls (sub-
goals), and the total plan length. To address the second ques-
tion, we will analyze plots showing the number of subgoals
resulting from the learned decomposition G, as a function of
relevant parameters of the test instances (e.g., the number of
packages). In the experiments, the subgoal states G7(s) are

>The symbolic method for learning sketches [Drexler et al.,
2022] enforces these properties in the training set but cannot guaran-
tee them over the test set. However, this can be addressed manually,
case by case.
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sampled stochastically according to (3), although the results
(in the appendix) are not too different when they are chosen
deterministically as in (2). The code and data will be made
publicly available.

Learning Setup. We use the DRL implementation from
[Stéhlberg et al., 2023] with the same hyperparameters to
learn the policy 7 that defines the decomposition G7,. The
GNN has feature vectors of size 64 and 30 layers. The Actor-
Critic algorithm uses a discount factor v = 0.999, a learning
rate @« = 2 x 104, the Adam optimizer [Kingma and Ba,
2015], and runs on a single NVIDIA A10 GPU for up to 48
hours per domain. Five models are trained independently with
different seeds, and the model with the best validation score is
selected for testing. The validation score is determined by the
ratio Ly / L},, where Ly is the plan length from SIW™ (k) and
L3, is the optimal plan length, both averaged over all states
of a validation set. Training is stopped early if this ratio ap-
proaches 1.0.

Data. The domains and training data are primarily from
previous works on learning sketches and general policies
[Drexler er al., 2022; Stahlberg er al., 2023]. This includes
Blocks with single and multiple target towers, Childsnack,
Delivery, Grid, Gripper, Logistics, Miconic, Reward, Span-
ner, and Visitall. Each domain is tested on 40 larger instances,
which extend those used in prior studies (details in the ap-
pendix).

5.1 Results

Table 1 presents the performance of the SIW™ (k) algorithm
using the learned G}, decomposition, where 7 is the policy
derived from the RL algorithm after replacing the set of suc-
cessors N(s) with Ni(s). Key performance metrics include
coverage (Cov), subgoal count (SL), and plan length (L). The
table’s upper section shows results for IW (1), while the lower
section displays IW(2) results for selected domains.

In the table, Lj; indicates the plan length computed by
the classical planner LAMA, run on an Intel Xeon Platinum
8352M CPU with a 10-minute time and 100 GB memory
limit. The columns labeled “subgoal cycle prevention” reflect
a minor SIW™ (k) algorithm modification that avoids revis-
iting a subgoal state. For this, states that have already been
selected as subgoals before are not considered as future sub-
goals. This adjustment impacts performance in three of the
eleven domains, including two (Grid and Logistics) where the
width-1 decompositions learned were poor.

Coverage The SIW™ (k) algorithm achieves nearly perfect
coverage across all domains, except in Logistics, Grid, and
Blocksworld-Multiple with IW(1). However, for width-2 de-
compositions, coverage improves to near 100% in all do-
mains, including these three. By contrast, neither baseline
was able to reach this performance.

The reason for this discrepancy in results by width is not
entirely clear, but one possibility is that width-1 sketch de-
compositions cannot be fully captured in the logical fragment
represented by GNNs. It is known that GNNs cannot rep-
resent width-0 sketch decompositions (i.e., general policies)
for Logistics and Grid [Stahlberg et al., 2022], suggesting

that the same might hold for width-1 decompositions. Inter-
estingly, GNNs do accommodate width-2 sketch decomposi-
tions in these domains, as shown in the table, aligning with
findings from previous research, which observed that while
certain feature pools cannot express rule-based general poli-
cies, they can express rule-based sketches.

Subgoal Count The column SL in the table presents the
average number of subgoals encountered by SIW” (k) on the
path to the goal. Although this number alone may not be
highly meaningful, it is significantly lower than the average
plan lengths, indicating that each subgoal requires multiple
actions to be achieved. More interestingly, Figure 2 illustrates
the number of subgoals as a function of the number of ob-
jects of a selected type per domain (e.g., packages in Deliv-
ery, balls in Gripper, children in Childsnack) for £ = 1, and
also k = 2 for Blocks. In the former cases, the relationship
is nearly linear, with a coefficient of 1 in Spanner and Re-
ward, and 2 in Delivery, Gripper, Childsnack, and Miconic.
This suggests that the decomposition divides the problem into
subproblems, one for each relevant object, which in some
cases are further split in two (e.g., in Delivery, each pack-
age must be picked up and dropped off in separate IW(1)
calls). Despite the use of neural networks and DRL, the re-
sulting decompositions can be understood. In Blocksworld,
however, the situation is different. The width-1 decomposi-
tion generates more subgoals than there are on-atoms in the
goal (shown in black versus red), while the width-2 decom-
position generates fewer subgoals than on-atoms in the goal
(shown in blue). While individual on-atoms have a width of 2
and are thus always reachable by IW(2), certain states allow
for pairs of on-atoms to be reached by IW(2) as well. The
result is that the plots of subgoal counts in Blocksworld are
not showing strict linear relationships.

Plan Quality The column L/L ), in the table shows the ra-
tio between the average plan lengths found by SIW™ (k) and
those found by LAMA. Generally, this ratio is close to 1, but
there are exceptions in certain domains, such as Reward and
Visitall for IW(1) and several others for IW(2). The general
explanation is that decompositions simplify the problems, al-
lowing them to be solved by a linear search like IW (1), rather
than an exponential search as in LAMA. This simplification,
however, can preclude shortcuts, resulting in longer plans. A
more specific explanation is that the DRL algorithm mini-
mizes the number of IW(k) subproblems on the path to the
goal, without considering the cost of solving these subprob-
lems, as measured by the number of actions required. For
instance, if a single package is to be delivered from a state
s with two options—a nearby package and a distant one-
SIW™ (k) does not prefer one over the other since both states
s’ and s” where either package is held are Ny-successors of
s with the same cost of 1. Naturally, the Drexler et al. [2022]
baseline also exhibits such plan deficits, though to a lesser
extent, whereas Stahlberg et al. [2023] can surpass LAMA in
some domains due to directly optimizing plan cost.

To address this limitation, two approaches could be consid-
ered: 1) modifying STW” (k) to prefer Nj-successors s’ that
have a high probability 7(s’ | s) and are closer to s, or 2)
retaining the true cost information of Ny-successors and us-
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LAMA No Cycle Prevention Subgoal Cycle Prevention Validation

Domain (#) Cov. (%)1T Cov.(%)1 SL| LJ| PQ=L/LynJ Cov.(%)1T SL| LJ| PQ=L/Lum]J Ly /Ly |
SIW™ (1)
Blocks (40) 40 (100 %) 39 ( 98 %) 21 80 1.05=80/76 40 (100 %) 21 81 1.05=81/77 1.22
Blocks-mult. (40) 39 ( 98 %) 32 ( 80 %) 19 57 1.08=57/53 39 ( 98 %) 23 68 1.15=66/57 1.32
Childsnack (40) 40 (100 %) 40 (100 %) 6 11 1.06=11/10 40 (100 %) 6 11 1.05=11/10 1.00
Delivery (40) 40 (100 %) 40 (100 %) 10 52 1.02=52/50 40 (100 %) 10 52 1.02=52/50 1.00
Grid (40) 38( 95 %) 23( 58 %) 7 39 1.18=39/33 38 ( 95 %) 71 353 10.03=353/35 11.85
Gripper (40) 40 (100 %) 40 (100 %) 83 165 1.33=165/124 40 (100 %) 83 164 1.33=164/124 1.00
Logistics (40) 38(95%) 10( 25 %) 8 19 130=16/12 24( 60%) 113 188 10.90=199/18 60.36
Miconic (40) 40 (100 %) 40 (100 %) 32 60 1.15=60/52 40 (100 %) 32 61 1.16=61/52 1.00
Reward (40) 40 (100 %) 40 (100 %) 15 197 232=197/85 40 (100 %) 15 196 231=196/85 1.00
Spanner (40) 30( 75 %) 40 (100 %) 24 44 131=41/31 40 (100 %) 24 44  1.30=41/31 1.00
Visitall (40) 40 (100 %) 40 (100 %) 8 68 1.65=68/41 40 (100 %) 8 68 1.66=68/41 1.03
SIW™(2)

Blocks (40) 40 (100 %) 40 (100 %) 9 133 1.71=133/77 40 (100 %) 9 133 1.71=133/177 1.27
Blocks-mult. (40) 39 ( 98 %) 40 (100 %) 8 78 135=77/58 40 (100 %) 8 78 1.34=77/58 1.07
Childsnack (40) 40 (100 %) 40 (100 %) 3 13 121=13/10 40 (100 %) 3 13 121=13/10 1.00
Delivery (40) 40 (100 %) 40 (100 %) 5 57 1.12=57/50 40 (100 %) 5 56 1.12=56/50 1.00
Grid (40) 38(95%) 38( 95 %) 3 47 134=47/35 38 ( 95 %) 3 47 134=47/35 1.00
Logistics (40) 38 (195 %) 40 (100 %) 4 34 133=34/26 40 (100 %) 4 34 133=34/26 1.01

Table 1: Performance metrics for learned general decompositions per domain and width. Rows show results over 40 test instances per domain.
Coverage (Cov.) indicates the number of successful plans (fraction in parentheses). SL and L represent average subgoal and plan lengths
(rounded to nearest integer), while L* and Ly, represent optimal and LAMA plan lengths resp. averaged. Plan quality (PQ) is the ratio of

average plan lengths to those of LAMA. Validation score Ly / L7, is shown on the right. Arrows indicate preferred metric directions.

ing this in the DRL algorithm to optimize a combination of
the number of subgoals and the cost of achieving them. The
first approach would involve modifying the SIW™ (k) algo-
rithm, while the second would require changes to the training
process. Exploring these approaches, however, is beyond the
scope of this work.

It is also worth noting that problem representations (in
PDDL) influence problem width and overall plan length. For
example, the width-1 decomposition for Gripper results in
moving balls from one room to the next one by one, even
though two grippers are available. This explains why the
plans generated by SIW” (1) are 33% longer than those com-
puted by LAMA, which are optimal. One reason for this in-
efficiency is that IW(1) cannot load two grippers in a single
call; the problem indeed has a width of 2. This situation would
differ if the problem representation included a single atom
that is true when both grippers are full. Thus, the ability to
learn width-k decompositions is not just limited by the ex-
pressive power of GNNs, but also by the problem representa-
tion. Making these limitations and these dimensions explicit
is a strength of our approach, enabling us to understand the
general decompositions that are learned and those that are
not or cannot be learned, rather than relying solely on per-
formance metrics.

Baselines We also compare our method against two width-
k decomposition baselines: the general policy deep RL frame-
work of Stahlberg et al. [2023] with k& = 0, and the rule-
based combinatorial sketch synthesis approach of Drexler et
al. [2022] with k =1, 2.

Our method combines aspects of both, as it learns sketch
decompositions from deep RL, but not in the form of rules.
Empirically, our approach can solve domains in which both
baselines fail. For instance, in Logistics and Grid, STW™(2)
devises near-perfect width-2 decompositions, whereas both
baselines fail to achieve substantial coverage. Similarly, in
other grid-based environments (Reward, Visitall, Delivery),
our decomposition approach attains 100% coverage, improv-
ing over the inconsistent performance of policies by Stahlberg
et al. [2023]. Overall, our results demonstrate that learning
subgoal-based decompositions via DRL imposes less expres-
sive demands than learning general policies and scales better
than combinatorial optimization. Further details on the base-
lines, can be found in the appendix.

6 Analysis

The symbolic approach to problem decompositions using
sketch rules offers transparency, allowing direct interpreta-
tion of the defined decompositions. Interestingly, the inverse
process is also possible: equivalent sketch rules can be recon-
structed from learned decompositions by analyzing subgoal
counts and plan structures. Indeed, the width-1 decomposi-
tions learned for Delivery, Gripper, Miconic, Childsnack, and
Spanner can be understood in terms of four sketches with nu-
merical features /NV; and Boolean feature H:

{N >0} — {N |}
{~H,N >0} — {H}
{H,N >0} = {~H,N |}

(R1)
(R2)
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Figure 2: Number of subgoals (y) generated by SIW™ (k) as function of characteristic object counts (x) in selected domains. The curves are
perfect lines in five domains, near perfect in Spanner, and in Blocks SIW™ (2) reaches on-atoms in each call, unlike SIW™ (1).

{N2 > O} — {NQ i,} (R3)
{Nl > 0,N; = 0} — {Nl J,}
{N2 >0} — {N2 |} (R4

{Nl >0,Ny = 0} — {Nl 4, N27}

Sketch R1 is a simple feature-decrementing sketch, captur-
ing the decomposition in Reward, where N denotes the num-
ber of uncollected rewards. R2 models the decomposition in
Delivery, where H indicates whether an undelivered package
is held, and N tracks the number of undelivered packages.
R3 uses two-counters, and prioritizes decrementing /Ny un-
til exhaustion, then focuses on N;. This ruleset characterizes
the decomposition of domains like Miconic and Childsnack,
where Ny represents intermediate goals (e.g., sandwiches to
make, passengers to board) and N; denotes final objectives
(e.g., children/passengers to serve).

The plans in the Spanner domain follow the sketch R3,
where the agent first picks up all the spanners (decrementing
N7) and then tightens all the nuts (decrementing No). If this
process were perfectly aligned with the sketch, the points in
the plot would fall exactly on the line y = z. However, the
slight deviations from this line allow two observations. Points
above the line represent unnecessary subgoals where neither
N; nor Ny change. Points below the line indicate shortcuts
in instances with more spanners than nuts where some of the
spanners are left uncollected. Often, in these cases however,
more spanners are picked up than strictly needed. A possible
explanation is that computing the minimum number of span-
ners to collect, in order to solve the task, may be beyond the
expressivity of GNNs given the state encodings.

Finally, R4 extends R3 with a potential increment of Ny
when decrementing N;. These rules describe the decomposi-
tion in Gripper, where [N; represents undelivered balls and N2
denotes balls available for pickup, i.e., the minimum of un-
delivered balls and free grippers. Indeed, the model alternates
between picking and delivering balls, but only once both grip-
pers hold a ball.

7 Related Work

Methods for decomposing problems into subproblems have
been extensively studied in hierarchical planning [Erol ef al.,
1994; Nau et al., 1999; Georgievski and Aiello, 2015]. Hi-
erarchical representations can be derived from precondition

relaxations [Sacerdoti, 1974] and causal graphs [Knoblock,
19941, or learned from annotated traces [Hogg et al., 2008;
Zhuo et al., 2009]. In RL, problem substructure emerges
in the form of options [Sutton et al., 1999], hierarchies of
abstract machines [Parr and Russell, 19971, MaxQ hierar-
chies [Dietterich, 2000], reward machines [Icarte et al., 2018;
De Giacomo et al., 2020], and intrinsic rewards [Singh et
al., 2010; Zheng et al., 20201, among others. Although this
knowledge is often provided by hand, methods for learning
these structures have leveraged concepts such as “bottleneck
states” [McGovern and Barto, 20011, eigenvectors of the tran-
sition dynamics [Machado et al., 2017], and informal width-
based notions [Junyent et al., 2021]. Additionally, two-level
hierarchical policies in DRL have been explored [Kulkarni et
al., 2016; Park et al., 2024], with the assumption that a master
policy can make multi-step “jumps” executed by a low-level
worker policy. However, the challenge with bounding these
jumps by a fixed number of steps (e.g., 8 steps) is that it fails
to capture meaningful substructure that generalizes to larger
instances.

Our approach is closely related to these two-level hier-
archies but differs in that the ”jumps” are bounded by the
concept of width, and instead of being executed by a low-
level policy, they are managed by polynomial-time IW (k)
procedures. In principle, these two ideas can be combined.
Indeed, symbolic methods for learning hierarchical policies
based on width-based considerations have also been devel-
oped [Drexler er al., 2023].

8 Conclusion

We have shown that DRL methods can learn subgoal struc-
tures for entire collections of planning problems, enabling
efficient solutions via greedy IW(k) searches. Though repre-
sented by neural networks rather than symbolic rules, these
decompositions are often interpretable logically. Our experi-
ments show that decompositions learned from small instances
generalize to much larger ones via linear and quadratic TW(1)
and IW(2) searches. By leveraging width, sketches, and GNN
logic, the approach’s limitations can be understood and ad-
dressed within this framework.

Two challenges for future work include: (1) incorporating
subproblem costs to reduce plan lengths without sacrificing
meaningful decompositions, and (2) developing two-level hi-
erarchical policies to avoid IW (k) searches in subproblems.
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