Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

SecV: LLM-based Secure Verilog Generation with Clue-Guided Exploration on
Hardware-CWE Knowledge Graph

Fanghao Fan', Yingjie Xia'?>*, Li Kuang3*
'Micro-Electronics Research Institute, Hangzhou Dianzi University
2College of Computer Science and Technology, Zhejiang University

3School of Computer Science and Engineering, Central South University
fhfan@hdu.edu.cn, xiayingjie @zju.edu.cn, kuangli@csu.edu.cn

Abstract

Verilog is specified as the primary Register Trans-
fer Level (RTL) hardware description language,
which designs the logical functions between reg-
isters for digital circuit systems. Recently, there
emerges much cutting-edge research in leveraging
Large Language Models (LLMs) to generate Ver-
ilog, aiming at effectively reducing errors and costs
in the logic design of chips. However, these works
mainly focus on logical correctness or PPA (Power,
Performance, Area) measurement of the generated
results, while neglecting the security problems in
Verilog. In this study, we propose SecV, a novel
and unified framework to generate secure Verilog
by clue-guided exploration on Common Weakness
Enumeration (CWE) knowledge graph (KG) for
chips. First, the builder of the KG utilizes the
instance-adapted chain of thought (COT) to extract
entities and their relationships from raw Hardware-
CWE corpora. Then, a fine-tuned BERT model
is employed to verify the Hardware-CWE KG and
collaborate with builder iteratively to achieve the
precise KG. Based on Hardware-CWE KG, a clue-
guided graph exploration paradigm is designed to
facilitate collaborative inference of knowledge to
generate secure Verilog by LLMs. Experiments
demonstrate that SecV achieves 82.6% secure Ver-
ilog code without specified CWE in the generated
functionally correct Verilog, with superior perfor-
mance of a 21.7% performance improvement com-
pared to SOTA.

1 Introduction

Modern integrated circuits (IC) design requires engineers
to utilize Register Transfer Level (RTL) languages, such as
Verilog, to specify hardware architectures and define log-
ical functions between registers in digital circuit systems.
As the fast development of Artificial Intelligence (Al) tech-
niques, especially the emergence of the cutting-edge technol-
ogy Large Language Models (LLMs) [Achiam er al., 2023;
Jiang et al., 2023; Dubey ef al., 2024], Al-assisted Verilog

*Corresponding author

(a) Lack of Secure Verilog Knowledge: LLM Only

Q: Implements a finite state machine (FSM) with specified state transitions
and outputs...

Prompt: Let’s first understand the problem and devise a plan to solve the
problem. Then, let’s carry out the plan and solve the problem step by step.

case (input)
3’hl: state <= 2°h5;
3’h2: state <= 2’h4;
3’h3: state <= 2’h3;
endcase ...
Cause of vulnerability: Incomplete state definitions lead to denial of service

(b) Imprecise External Knowledge System: LLM+Vulnerability scanner

Q: Implements a finite state machine (FSM) with specified state transitions
and outputs...
Assistance information: No vulnerability

case (input)
3’h0:
3’hl: state <= 2’h5;
3’h2: state <= 2’h4;
3’h3: state <= 2’h3;
endcase ...
Cause of vulnerability: Push the FSM to an undefined state

(c) Inaccurate Retrieval of Effective Knowledge: LLM+Knowledge retriever

Q: Implements a finite state machine (FSM) with specified state transitions
and outputs...

Retrieved knowledge: (Faulty FSM designs, lead to, undefinedstate)
(Undefined state, cause, DoS) (Faulty FSM designs, cause,unstable state)

case (input)
3’h1: state <= 2°h5;
3’h2: state <= 2°h4;
3’h3: state <= 2’h3;
default: state <= state;
endcase ...
Cause of vulnerability: Unanticipated default state

Figure 1: Existing challenges need to be resolved

development becomes a promising solution to improve effi-
ciency and reduce code errors for chip design. Motivated by
these advancements, multiple Electronic Design Automation
(EDA) tools have been released to actively explore the au-
tomatic generation of Verilog code through domain-specific,
fine-tuned LLMs [Liu et al., 2023; Thakur et al., 2024]
and multi-agent collaboration approaches [Ho er al., 2024;
Zhao et al., 2024c]. These works mainly focus on enhanc-
ing development efficiency and logical correctness to gener-
ate Verilog code, or improving the measurement of the chip
design in power, performance and area (PPA), while the gen-
erated code inevitably encounters certain types of security



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

vulnerabilities due to the lack of secure Verilog knowledge
in pre-training [Fu et al., 2023].

In order to utilize LLMs to generate functionally correct
and secure Verilog code, some challenges are summarized in
Figure 1.

Challenge 1: Lack of Secure Verilog Knowledge in pre-
trained LLMs The general LLMs are pre-trained by the
datasets which are lack of secure Verilog code [Nazzal et
al., 2024]. By fine-tuning models [Liu et al., 2024; Zhao
et al., 2024b] or designing prompts [Ahmad et al., 2024;
Lu et al., 2024; Pei et al., 20241, it is still difficult to construct
enough Verilog coding capability of LLMs to avoid security
vulnerabilities.

Challenge 2: Imprecise External Knowledge System to as-
sist LLMs in secure Verilog generation There are some
efficient techniques to enhance the capability of LLMs in gen-
erating secure Verilog, such as Retrieval-Augmented Gener-
ation (RAG) [Tsai er al., 2024] and Chain of Thought (CoT)
[Zhao et al., 2024a]. All of these methods require external do-
main knowledge systems to compensate LLMs for its lack of
pre-trained data. However, how to accurately collect and ef-
fectively organize domain-related data to construct a precise
external knowledge system is a key challenge for the domain-
specific generation of secure Verilog.

Challenge 3: Inaccurate Retrieval of Effective Knowledge
for LLMs to generate secure Verilog code Although some
external knowledge systems, such as the knowledge graph
(KG), imported to augment LLMs are promising solutions for
the issue of a lack of secure Verilog knowledge, the generated
results depend on the effective retrieval of knowledge from
the KG based on the task requirements [Kim er al., 2023;
Huang et al., 2023]. Therefore, designing an accurate and
cost-effective KG retrieval algorithm is a key component for
the efficient utilization of both the KG and LLMs.

In this study, we propose a unified framework to gener-
ate functionally correct and secure Verilog code by LLMs,
named SecV. The framework consists of three components,
a hardware Common Weakness Enumeration (CWE) knowl-
edge graph, a verifier model to iteratively optimize the preci-
sion of the KG, and a clue-guided graph exploration paradigm
to retrieve accurate knowledge for LLMs. Specifically, SecV-
builder firstly utilizes the instance-adapted COT to extract en-
tities and their relationships from raw Hardware-CWE cor-
pora to construct the domain-specific KG. Then, a fine-
tuned BERT model is employed as SecV-verifier to verify
the Hardware-CWE KG and collaborate with SecV-builder
iteratively to improve the KG more precise. Based on the
Hardware-CWE KG, SecV-retriever is designed by a clue-
guided graph exploration paradigm to facilitate collaborative
inference of knowledge for LLMs to generate secure Verilog.

The contributions of SecV are summarized as follows:

* SecV-builder extracts domain-specific corpora and ap-
plies instance-adapted CoT prompts to construct triples
of the Hardware-CWE KG, which compensates the lack
of secure Verilog knowledge for pre-trained LLMs solv-
ing the challenge 1.

¢ SecV-verifier utilizes the BERT model to remove error

triples and iteratively collaborates with SecV-builder to
optimize precision of the Hardware-CWE KG solving
the challenge 2.

e SecV-retriever leverages a clue-guided graph explo-
ration paradigm on the constructed Hardware-CWE KG
to accurately retrieve effective knowledge for LLMs
solving the challenge 3.

2 Related Work

Chip-Chat [Blocklove et al., 2023] represents a pioneering ef-
fort to fully automate the hardware design workflow, from ini-
tial design to tape-out, by leveraging Large Language Mod-
els (LLMs) like ChatGPT [Achiam et al., 2023] through-
out the entire process. Since the advent of LLMs, the field
of Verilog generation has experienced significant advance-
ments. Given the stringent quality requirements in chip de-
sign, recent efforts have increasingly focused on enhanc-
ing the quality of LLM-generated Verilog. Previous ap-
proaches include training or fine-tuning code-oriented LLMs
with Verilog-specific domain knowledge [Wu et al., 2024;
Fang et al., 2024] and introducing additional stages in the
code generation process [Blocklove et al., 2024; Sami et al.,
2024b], such as planning, verification, and refinement based
on simulation feedback.

Despite these approaches improving the syntactic correct-
ness of the generated results, the process involves generating
synthesizable code with frequent context switching between
different subtasks. To address this, Aivril [Sami et al., 2024a]
implements a basic dual-agent system for code generation
and review, while VerilogCoder [Ho et al., 2024] employs a
high-level planning agent to assign tasks to other agents with
independent dialogue histories. This enables specialized task
handling and greater modularity.

Although these methods have significantly improved the
logical correctness and PPA (Power, Performance, Area) met-
rics of the generated results, they have largely overlooked the
security aspects of the generated Verilog code. Some studies
have explored manual template reviews [Pearce er al., 2023]
and AST-based scanner [Ahmad et al., 2022] to identify vul-
nerabilities in Verilog code. However, these methods suf-
fer from incomplete vulnerability coverage and inefficiencies,
highlighting the need for a unified framework that enables
LLMs to generate secure Verilog code effectively.

3 Methodology

3.1 Framework overview

We have developed a novel generation framework called
SecV that leverages the Hardware-CWE knowledge graph
(KG) to enhance Large Language Models (LLMs), enabling
them to function as skilled designers for secure Verilog code.
The framework begins with raw Hardware-CWE corpora,
from which the SecV-builder uses a CWE-domain searcher
to retrieve relevant content and applies instance-adaptive
Chain-of-Thought (COT) to address the lack of trusted hard-
ware triples, thereby constructing the Hardware-CWE KG.
The SecV-verifier then collaborates iteratively with the SecV
builder to refine and ensure the precision of the KG. Finally,



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

:(1) SecV-builder

| CWE Entity CWE-domain

Searcher Instance-adaptive CoT

I
|

Correct Triple Error Triple

Lhrtthrtl

I

| (3) SecV-retriever

[ User Input

Hardware-CWE

(ESM) with specified state transitions and outputs.

low reset (‘rst_n").
- 'rst_n' is low, the FSM resets to state 2°h0"

>orts: ‘user_input': 3-bit input signal and ‘out’: 3-bit output signal
The FSM transitions on the positive edge of the clock (‘ck") or an active"

- ‘user_input == 3’h3"--> state '2'h3"
- ‘user input == 3’h4'--> state '2’h2" - ‘user input == 3’h5'--> state '2'h1’

Knowledge Graph
Q Q.

Generated Secure Verilog Code

always @ (posedge clk or negedge rst_n) begin

case (user_input)
3'h3: state <= 2’h3; 3'h4: state <= 2'h2;

Depth=3 Depth=2 Depth=1
noug Not Enough O Not Enough
@ ormatior @ Information 5 Information

3'hS: state <= 2’h1; default: state <= 2’h0;
endcase
end

High

GenerateT
@ | Query model: <Port Settings>

Secure Knowledge: <Examples>|
<Mitigations and Description> :

Prompt Template

Handle un-
defined inputs

Effectiveess is

Define all
possible states

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10del: Implement a Verilog module named "fsm_1" that implements a Finite State Machine O ~ |
TS : |
|
~< |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Clue entity:

CWE-1245: |:
Improper FSMJ }

Demonstrative
Examples

Potential
Mitigations

Figure 2: An overview of SecV. SecV integrates the SecV-buider, SecV-verifier, and SecV-retriever into a unified framework for generating

secure Verilog.

a clue-guided graph exploration paradigm is employed on
the KG to facilitate collaborative inference, enabling LLMs
to generate secure and functionally correct chip modules
based on the provided descriptions. SecV integrates the
SecV-builder, SecV-verifier, and SecV-retriever into a uni-
fied framework for generating secure Verilog. An overview
of SecV is shown in Figure 2.

3.2 SecV-builder

For CWE entities, it refers to a selected set of vulnerability
terms within the chip security domain. The SecV-builder
employs a CWE-domain searcher to obtain the most rele-
vant context from raw Hardware-CWE corpora and lever-
ages instance-adapted Chain-of-Thought to extract entities
and their relationships, thereby constructing a Hardware-
CWE KG.

CWE-domain searcher LLMs are frequently constrained
by significant knowledge hallucinations, where the content
they produce often diverges from factual knowledge. The
issue impacts the precision and practical applications of the
Hardware-CWE KG. To mitigate knowledge hallucinations

and facilitate accurate knowledge augmentation for LLMs,
we propose a CWE-domain searcher. For a given CWE en-
tity, the searcher first segments the Hardware-CWE corpora
into individual sentences. It then ranks the relevant sentences
based on the frequency of occurrence of the vulnerability en-
tity and their distributional similarity to the corpora. Finally,
these sentences are concatenated into a single text to serve as
input for the LLMs.

Instance-adaptive COT When the input consists solely of
Hardware-CWE content and simple instructions, the output
generated by LLMs is often difficult to control and may
even contain incorrectly formatted triples. To address this
challenge, we propose an instance-adaptive chain-of-thought
(CoT) approach that selects appropriate CoT prompts in a
discrete space for each CWE instance in the current reason-
ing task. The instance-adaptive CoT method decomposes the
complex extraction task into multiple simpler steps, thereby
avoiding the misleading effects of untrustworthy triples and
enabling the sequential extraction of CWE entities and their
relationships. For standard CoT prompting, given the task 7',
optimizer L, CoT specific instructions P like zero-shot COT



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

or plan-and-solve COT, we formalize this simple yet funda-
mental solving paradigm as:

L(AIP,T) = LIAIP,T,C)LCIP,T) (1)

, where C' denotes a sampled rationale in natural language
and A is the generated answer.

To generate diverse prompts, we initialize two CoT
prompts, P; and P». In each iteration, we employ LLMs as
optimizers and randomly select a pair of prompts P; and P;
from the prompts pool to perform a fusion operation. Which
is defined as:

P; = Fusion(P;, P;) 2)

Then, we enable mutation on the fusion CoT prompting Py,
which is defined as:

P,, = Mutation(Py) 3)

Ultimately, LLMs select the most appropriate CoT prompt
from the generated set to extract CWE entities and their rela-
tionships, thereby constructing the Hardware-CWE KG.

3.3 SecV-verifier

Although the SecV-builder helps improve the quality of the
LLM’s output, errors still persist in the generated triples due
to knowledge noise. To further improve the precision of the
Hardware-CWE KG, we introduce the SecV-verifier, which
is responsible for identifying and filtering erroneous or dupli-
cate triples generated by the LLMs. Specifically, the SecV-
verifier consists of two steps: error detection and correction.

For error detection, we propose a BERT-based binary clas-
sifier model, fine-tuned with the open source MITRE doc-
umentation [MITRE, 2023]. The classifier’s input consists
of triples from the Hardware-CWE KG, and its output is ei-
ther “correct” or “error”, indicating whether the triples need
correction. To train the pruner, we gather training data from
MITRE, selecting manually verified triples as the “correct”
category. We also collect an equivalent subset of erroneous
triples to represent the “error” category. These error triples
are classified into the following types: (i) Format Error:
The structure of the triple does not conform to the canoni-
cal format, resulting in incomplete information. (ii) Conflict
Error: The relationship between the head and tail entities
is expressed imprecisely or ambiguously. (iii) Semantic Er-
ror: A semantic inconsistency exists between the head entity,
the tail entity, and the relationship predicate within the triple.
We use “correct” and “error” triples as input, with the corre-
sponding labels “correct” or “error’” as output targets during
fine-tuning. We then employ the BERT classifier to check
the format, conflicts, and semantics of the triples from the
Hardware-CWE KG, enabling error correction based on the
results of these checks.

For error correction, the triples labeled “correct” remain
unchanged, while those labeled “error” are combined with the
content retrieved by the CWE-domain searcher, the triples,
and the error hint message into a template. This enables
us to re-prompt the SecV-builder of the KG to correct the
triples. Subsequently, we obtain a precise Hardware-CWE
KG through the iterative collaboration of the SecV-verifier
and the SecV-builder.

3.4 SecV-retriever

After building and verifying the hardware-CWE KG, we de-
signed a SecV-retriever that utilizes a clue-guided exploration
paradigm, enabling collaborative inference by LLMs to gen-
erate secure Verilog. The paradigm allows the LLM to dy-
namically explore the multiple evidence subgraphs in the
Hardware-CWE KG and make decisions based on this explo-
ration. Given an input description, the SecV-retriever process
starts with the identification of initial clue entities. It then
uses these clue entities as starting points for exploration to
construct an evidence subgraph through LLM reasoning and
graph retrieval. Finally, LLMs utilize the security knowledge
in the evidence subgraph to generate secure Verilog code.

Clues Recognition We first use LLM to identify key enti-
ties from the query module description Q. Specifically, we
use a prompt that consists of three parts: the question to be
analyzed, the instruction phrase, and the clue list. We then
apply cosine similarity to match the clue entities with CWE
keywords. Then, we encode all the clue entities e extracted by
the LLM and all the entities G from the Hardware-CWE KG
into dense embeddings V. and V; respectively, and compute
the cosine similarity matrix between them. Finally, we ob-
tain the clue entity sets M, with the highest similarity scores,
which we use to build the evidence subgraphs in the next step.

Clue-guided graph Exploration We define the Hardware-
CWEKGby G = {(h,r,t) | h € ¢,r € ¢,t € v}, where
1, ¢ and v represent the entity set, relation set and tail entity
set, respectively. The objective of this stage is to build the
evidence sub-graphs S based on the extracted clue entites e.
An evidence sub-graph is defned by S = {(e,r,e*) | e €
U, 1 € p,e* € v}. As shown in Algorithm 1, clue-guided
exploration adds more query-relevant security knowledge to
evidence subgraphs by expanding each clue e in M, by 1-hop
to its neighbors e* , and adding triples (e, r, e*) to evidence
subgraphs S in the exploration process. Specifically, before
exploring the next depth layer, we update M, by removing

Algorithm 1 Clue-guided graph exploration Algorithm

1: Input: Query @, Knowledge graph G,Clue set M,
2: Parameter: Depth limit Dy,,,, LLM 7

3: Output: Evidence subgraphs S

4: Initialize Neighbors set N < ()

5: while D < D,,x do

6:  foreachclue e € M, do

7 Expand e by 1-hop to its neighbors e*
8 Add triples (e,r,e*) to S

9: Update N + e*
10:  end for
11: M, + Select(N, )
12: S« Prune(S,n)
13:  if (Q, S, 7) then
14: break
15:  endif
16:  Increment D by 1.
17: end while
18: Return: S




Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Design | Llama-3 Llama-3 + SecV | GPT-4 | GPT-4+SecV |  Codestral | Codestral+SecV | RTLCoder | RTLCoder +SecV
‘ Func. Sec. Func. Sec. ‘ Func. Sec. ‘ Func. Sec. ‘ Func. Sec. ‘ Func. Sec. ‘ Func. Sec. ‘ Func. Sec.
Foo_bar_1 1 v 5 v 5 v 5 v 5 v 5 v 0 5 v
Privilege and Access | Foo_bar2 1 X 2 v 4 v 3 v 5 v 0 - 5 X 5 X
Control Issues Bootrom 0 - 0 - 0 - 1 v 0 - 5 v 0 - 5 v
Mpec 0 0 1 X 1 v 0 0 - 0 0 -
Locked_1 0 - 0 = 3 X 4 X 5 X ) X 0 - 0 =
o Locked_2 0 - 0 - 4 x 4 v 5 X 0 . 0 > 0 =
fg;fg%csgﬁ;‘:mf“d Fom_1 5 v 5 v 5 v 5 v 0 - 0 - 0 - 0 -
Fsm_2 0 - 0 - 0 - 1 X 5 X 5 X 5 X 5 X
Shifter 5 v 4 v 5 v 5 X 5 v 5 v 5 v 5 v
Regfile_1 5 X 2 X 4 v S v 0 5] v 5 X S v
Regfile 2 3 X 1 X 4 v 4 v 5 v 5 v 5 v 5 v
Memory and Storage | Ase_l 1 X 2 v 5 v 5 v 0 0 5 0 - 0 -
Issues Ase 2 5 v 5 v 4 v 5 4 0 5 X 5 v 5 v
Register 5 v ) v 5 X S v 0 5] v 5 X S X
Sha256_Register 3 v 4 v 4 v 4 v 0 0 - 5 v 0 -
Jtag_1 1 X 1 X 3 v 5 v 5 v 0 - 0 - 0 -
Power, Clock, Thermal, | Jtag2 5 v 5 v 4 v 5 v 5 X 5 X 5 v 5 v
and Reset Issues Rglk 5 v 3 v 3 v 3 v 0 - 0 = 5 v 5 v
Csr 5 X 5 v 2 X 3 X 5 v 5 v 5 v 5 v
Axi 1 X 5 v 2 v 4 v 0 0 - 0 - 5 v
Primitives and Cryptog- | Acct 2 X 4 X 2 X 4 4 0 5 v 5 X 5 v
raphy Issues Mod_exp 0 - 0 E 1 x 3 v 0 - 5 v 0 - 0 o
GlitchEx 1 v 3 v 4 v 3 v 5 v 0 5 v 5 v

Success rate | 47.0% 391% 53.0% 56.5% | 64.3%

60.9% | 75.7%

82.6% | 47.8% 304% | 56.5%  39.1% | 56.5% 348% | 652% = 522%

Table 1: The Functional Correctness and Security Evaluation for Different LLMs

clues e from the previous depth layer and adding neighbors
e*, which are deemed new clues to the question by the LLM.
e* is then used as the starting node for the next depth explo-
ration, continuing the expansion of the evidence subgraphs S.
Additionally, to manage information overhead and maintain
diversity, we prune the tail entities of the evidence subgraphs
by leveraging the LLM. These pruning steps result in the final
evidence graph S, optimizing information while preserving
diversity.

Verilog generation Upon obtaining the current evidence
subgraphs S through the clue-guided exploration process, we
use the LLM to assess whether the evidence graph is suffi-
cient for secure Verilog generation. If the evaluation is posi-
tive, we extract secure information, including potential miti-
gations and examples. We then generate secure Verilog code
by prompting the LLM with a template consisting of four
components: a system instruction, a module description, mit-
igations, and examples. Conversely, if the evaluation is neg-
ative, we repeat the clue-guided exploration steps until the
evaluation becomes positive or Dy, is reached. If the algo-
rithm has not yet concluded, it indicates that even after reach-
ing the maximum depth, we are still unable to explore the
evidence subgraphs to resolve the question. In this case, the
LLM generates Verilog code exclusively based on its inherent
knowledge.

4 Experiments
4.1 Experimental Setup

Settings Unlike general-purpose code, the behavior of Ver-
ilog is typically evaluated through testbenches. We built
and installed the open-source Icarus Verilog [Williams, 2023]
simulator in a Python environment. Icarus Verilog is intended
to compile all of the Verilog, as described in the IEEE-1364
standard. Simulation and testing are handled within the built

environment, and results can be produced using just a single
line of command.

Datasets We have collected five categories of vulnerable
designs from the latest version (V4.16) of the Common
Weakness Enumeration (CWE) dataset. These categories in-
clude privilege and access control, general circuit and logic
design, memory and storage, power clock thermal and reset,
and primitives and cryptography. In total, there are 23 in-
stances of varying sizes and complexities. For each design,
we provide the following information in three separate files:

* Description (Query.txt): This description includes an
explicit indication of the module name, all input and out-
put (I/O) signals with signal name and width.

* Testbench (Testbench.sv): A testbench with multiple
test cases, each with input values and correct output val-
ues.

* Secure Design (Reference_Verilog.v): A secure Ver-
ilog code reference provided by MITRE [MITRE,
2023]. We can evaluate the security of the automatically
generated Verilog.

Metrics We follow recent works in directly measuring code
security rate through success rate metric [Pinckney et al.,
2024; Thakur et al., 20231, where a problem is considered
solved if any of the k samples pass the unit tests. Specifi-
cally, The success rate for functional correctness is defined as
follow:

1 n
Success rate( Func) = % Z Ttunc; <k) “)
i=1

, where n denotes the total number of cases and [ fy,.) is the
indicator function that indicates whether the functional test
was passed in k samples. We counted the number of designs
with correct functionality generated in five trials.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

In the security section, the success rate for security is de-
fined as follow:

1 n
S te(S — I <k 5
uccess rate(Sec) - ; \:/ (sec; ) (%)

, where k; denotes the number of samples that pass the func-
tional tests, \/ is OR operation, and I(sec) is the indicator
function that indicates whether a functionally correct sample
passes the security test. We evaluate the designs by examin-
ing the presence of functionally correct Verilog within k sam-
ples that also satisfy security requirements. The assessment
outcomes are denoted as follows: v indicates the success-
ful identification of security-compliant code, X represents the
absence of secure implementations despite functional correct-
ness, and — denotes the non-existence of functionally valid
code.

Compared cases To evaluate the performance of various
LLMs from different perspectives, we setup temperature =
0.7 and top p = 0.9 for all LLMs. We compare SecV with
four LLMs as follows in our experiments:

» LLama-3: the open-source commercial solution.
* GPT-4.0: the state-of-the-art commercial solution.

e Codestral: A recent model for code generation with
8 billion parameters, based on the Mamba architecture
[Dao and Gu, 2024].

* RTLCoder: An academic model with 6.7 billion parame-
ters, developed by fine-tuning the Deepseek-Coder [Guo
et al., 2024a] model using Verilog data.

4.2 Main Results

Table 1 shows the pass rates of LLM + SecV and all compared
LLM methods on the specified CWE benchmarks. Over-
all, LLM + SecV achieved significant improvements over the
compared methods while maintaining a remarkable balance
between functional correctness and security rate. First, the
LLM + SecV approach outperforms all other LLM methods
in terms of security rates. Specifically, we observe a 17.4%-
21.7% improvement over two commercial solutions, Llama3
and GPT-4, and an 8.7%-17.4% improvement over two aca-
demic models, Codestral and RTLCoder. Notably, the high-
est gain is achieved with the most state-of-the-art (SOTA)
commercial solution, GPT-4, which improves by 21.7% and
attains a 82.6% security rate in functionally correct Verilog
code. These results suggest that SecV’s performance im-
proves with the reasoning power of the backbone model and
that the potential of SecV-KG can be further harnessed by
employing more powerful LLMs.

Additionally, with regard to functional correctness, the
LLM + SecV method shows notable improvements. Specifi-
cally, we observe a 6.0%-11.4% improvement over two com-
mercial solutions, Llama3 and GPT-4, and an 8.7% improve-
ment over both academic models, Codestral and RTLCoder.
The performance degradation of LLM + SecV in a very few
test cases can be attributed to the secure knowledge provided,
which may conflict with the intrinsic knowledge of the LLM,

Backbone Method Func(%) Sec(%)
Secvwlo searcher 66.1 65.2
Sec\/w/u cot 71.3 73.9

GPT-4 SeCleo SecV-vefier 72.2 78.3
SeC\/w/o SecV-retriever 67.8 69.5
SecV 75.7 82.6
SCCVW/(, searcher 45.2 39.1
Sec\/w/o cot 49.6 52.2

LLama-3 SeCVw/(y SecV-vefier 51.3 522
SeC\/w/o SecV-retriever 48.7 47.8
SecV 53.0 56.5

Table 2: Ablation study for SecV in the speiced specified CWE-
benchmark

thereby undermining the model’s original reasoning capabil-
ity. Thus, the misalignment between the LLMs and secure
knowledge poses a challenge in demonstrating the benefits of
our LLM + SecV.

4.3 Ablation Studies

To further investigate the contribution of each component
within SecV to the secure Verilog generation, we per-
formed a series of ablation experiments on the entire frame-
work. Specifically, we denote SecV without the instance-
adapted CoT as SecV , /, cot» SecV without the CWE-domain
searcher as SecV., /o scarcher» S€CV without the SecV-verifier
as SecVy, /o verifiers and SecV without the SecV-retriever
as /o retricvers respectively. As shown in Table 2, the ab-
sence of any component within SecV leads to a degradation
in the framework’s overall performance. Notably, the SecV-
retriever and the CWE-domain searcher have a more pro-
nounced impact on SecV’s performance. These two compo-
nents control the source and utilization of knowledge, respec-
tively. This underscores the importance of enhancing the pre-
cision of knowledge when using the Hardware-CWE knowl-
edge graph to improve the ability of LLMs to generate secure
Verilog code.

4.4 Discussion

We conducted extensive experiments to verify the effective-
ness of the SecV-retriever and SecV-builder. Additionally, we
provide a detailed analysis of how the number of CoTs and
the depth of graph exploration impact SecV’s performance.

Comparison for Performance We compare SecV with
other methods that use LLMs to construct the Hardware-
CWE knowledge graph and generate Verilog. We select GPT-
4, Llama3-70B-Instruct, and Qwen-7B-Instruct [Bai et al.,
2023] as backbone models to evaluate the impact of LLMs
with varying performance levels. The overall results are pre-
sented in Table 3. On one hand, the SecV-builder achieves
the best results across all backbone networks, with a 4.3%
to 8.7% improvement in security rate and a 2.6% to 7.8%
improvement in functional correctness compared to other
methods. On the other hand, we observe that the improve-
ment from the SecV-retriever is more pronounced with larger
LLMs that have better performance. This suggests that our



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Method Func(%) Sec(%)
GPT-4
[Guo et al., 2024b] 67.8 69.6
[Edge et al., 2024] 70.4 73.9
+ SecV 75.7 82.6
Gain (+4.3) (+8.7)
LLama3-70B-Instruct
[Guo et al., 2024b] 66.1 60.9
[Edge et al., 2024] 67.0 73.9
+ SecV 74.8 78.2
Gain (+7.8) (+4.3)
Qwen-7B-Instruct
[Guo et al., 2024b] 64.3 60.9
[Edge et al., 2024] 67.8 69.6
+ SecV 70.4 73.9
Gain (+2.6) (+4.3)

Table 3: Comparison with different Graph Construction and Re-
trieval Augmented Generation methods

method effectively leverages the powerful inference capabil-
ities of LLMs to construct a precise Hardware-CWE knowl-
edge graph. Notably, even for Qwen-7B-Instruct, a backbone
network with relatively few parameters, our method achieves
a 73.9% security rate.

Effectiveness of CoT Number In previous experiments,
we strategically employed single-round fusion and mutation
operations to optimize inference speed. In this section, our
objective is to systematically verify the relationship between
the number of CoT prompts generated during multiple rounds
of fusion and mutation operations and the resulting perfor-
mance of SecV. As shown in Figure 3, the results reveal a
clear positive correlation: an increase in the number of CoT
prompts leads to continuous improvements in SecV perfor-
mance. However, the time required for inference increases
proportionally with the number of generated CoT prompts.
Therefore, in scenarios where inference speed is less critical,
the SecV-builder can be used to significantly enhance perfor-
mance. When inference time is a concern, optimal perfor-
mance is typically achieved with 4 or 8§ CoT prompts.

Effectiveness of exploration depth To investigate the ef-
fect of exploration depth D on SecV performance, we con-
ducted experiments with depth settings ranging from 1 to 4.
As shown in Figure 4, the performance of SecV improves
as the exploration depth increases. However, due to computa-
tional cost considerations, which increase linearly with depth,
we selected a depth of 3 as the default setting in previous ex-
periments. Furthermore, performance gains diminish when
the depth exceeds 3. This is mainly because only a small por-
tion of questions related to secure Verilog generation require
deeper reasoning depths, based on the number of relations in
the Hardware-CWE knowledge graph.

5 Conclusions

In this work, we propose SecV, a novel and unified framework
that efficiently constructs a precise Hardware-CWE knowl-
edge graph (KG) and employs a clue-guided graph explo-

100- —* Llama-3+SecV
GPT-4+SecV

—4— Codestral+SecV
RTLCoder+SecV

80 -

60 - 0/\

—e

40+ A\‘—‘///A

Security rate (%)

20

Ai é 1‘6 3‘2
Number of CoT
—4— Codestral+SecV

RTLCoder+SecV

. —— Llama-3+SecV
GPT-4+SecV

©°
=]

=]
=]
L

(=2}
=]
L

—

a 8 16 32
Number of CoT
Figure 3: Effectiveness of different CoT number

o
=]
L

'S
=)

Functional correctness(%)
~J
=]

[N Llama-3+SecV & Codestral+SecV
4 RTLCoder+SecV

1007 71 GPT-4+SecV

Security rate(%)

[N Llama-3+SecV
1007 71 GPT-4+SecV

80 -

3 Codestral+SecV
1 RTLCoder+SecV

K

60 -

KL

40 4

7
ANANN\N
RRIIRRD

201

Depth
Figure 4: Effectiveness of exploration depth

Functional correctness(%)

ration paradigm to facilitate the collaborative inference of
knowledge for LLMs to generate secure Verilog code. Specif-
ically, the SecV framework consists of three components,
SecV-builder, SecV-verifier, and SecV-retriever. They respec-
tively take charge of the construction of Hardware-CWE KG
to compensate the lack of secure Verilog knowledge for pre-
trained LLMs, iterative removal of error triples to optimize
the precision of the Hardware-CWE KG, and clue-guided ac-
curate retrieval of effective knowledge on the KG for LLMs.
Extensive experiments on CWE benchmarks demonstrate the
effectiveness of SecV, achieving better performance with a se-
curity rate of 82.6% on the generated functionally correct Ver-
ilog code, compared with other SOTA. In the future, we will
explore secure knowledge preference alignment for LLMs to
enhance the beneficial effects of the Hardware-CWE KG, en-
abling LLMs to generate more secure Verilog.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work has been supported by the National Natural
Science Foundation of China under grant No.62472132
and 62472447, Key R&D Program Project of Zhejiang
Province under grant No.2025C01063 and 2024C01179,
Hunan Provincial Natural Science Foundation of China
under grant No0.2024JK2006, the Science and Technol-
ogy Innovation Program of Hunan Province under grant
No.2023RC1023.

References

[Achiam et al., 2023] Josh Achiam, Steven Adler, Sandhini
Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

[Ahmad er al., 2022] Baleegh Ahmad, Wei-Kai Liu, Luca
Collini, Hammond Pearce, Jason M Fung, Jonathan
Valamehr, Mohammad Bidmeshki, Piotr Sapiecha, Steve
Brown, Krishnendu Chakrabarty, et al. Don’t cweat it: To-
ward cwe analysis techniques in early stages of hardware
design. In Proceedings of the 41st IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 1-9,
2022.

[Ahmad et al., 2024] Baleegh Ahmad, Shailja Thakur, Ben-
jamin Tan, Ramesh Karri, and Hammond Pearce. On hard-
ware security bug code fixes by prompting large language
models. IEEE Transactions on Information Forensics and
Security, 2024.

[Bai et al., 2023] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu
Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[Blocklove et al., 2023] Jason Blocklove, Siddharth Garg,
Ramesh Karri, and Hammond Pearce. Chip-chat: Chal-
lenges and opportunities in conversational hardware de-
sign. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pages 1-6. IEEE, 2023.

[Blocklove et al., 2024] Jason Blocklove, Shailja Thakur,
Benjamin Tan, Hammond Pearce, Siddharth Garg, and
Ramesh Karri. Can eda tool feedback improve verilog gen-
eration by llms? arXiv preprint arXiv:2411.11856, 2024.

[Dao and Gu, 2024] Tri Dao and Albert Gu. Transformers
are ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint
arXiv:2405.21060, 2024.

[Dubey er al., 2024] Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang,
Angela Fan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

[Edge et al., 2024] Darren Edge, Ha Trinh, Newman Cheng,
Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag
approach to query-focused summarization. April 2024.

[Fang et al., 2024] Wenji Fang, Yao Lu, Shang Liu, Qijun
Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and
Zhiyao Xie. Transferable pre-synthesis ppa estimation
for rtl designs with data augmentation techniques. I/EEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2024.

[Fu er al., 2023] Weimin Fu, Kaichen Yang, Raj Gautam
Dutta, Xiaolong Guo, and Gang Qu. Llm4sechw: Lever-
aging domain-specific large language model for hardware
debugging. In 2023 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pages 1-6. 1EEE,
2023.

[Guo et al., 2024a] Daya Guo, Qihao Zhu, Dejian Yang,
Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the
large language model meets programming—the rise of code
intelligence. arXiv preprint arXiv:2401.14196, 2024.

[Guo et al., 2024b] Zirui Guo, Lianghao Xia, Yanhua Yu,
Tu Ao, and Chao Huang. Lightrag: Simple and fast
retrieval-augmented generation. 2024.

[Ho et al., 2024] Chia-Tung Ho, Haoxing Ren, and Brucek
Khailany.  Verilogcoder: Autonomous verilog coding
agents with graph-based planning and abstract syntax

tree (ast)-based waveform tracing tool. arXiv preprint
arXiv:2408.08927, 2024.

[Huang et al., 2023] Yu-Xuan Huang, Zequn Sun, Guangyao
Li, Xiaobin Tian, Wang-Zhou Dai, Wei Hu, Yuan Jiang,
and Zhi-Hua Zhou. Enabling abductive learning to exploit
knowledge graph. In IJCAI, pages 3839-3847, 2023.

[Jiang et al., 2023] Albert Q Jiang, Alexandre Sablayrolles,
Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

[Kim et al., 2023] Jiho Kim, Yeonsu Kwon, Yohan Jo, and
Edward Choi. Kg-gpt: A general framework for reason-
ing on knowledge graphs using large language models. In
EMNLP (Findings), 2023.

[Liu ef al., 2023] Mingjie Liu, Teodor-Dumitru Ene, Robert
Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Is-
met Bayraktaroglu, et al. Chipnemo: Domain-adapted
Ilms for chip design. arXiv preprint arXiv:2311.00176,
2023.

[Liu et al., 2024] Shang Liu, Wenji Fang, Yao Lu, Qijun
Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder: Out-
performing gpt-3.5 in design rtl generation with our open-
source dataset and lightweight solution. In 2024 IEEE
LIM Aided Design Workshop (LAD), pages 1-5. IEEE,
2024.

[Lu et al.,2024] Yao Lu, Shang Liu, Qijun Zhang, and
Zhiyao Xie. Rtllm: An open-source benchmark for de-
sign rtl generation with large language model. In 2024
29th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pages 722-727. IEEE, 2024.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[MITRE, 2023] MITRE. Common weakness enumeration,
2023. [Online; accessed 25-December-2024].

[Nazzal et al., 2024] Mahmoud Nazzal, Issa Khalil, Abdal-
lah Khreishah, and NhatHai Phan. Promsec: Prompt op-
timization for secure generation of functional source code
with large language models (Ilms). In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2266-2280, 2024.

[Pearce er al., 2023] Hammond Pearce, Benjamin Tan,
Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-
Gavitt. Examining zero-shot vulnerability repair with
large language models. In 2023 IEEE Symposium on
Security and Privacy (SP), pages 2339-2356. IEEE, 2023.

[Pei er al., 2024] Zehua Pei, Hui-Ling Zhen, Mingxuan
Yuan, Yu Huang, and Bei Yu. Betterv: controlled verilog
generation with discriminative guidance. In Proceedings

of the 41st International Conference on Machine Learn-
ing, pages 40145-40153, 2024.

[Pinckney et al., 2024] Nathaniel Pinckney, Christopher
Batten, Mingjie Liu, Haoxing Ren, and Brucek Khailany.
Revisiting verilogeval: Newer llms, in-context learn-
ing, and specification-to-rtl tasks. arXiv preprint
arXiv:2408.11053, 2024.

[Sami et al., 2024a] Humza Sami, Pierre-Emmanuel Gail-
lardon, Valerio Tenace, et al. Aivril: Ai-driven rtl
generation with verification in-the-loop. arXiv preprint
arXiv:2409.11411, 2024.

[Sami et al., 2024b] Humza Sami, Pierre-Emmanuel Gail-
lardon, Valerio Tenace, et al. Eda-aware rtl generation with
large language models. arXiv preprint arXiv:2412.04485,
2024.

[Thakur et al., 2023] Shailja Thakur, Baleegh Ahmad,
Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh
Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Bench-
marking large language models for automated verilog
rtl code generation. In 2023 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1-6.
IEEE, 2023.

[Thakur et al., 2024] Shailja Thakur, Baleegh Ahmad, Ham-
mond Pearce, Benjamin Tan, Brendan Dolan-Gavitt,
Ramesh Karri, and Siddharth Garg. Verigen: A large lan-
guage model for verilog code generation. ACM Trans-

actions on Design Automation of Electronic Systems,
29(3):1-31, 2024.

[Tsai et al., 2024] YunDa Tsai, Mingjie Liu, and Haoxing
Ren. Rtlfixer: Automatically fixing rtl syntax errors
with large language model. In Proceedings of the 61st
ACM/IEEE Design Automation Conference, pages 1-6,
2024.

[Williams, 2023] Stephen Williams. The icarus verilog com-
pilation system, 2023.

[Wu et al., 2024] Peiyang Wu, Nan Guo, Xiao Xiao, Wen-
ming Li, Xiaochun Ye, and Dongrui Fan. Itertl: An itera-
tive framework for fine-tuning 1lms for rtl code generation.
arXiv preprint arXiv:2407.12022, 2024.

[Zhao er al., 2024a] Ruilin Zhao, Feng Zhao, Long Wang,
Xianzhi Wang, and Guandong Xu. Kg-cot: Chain-of-
thought prompting of large language models over knowl-
edge graphs for knowledge-aware question answering. In
Proceedings of the Thirty-Third International Joint Con-
ference on Artificial Intelligence (IJCAI-24), pages 6642—
6650. International Joint Conferences on Artificial Intelli-
gence, 2024.

[Zhao er al., 2024b] Yang Zhao, Di Huang, Chongxiao Li,
Pengwei Jin, Ziyuan Nan, Tianyun Ma, Lei Qi, Yansong
Pan, Zhenxing Zhang, Rui Zhang, et al. Codev: Empow-
ering llms for verilog generation through multi-level sum-
marization. arXiv preprint arXiv:2407.10424, 2024.

[Zhao et al., 2024¢c] Yujie Zhao, Hejia Zhang, Hanxian
Huang, Zhongming Yu, and Jishen Zhao. Mage: A multi-
agent engine for automated rtl code generation. arXiv
preprint arXiv:2412.07822, 2024.



