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Abstract

As the network data in real life become multi-
modal and multi-relational, multi-view attributed
graphs have garnered significant attention. Nu-
merous methods have achieved excellent perfor-
mance in multi-view attributed graph clustering;
however, they cannot efficiently handle incomplete
attribute scenarios, which are prevalent in many
real-life applications. Inspired by this, we inves-
tigate the problem of multi-view incomplete at-
tributed graph clustering for the first time. In par-
ticular, the TOTF (Train Once Then Freeze) frame-
work is designed to train missing-aware encoders
that capture view-specific information while ignor-
ing the impact of incomplete attributes, and then
employs frozen encoders to uncover common infor-
mation driven by clustering. After that, we propose
a correlation strength-aware graph neural network
on the basis of the inherent relationships among at-
tributes to enhance accuracy. It is proven theoret-
ically that traditional Generative Adversarial Net-
works (GANs) are unable to generate the unique
real distribution. To address this issue, we fur-
ther introduce the missing-position reminder mech-
anism into our intra-view adversarial games for bet-
ter clustering results. Extensive experimental re-
sults demonstrate that our method achieves up to
a 17% improvement in accuracy over the state-of-
the-art methods. The source code is available at
https://anonymous.4open.science/r/TOTF-main.

1 Introduction
As network data in real-world applications exhibit multi-
modal and multi-relational characteristics [Qu et al.2017],
multi-view attributed graphs [Lin and Kang2021, Lin et
al.2023, Pan and Kang2021] have attracted considerable at-
tention in practical domains such as social networks [Lu et
al.2024], citation networks [Greenberg2009], and biological
networks [Kermani et al.2022]. Notably, clustering on multi-
view attributed graphs [Jin et al.2023, Fettal et al.2023] is

∗Corresponding author

...

View 1

Animals Travel Food

Related Topics

Co-Focus Relationship
Personal Information

SchoolAddress

Colleague Relationship

View V

BobTom Tom Bob

Figure 1: Multi-view incomplete attributed graph where some nodes
are with incomplete attributes.

a critical task aimed at finding a unified partition that di-
vides nodes into several disjoint clusters. It plays a signifi-
cant role in various applications, including recommendation
systems, community detection, social network analysis, and
ride-hailing demand prediction.

Although there are abundant researches about multi-view
attributed graph clustering, they ignore incomplete attribute
scenarios ragarding privacy concerns, system malfunctions,
malicious attacks, or inadvertent omissions. Incomplete at-
tributes are prevalent in many real-life applications [Jiang et
al.2024]. For example, the research on Italian social net-
works about users interested in pharmaceutical products and
health shows that there is a prevalence of missing values equal
to 64.7% considering all social pages [Mariani et al.2024].
Additionally, in the U.S. healthcare information system, be-
tween 13.6% and 81% of data is outdated or lacking com-
pleteness [Jr. et al.2005].

In this paper, we focus on multi-view attributed graph clus-
tering with incomplete attributes.

Example 1. Fig. 1 illustrates an example of the multi-view
incomplete attributed graph in the social network, contain-
ing V views with incomplete attributes. The first view de-
picts the co-focus relationships on the Weibo platform, where
Bob accidentally omits his favorite animal when filling out the
form. The V -th view illustrates the colleague relationships,
with Tom concealing his home address for privacy reasons.
These incomplete attributes may affect the accuracy of clus-
tering, thereby complicating the friend recommendation on
the Weibo platform.

Prior Work and Limitations. Existing researches fall into
three classes. We list detailed differences in Table 1.
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Methods Incomplete Data Type Incomplete Type Without Label
MAGC, MCGC,

MvAGC ✗
Multi-view

attributed graph ✗ ✔

ASD-VAE,
GCNMF ✔

Single-view
attributed graph Attribute ✗

ProImp,
ICMVC ✔ Euclidean data Node ✔

TOTF (Ours) ✔
Multi-view

attributed graph Attribute ✔

Table 1: Comparison of Prior Works

• Multi-view attributed graph clustering. Numerous
works like MAGC [Lin et al.2023], MCGC [Pan and
Kang2021], and MvAGC [Fan et al.2020] have been
proposed for multi-view attributed graph clustering,
however, these methods always assume ideal conditions
and fail to effectively address incomplete attribute sce-
narios. As shown in Subsection 5.2, as the miss rate on
the ACM dataset increases from 0.1 to 0.7, the accu-
racy of MvAGC decreases from 0.82 to 0.38, highlight-
ing their struggle with incomplete attributes.

• Single-view incomplete attributed graph learning
methods. This class of methods like ASD-VAE [Jiang
et al.2024] and GCNMF [Taguchi et al.2021] involves
incomplete attribute scenarios. However, they belong
to supervised learning and rely on label information of
node classification or link prediction. So they are not
suitable for unsupervised tasks like clustering. More-
over, these methods are designed for single-view graphs
and fail to deal with complex multi-view information.

• Incomplete multi-view clustering methods. This class
of methods, like ProImp [Li et al.2023] and ICMVC
[Chao et al.2024], is designed for multi-view Euclidean
data, whose characteristics are totally different from
graphs. Moreover, they focus on the incomplete view
which means some samples are missing in several views,
as a specific case of incomplete attributes. They are dif-
ficult to extend to deal with the more general problem
(incomplete attributes).

Challenges and Contributions. Incomplete attributes
bring new grim challenges. First, incomplete attributes may
distort the inherent patterns and relationships within the data,
making it challenging to accurately capture the true distribu-
tion of attributes and further affect clustering results. Second,
although multi-view graphs can provide more complemen-
tary information, the coordination of different views poses a
significant challenge. It is crucial to overcome the inconsis-
tencies between these views, as well as those arising from
incomplete attributes, to discover the consensus information
that is essential for clustering.

In this paper, we propose the TOTF framework to ad-
dress the problem of multi-view incomplete attributed graph
clustering. To our knowledge, this is the first work focus-
ing on this area. Firstly, we train a series of encoders
that mitigate the impact of incomplete attributes. We de-
sign the Correlation Strength-Aware Graph Neural Network
(CSAGNN) based on inherent relationships among attributed
graphs. Incomplete attributes occur when some node at-
tributes are missing; thus, while recovering these attributes,

we extract information from both neighboring nodes and
existing attributes within the node. However, few studies
have explored dimensional relationships within graph neu-
ral networks. Therefore, we investigate the relationships
among attributes via experiments to provide a rationale for
CSAGNN. Additionally, we introduce a missing position re-
minder mechanism to address traditional GAN limitations in
handling incomplete attributes and ensure real distribution ac-
quisition. Secondly, we develop a clustering-driven common
extractor to integrate multi-view information and learn con-
sensus information essential for clustering tasks from view-
specific information.

In summary, we highlight the contributions as follows:

• To the best of our knowledge, this is the first work to
focus on multi-view attributed graph clustering with in-
complete attributes.

• We design the TOTF (Train Once Then Freeze) frame-
work to deal with multi-view incomplete attributed
graph clustering which trains missing-aware encoders
first and then freezes their parameters to further discover
common information driven by clustering.

• We propose the correlation strength-aware graph neural
network based on the findings of the inherent relation-
ships among attributes through experiment investigation.

• We introduce the missing position reminder mechanism
to discriminators and prove that the distribution of gen-
erated attributes is the same as the real distribution of
attributes when achieving equilibrium.

• Extensive experimental results demonstrate that our
method achieves significant accuracy improvements
across different levels of incompleteness and is less af-
fected by incomplete attributes.

The rest of this paper is organized as follows. In Section
2, we review related works. Section 3 gives the problem for-
mulation. Section 4 describes our method in detail. Then, we
conduct extensive experiments and analyze results in Section
5. Finally, Section 6 concludes this paper.

2 Related Work
In this section, we review related works. Incomplete multi-
view clustering methods are typically designed for Euclidean
data with missing samples and are difficult to extend to this
general problem with incomplete attributes. Thus, we mainly
focus on two other tasks: multi-view attributed graph cluster-
ing and incomplete single-view attributed graph learning.

2.1 Multi-View Attributed Graph Clustering
Recently, numerous studies have emerged on multi-view at-
tributed graph clustering. MAGC [Lin et al.2023] utilizes
the self-expressiveness property to integrate different views.
MCGC [Pan and Kang2021] learns a consensus graph reg-
ularized by the graph contrastive loss. MvAGC [Lin and
Kang2021] accelerates clustering by introducing sampled an-
chors. LMGEC [Fettal et al.2023] takes clustering and repre-
sentation learning within a unified framework, reducing the
overall time consumption. These methods always assume
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Figure 2: The TOTF Framework.

an ideal scenario where all nodes have complete attributes.
However, attributes may be incomplete in real-world scenar-
ios due to various factors, such as personal privacy concerns,
accidental damage, or intentional deletion. They fail to effec-
tively address incomplete attribute scenarios.

2.2 Single-View Incomplete Attributed Graph
Learning

Single-view incomplete attributed graph learning has been
extensively researched. GCNMF [Taguchi et al.2021] utilizes
the Gaussian Mixture Model to represent missing features.
ASD-VAE [Jiang et al.2024] learns a shared latent space from
which the missing values can be imputed. However, these
methods are unsuitable for multi-view incomplete attributed
graph clustering. First, most methods belong to supervised
learning methods, and rely on label information of classifica-
tion and link prediction, making them unsuitable for unsuper-
vised tasks like clustering. Second, these methods are specif-
ically designed for single-view incomplete attributed graphs
and cannot handle the complexities of multiple views.

3 Problem Formulation
In this section, we introduce our new problem formulation:
Multi-view incomplete attributed graph and Multi-view in-
complete attributed graph clustering.

Definition 1. (Multi-view incomplete attributed graph)
A multi-view incomplete attributed graph can be defined

as G =
{
Φ,A1, ...,AV ,X1, ...,XV ,M1, ...,MV

}
, where Φ

represents the node set. Xv ∈ Rdv×n denotes the attribute
matrix for v-th view with dv dimensions. And Av repre-
sents the adjacency matrix where Av = {av

i,j} ∈ Rn×n and if
there exists an edge between nodes vi and vj in the v-th view,

avi,j = 1, otherwise, avi,j = 0. Mv is the missing marker ma-
trix in the v-th view, where Mv

i,j = 0 if the j-th attribute of
the node vi in the v-th view is unknown.

Definition 2. (Multi-view incomplete attributed graph
clustering)

Given a multi-view incomplete attributed graph G={
Φ,A1, ...,AV ,X1, ...,XV ,M1, ...,MV

}
, clustering on

multi-view attributed graph aims to find a unified partition
fitting all views to divide the nodes of the graph G into k
clusters (C1, C2, ..., Ck).

4 Proposed Method
To cluster on the multi-view incomplete attributed graph, we
design a novel framework in which we train the missing-
aware encoders first and then freeze their parameters. In this
section, we describe our model in detail. We summarize the
frequently used notations in Appendix A.13.

4.1 Overall Framework of TOTF
The TOTF framework consists of two stages: Missing-aware
View-Specific Encoder Training and Clustering-Driven Com-
mon Information Discovery, as shown in Fig. 2. In Stage
1, we train a series of missing-aware, view-specific encoders
that effectively capture the true distribution in each view
while disregarding missing attributes. To address incomplete
attributes, we design the Correlation Strength-Aware Graph
Neural Network (CSAGNN), which imputes missing values
from neighboring nodes and existing dimensions within the
same node. Additionally, we implement a missing position
reminder mechanism in our intra-view adversarial games to

3https://anonymous.4open.science/r/TOTF-main

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

1.00

0.08

0.64

0.09

0.52

0.60

0.59

0.59

0.11

0.62

0.12

0.51

0.54

1.00

0.52

0.12

0.61

0.17

1.00

0.44

0.51

0.09

0.62

0.12

1.00

0.17

0.09

0.12

0.64

0.10

1.00

0.12

0.61

0.60

0.62

0.08

1.00

0.10

0.62

0.12

0.07

0.11

0.60

0.07

0.60

0.09

0.44

1.00

0.54

15 235 405 530 696 702 86015 235 405 530 696 702 860

15
23

5
40

5
53

0
69

6
70

2
86

0
15

23
5

40
5

53
0

69
6

70
2

86
0

Dimension

D
im

en
si

on

(a) Wiki

0.00

1.00

0.00

0.00

0.50

0.54

0.00

0.00

0.50

0.00

0.00

1.00

0.41

0.00

0.00

0.62

0.00

0.00

0.00

0.00

1.00

0.54

0.00

0.00

0.41

1.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.41

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.62

0.00

0.00

0.41

0.00

0.00

1.00

0.00

111 163 164 218 482 527 565111 163 164 218 482 527 565

11
1

16
3

16
4

21
8

48
2

52
7

56
5

11
1

16
3

16
4

21
8

48
2

52
7

56
5

Dimension
D

im
en

si
on

(b) Cora

Figure 3: Dimensional correlation analysis.

enhance view-specific encoders accurately capturing real at-
tribute distributions despite incompleteness. In Stage 2, we
freeze the parameters of the trained encoders and utilize the
common extractor with clustering-driven self-supervised loss
to derive common information beneficial for clustering.

4.2 Correlation Strength-aware Graph Neural
Network

Graph neural networks (GNNs) [Lu et al.2024] have been
widely applied. However, conventional GNNs like GCN and
GAT primarily focus on message passing among neighboring
nodes, neglecting the inherent relationships within attribute
dimensions. This raises several pertinent questions: Is there
a relationship between the dimensions of node attributes?
Can the remaining dimensions be utilized to recover any
missing dimensions for the same node?
Observation. To address these questions, we employ the
Kendall coefficient [Valencia et al.2019] to analyze inherent
correlations between different dimensions in attributed graph
datasets, as illustrated in Fig. 3. The larger the absolute value
of the coefficient, the stronger the correlation. We find that
there exist correlations between different dimensions, and the
degree of correlation varies across these dimensions.

For instance, in Fig. 3(a), the correlation coefficient be-
tween the 702nd and 235th dimensions in Wiki dataset is
0.64, indicating a strong relationship between two dimen-
sions. And the correlation coefficient between the 702nd and
860th dimensions is only 0.10, suggesting a weak relation-
ship. Therefore, if the 702nd dimension is missing, the 235th
dimension of the same node can offer more valuable informa-
tion for recovery compared to that from the 860th dimension.

Inspired by this observation, we propose the Correlation
Strength-Aware Graph Neural Network (CSAGNN), which
both incorporates messages between attribute dimensions and
neighboring nodes, as shown in Fig. 2. In our method, each
encoder and decoder contain three layers of CSAGNN, and
the 1-th layer of CSAGNN in the v-th view is defined as

CSAGNN(Xv,Av) = AvTnn[(λ2X
v+λ1X

vW v
1 )W

v
2 ] (1)

where Xv and Av denote the attributed matrix and the adja-
cency matrix in the v-th view. W v

1 ∈ Rdv×dv is the dimen-
sion interaction matrix in the v-th view. W v

2 ∈ Rdv×d̂v
1 is the

weighted matrix mapping into the hidden space in the v-th
view where d̂v1<n is the output dimension in the in the 1-th
layer. λ2 and λ1 denote weight factors for original features
and enhanced features, subject to the constraint λ1 + λ2 = 1.
Tnn(∗) is the Tanh activation function. CSAGNN can not
only integrate information from neighbors, but also capture
the relationships among attribute dimensions, enabling it to
use existing attributes for each node. It can initially impute
missing attributes and obtain enhanced features, mitigating
noise interference before mapping to latent spaces. As a
result, compared with traditional GNNs, CSAGNN is more
suitable for scenarios with incomplete attributes.

4.3 Intra-view Adversarial Games with the
Missing Position Reminder Mechanism

Intra-view Adversarial Games. The autoencoder, consist-
ing of a view-specific encoder and decoder, acts as the gener-
ator in the intra-view adversarial game, with the discrimina-
tor functioning as the opposing entity. The autoencoder aims
to generate data closely matching the true distribution, while
the discriminator attempts to distinguish between real and
imputed data. However, incomplete attributes pose a chal-
lenge for autoencoders in capturing the unique true distribu-
tion within each view. In Subsection 4.7, Theorem 1 shows
that incomplete attributes lead to multiple data distributions
satisfying the condition in equilibrium, bringing difficultity
to capture the unique true data distribution.

Missing Position Reminder Mechanism. Inspired by
[Yoon et al.2018] and [Miao et al.2021], we equip discrimi-
nators with the missing position reminder mechanism to ad-
dress the above issue. We design the missing position re-
minder matrix Rv ∈ Rn×dv to indicate positions of missing
attributes in each view. This allows discriminators to effec-
tively differentiate between real and generated data, while en-
abling the autoencoder to accurately capture the true data dis-
tribution. However, a high reminder rate has drawbacks; for
instance, if all missing locations are indicated, the discrimina-
tor may make accurate judgments without any training. Thus,
the missing position reminder matrix only indicates some lo-
cations of missing attributes. The missing position reminder
matrix Rv ∈ Rn×dv in the v-th is defined as follows:

Rv = Kv ⊙Mv + 0.5(1 −Kv) (2)

where Kv ∈ Rn×dv is a matrix of random variables con-
sisting of 0 and 1, where the number of 1 is decided by the
reminder rate h. When Rv

ij = 0, we have Mv
ij = 0, indi-

cating a missing attribute at this position. When Rv
ij = 1,

we have Mv
ij = 1, indicating the attribute exists. However,

when Rv
ij = 0.5, it is unclear whether the attribute is missing.

The missing position reminder matrix helps the autoencoder
capture true distribution within each view, disregarding the
impact of incomplete attributes. In Subsection 4.7, we prove
that with reminder matrices, the distribution of generated at-
tributes is the same as the real distribution at equilibrium.

4.4 Clustering-driven Common Extractor
After Stage 1, we obtain encoders that capture view-specific
features while are insulated from incomplete attributes. In
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Stage 2, instead of using imputed data from Stage 1, we uti-
lize the original data with missing values as input. The origi-
nal data is passed through frozen encoders to generate view-
specific representations. The clustering-driven common ex-
tractor consists of two fully connected layers and exponential
linear units, designed to discover common information from
view-specific representations.

Inspired by [Chen et al.2022], we introduce the clustering-
driven loss to guide the common extractor to discover com-
mon information conducive to clustering. First, we perform
the k-means to obtain cluster centers in each view and use the
student’s t-distribution [Chen et al.2022] to compute similar-
ity scores Q1, ..., QV and Qcom among node representations
and cluster centers in each view and consensus view. Then,
we calculate the common category assignment distribution
Pcom by regularizing the similarity score in the consensus
view. After that, the clustering-driven loss is defined as:

LC =

V∑
v=1

[KL(Pcom||Qv) +KL(Pcom||Qcom)]

=

V∑
v=1

∑
i

∑
j

pcomij log
pcomij

qvij
+

V∑
v=1

∑
i

∑
j

pcomij log
pcomij

qcomij

(3)

where KL(∗||∗) is the KL divergence. The first item aims
to pull the common category assignment distribution close to
the similarity score of each view. The second item tries to
minimize the distance between the similarity scores and the
category assignment distribution in the consensus view, then
we can utilize clustering information to optimize Zcom.

4.5 Training Strategy
Training Strategy in Stage 1. To capture the view-specific
information, we utilize the reconstruction loss and the intra-
view adversarial game loss. The reconstruction loss for the
v-th view, which attempts to minimize differences between
the reconstructed and original attributes, is as follows:

Lv
re = ||Mv ⊙Xv −Mv ⊙ X̂v||2 (4)

where Mv is the missing marker matrix in the v-th view, X̂v

is the reconstructed attributed matrix in the v-th view. || ∗ ||2
represents the L2 norm. In the intra-view adversarial game,
the training loss of the discriminator in the v-th view with the
missing position reminder mechanism is as follows:

Lv
D=− E[Mv⊙log(Dv(X

v
,Rv))

+(1−Mv)⊙log(1−Dv(X
v
,Rv))]

(5)

where Dv is the discriminator in the v-th view. X
v

is the
imputed data via X

v
= (1 − Mv)X̂v + MvXv. The loss of

the autoencoder in the v-th view for Stage 1 is as follows:
Lv

G = Lv
re(X

v, X̂v)− (1−Mvlog(Dv(X
v
,Rv))). (6)

In this stage, we first optimize the discriminator and then op-
timize the autoencoder until the intra-view adversarial game
achieves the equilibrium state.

Training Strategy in Stage 2. After Stage 1, we can ob-
tain a series of encoders that capture view-specific features
effectively while mitigating the impact of missing informa-
tion. Then we utilize the trained missing-aware view-specific
encoders in Stage 1 to generate view-specific representations.

Algorithm 1: The TOTF Algorithm
Input: Multi-view incomplete attributed graph{

A1, ...,AV ,X1, ...,XV ,M1, ...,MV
}

, the
number of clusters k.

Output: k clusters.
1 Initialization: Randomly initialization.

// Stage-1: Missing-aware View-Specific Encoder
Training

2 while not converged do
3 Obtain Zv via encoders and reconstruct X̂v .
4 Impute data from X

v
= (1−Mv)X̂v +MvXv.

5 Calculate Rv via Eq. (2).
6 Distinguish imputed data X

v
via discriminators.

7 Calculate Lv
D and update discriminators.

8 Calculate Lv
G and update generators.

9 end
// Stage-2: Clustering-Driven Common
Information Discovery

10 while not converged do
11 Generate Zv of each view via frozen encoders.
12 Generate Zcom via common extractor.
13 Employ K-means to obtain cluster centers for

each view and the consistent view.
14 Calculate {Q1, ...,QV ,Qcom} and Pcom.
15 Calculate LCE and update common extractor.
16 end
17 Perform k-means on Zcom to get the k clusters.
18 return k clusters.

The clustering-driven common extractor can capture common
information Zcom that is conducive to clustering via the com-
mon loss Lcom =

∑V
v=1 ||Zcom − Zv||2 and the clustering-

driven self-supervised loss:
LCE = LC + Lcom, (7)

where LCE is the loss of common extractor in Stage 2.

4.6 The TOTF Algorithm

In Stage 1, we train the missing-aware view-specific en-
coders. Each encoder converts incomplete data to latent em-
beddings Zv , while decoders reconstruct specific information
X̂v . By combining original and reconstructed data, we ob-
tain imputed data. Then, discriminators differentiate between
imputed and original data via the missing position reminder
matrix. We calculate losses for discriminators and generators
and update them sequentially. Upon convergence, we achieve
view-specific encoders that are insensitive to missing infor-
mation. In Stage 2, we freeze the encoder parameters and
generate common representations Zcom through a common
extractor. We apply k-means to obtain cluster centers and
compute similarity scores for each view and the consistent
view. After that, we calculate the common category assign-
ment distribution Pcom. Then, we update the common ex-
tractor until convergence. Finally, k-means is performed on
common representations Zcom to obtain k clusters.
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Dataset Missing Rate m=0.1 m=0.3 m=0.5 m=0.7
ACC NMI F1 ARI ACC NMI F1 ARI ACC NMI F1 ARI ACC NMI F1 ARI

Cora

AGCN0 0.625 0.437 0.557 0.366 0.607 0.415 0.473 0.352 0.559 0.369 0.458 0.269 0.495 0.273 0.404 0.258
AGCNM 0.551 0.371 0.446 0.238 0.535 0.360 0.418 0.211 0.563 0.352 0.441 0.285 0.515 0.291 0.421 0.282
SDCN0 0.530 0.318 0.446 0.270 0.411 0.212 0.284 0.133 0.332 0.137 0.266 0.066 0.282 0.041 0.144 0.025
SDCNM 0.457 0.236 0.308 0.204 0.417 0.180 0.341 0.151 0.355 0.136 0.280 0.076 0.306 0.017 0.109 0.004
ASD-VAE 0.314 0.165 0.299 0.098 0.227 0.155 0.325 0.074 0.243 0.055 0.211 0.026 0.225 0.010 0.155 0.006
MvAGC0 0.348 0.147 0.308 0.076 0.287 0.067 0.205 0.046 0.281 0.029 0.110 0.015 0.284 0.031 0.108 0.001
MvAGCM 0.323 0.137 0.272 0.078 0.283 0.104 0.264 0.045 0.276 0.040 0.209 0.029 0.274 0.037 0.132 0
MAGC0 0.692 0.532 0.632 0.442 0.621 0.481 0.584 0.343 0.568 0.453 0.499 0.275 0.500 0.394 0.448 0.180
MAGCM 0.694 0.528 0.634 0.445 0.646 0.500 0.601 0.353 0.561 0.453 0.489 0.300 0.522 0.400 0.461 0.212
Ours 0.741 0.557 0.691 0.525 0.740 0.556 0.688 0.530 0.727 0.547 0.689 0.489 0.614 0.454 0.609 0.362

ACM

AGCN0 0.779 0.545 0.794 0.568 0.754 0.535 0.711 0.539 0.629 0.363 0.560 0.353 0.386 0.011 0.134 0.199
AGCNM 0.791 0.558 0.780 0.561 0.723 0.477 0.678 0.472 0.716 0.435 0.677 0.442 0.585 0.256 0.562 0.261
SDCN0 0.777 0.507 0.775 0.530 0.781 0.530 0.772 0.537 0.674 0.348 0.647 0.370 0.522 0.194 0.505 0.186
SDCNM 0.787 0.530 0.787 0.549 0.751 0.552 0.702 0.538 0.742 0.443 0.743 0.455 0.573 0.282 0.433 0.330
ASD-VAE 0.363 0.277 0.236 0.205 0.381 0.271 0.254 0.237 0.336 0.116 0.201 0.097 0.284 0.002 0.133 0
MvAGC0 0.820 0.512 0.822 0.545 0.813 0.474 0.813 0.525 0.602 0.294 0.484 0.303 0.384 0.009 0.307 0.010
MvAGCM 0.821 0.498 0.822 0.546 0.819 0.489 0.819 0.540 0.620 0.284 0.539 0.309 0.351 0.001 0.174 0.000
MAGC0 0.857 0.572 0.853 0.625 0.851 0.559 0.848 0.613 0.636 0.389 0.513 0.370 0.632 0.393 0.513 0.374
MAGCM 0.858 0.575 0.854 0.628 0.863 0.580 0.860 0.641 0.841 0.538 0.837 0.592 0.636 0.391 0.513 0.372
Ours 0.884 0.656 0.885 0.693 0.875 0.637 0.876 0.673 0.843 0.561 0.844 0.601 0.802 0.483 0.804 0.517

Wiki

AGCN0 0.360 0.294 0.230 0.137 0.299 0.207 0.144 0.076 0.350 0.276 0.214 0.131 0.399 0.355 0.229 0.140
AGCNM 0.420 0.344 0.285 0.214 0.423 0.374 0.284 0.160 0.380 0.305 0.222 0.186 0.388 0.340 0.222 0.176
SDCN0 0.255 0.143 0.105 0.066 0.265 0.157 0.114 0.086 0.268 0.159 0.123 0.085 0.247 0.144 0.093 0.064
SDCNM 0.236 0.129 0.083 0.056 0.257 0.141 0.084 0.072 0.225 0.114 0.064 0.056 0.238 0.133 0.098 0.058
ASD-VAE 0.157 0.237 0.149 0.053 0.156 0.151 0.108 0.044 0.154 0.056 0.073 0.013 0.114 0.011 0.056 0.002
MvAGC0 0.519 0.503 0.394 0.255 0.468 0.471 0.331 0.206 0.322 0.305 0.129 0.095 0.175 0.021 0.029 0.001
MvAGCM 0.503 0.491 0.397 0.274 0.481 0.464 0.344 0.233 0.408 0.361 0.242 0.097 0.237 0.167 0.052 0.039
MAGC0 0.514 0.484 0.353 0.214 0.452 0.434 0.252 0.169 0.444 0.411 0.242 0.179 0.377 0.380 0.198 0.114
MAGCM 0.497 0.510 0.420 0.262 0.506 0.514 0.417 0.280 0.501 0.510 0.425 0.289 0.506 0.506 0.442 0.254
Ours 0.549 0.526 0.463 0.361 0.534 0.512 0.451 0.341 0.549 0.526 0.471 0.350 0.543 0.504 0.456 0.346

Table 2: Clustering results in different missing rates.

4.7 Theoretical Analysis
Theorem 1. In intra-view adversarial games, incomplete at-
tributes can hinder the generator from generating the desired
distribution (the unique true attributed distribution) when
achieving the equilibrium state, as multiple data distributions
may satisfy the equilibrium conditions.

Proof. Based on [Yoon et al.2018] and [Miao et al.2021], we
give the proof in Appendix A.2.

Theorem 2. Given the missing position reminder matrix Rv ,
the equilibrium of each view in intra-view adversarial games
can be uniquely determined, where the distribution of gener-
ated attributes p̂(Xv|Mv) is the same as the real distribution
p̂(Xv|1) in each view, that is p̂(Xv|Mv) = p̂(Xv|1).

Proof. We prove Theorem 2 based on [Yoon et al.2018] and
[Miao et al.2021] in Appendix A.2.

Time complexity analysis. The time complexity of the
TOTF algorithm is near O(n2) shown in Appendix A.3.

5 Experiments
5.1 Experiment Setting
Metrics and Datasets. We use four evaluation metrics:
ACC, F1-score, NMI, and ARI [Fan et al.2020]. We con-
duct experiments on five datasets-ACM [Lin and Kang2021],
AMiner [Hong et al.2020], Cora, Citeseer, and Wiki [Fettal et
al.2023] datasets. Details about datasets, hardware platform,
and model parameters are shown in Appendix B.1.

Comparison Algorithms. The comparison methods
contain multi-view attributed graph clustering meth-
ods (MAGC [Lin et al.2023] and MvAGC [Lin and
Kang2021]) with zero filling and mean filling, single-view
attributed graph clustering methods (SDCN [Bo et al.] and
AGCN [Peng et al.]) with zero filling and mean filling, and
single-view incomplete attributed graph learning methods
(ASD-VAE [Jiang et al.2024]). For single-view methods, we
execute them on each view and calculate the average results
across all views. For ASD-VAE, we remove label-dependent
components to adapt for unsupervised clustering tasks.

5.2 Comparison Experiments
We evaluate advanced methods on five datasets across differ-
ent missing rates. Due to space constraints, we only present
results for the Cora, ACM, and Wiki datasets in Table 2. Re-
sults for the Aminer and Citeseer datasets are available in Ap-
pendix B.2. The detailed observations are as follows.

Firstly, our method performs better than other advanced
methods across different miss rates. When the miss rate is
0.1, the accuracy of TOTF is 5% higher than other methods
in the ACM dataset, indicating TOTF has an excellent abil-
ity to discover common information via the clustering-driven
loss. In Table 2, our method achieves at least a 40% improve-
ment in accuracy over the Cora dataset compared to ASD-
VAE, which shows that as a single-view incomplete attributed
graph learning method, ASD-VAE is not well-suited for ad-
dressing multi-view incomplete attributed graphs. It may de-
rive from two reasons: First, most of these are designed for
supervised tasks that require labeling information, and with-
out labeling information, their accuracy drops significantly.
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Second, single-view methods struggle with complex multi-
view graphs and are unable to leverage the complementary
information across different views effectively.

Secondly, our method is less affected by miss rates com-
pared with other methods and performs well even in high
missing rates. As for MAGC and MvAGC, they cannot han-
dle multi-view incomplete attributed graphs effectively. In
Table 2, as the missing rate increases, their accuracy declines
sharply. On the ACM dataset, as the missing rate increases
from 0.1 to 0.7, the ACC metric of MAGC decreases by more
than 20%. AGCN and SDCN perform poorly across differ-
ent rates because they are designed for single-view attributed
graphs with complete attributes and are unable to effectively
handle these complex scenarios. For our method, on the ACM
dataset, when the miss rate reaches 0.7, the accuracy of our
method remains above 80%, which is approximately 17%
higher than other methods. This indicates that our method can
effectively deal with incomplete attributes, and the trained
missing-aware, view-specific encoder can capture features
accurately and is insensitive to missing information.

5.3 Ablation Studies
To evaluate the significance of each component in our
method, we have designed ablation experiments as follows:
Case A: W/o (With/Without) Rv . Table 3 shows that dis-
criminators with the missing position reminder mechanism
outperform traditional discriminators, improving accuracy by
4% to 6% based on the ARI metric. This indicates that the
missing position reminder mechanism allows the discrimina-
tor to distinguish between real and fake data more effectively,
thereby guiding the generator to produce data that aligns with
the true distribution more closely.
Case B: W/o CSAGNN. Table 3 shows that CSAGNN per-
forms better than classical GNNs, improving accuracy by 4%
to 9% on the ARI metric. It indicates that CSAGNN is more
effective for incomplete attributed graphs as it can combine
the information between dimensions and neighbors.
Case C: W/o Lre. Table 3 indicates that the reconstruction
loss has a greater impact on all datasets. By minimizing the
difference between the reconstructed data and the original
data, encoders can better capture view-specific information.
Case D: W/o LC . The results in Table 3 indicate that the
clustering-driven self-supervised loss can improve clustering
results 2% to 6% according to ARI metric. The combination
of LC and Lcom makes the captured consensus information
more beneficial for clustering tasks.
Case E: W/o Lcom. Lcom can improve clustering results 2%
to 6% according to ARI metric. Lcom can obtain the consen-
sus information from the view-specific information.
Case F: W/o X

v . As shown in Table 3, we find that we do
not need to utilize the imputed data from Stage 1. The trained
missing-aware view-specific encoders can effectively capture
view-specific information while being insensitive to missing
data, achieving better results than with imputed data.

5.4 Parameter Sensitivity Analysis
We analyze the parameter sensitivity of the missing posi-
tion reminder mechanism and the CSAGNN. Figs. 4(a), (c),
and (e) illustrate the variation in accuracy across different re-

Dataset m=0.1 A B C D E F Ours

ACM

ACC 0.857 0.854 0.556 0.859 0.859 0.863 0.884
NMI 0.608 0.603 0.276 0.605 0.608 0.613 0.656
F1 0.857 0.855 0.518 0.860 0.860 0.864 0.885

ARI 0.636 0.631 0.293 0.637 0.638 0.645 0.693

Cora

ACC 0.719 0.701 0.472 0.728 0.730 0.715 0.741
NMI 0.543 0.512 0.279 0.549 0.544 0.531 0.557
F1 0.677 0.667 0.465 0.679 0.683 0.674 0.691

ARI 0.482 0.435 0.209 0.508 0.506 0.483 0.525

Wiki

ACC 0.511 0.510 0.413 0.522 0.519 0.539 0.549
NMI 0.502 0.503 0.456 0.507 0.513 0.517 0.526
F1 0.433 0.426 0.367 0.451 0.440 0.453 0.463

ARI 0.328 0.328 0.221 0.325 0.337 0.349 0.361

Table 3: Ablation Studies.
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Figure 4: Parameter Sensitivity Analysis

minder rates when the missing rate is 0.1. There are only
slight differences at varying reminder rates h. Notably, when
h = 0.4, the clustering performance is generally optimal.
However, when h = 1, there is a noticeable drop in the ARI
metric on the ACM and Cora datasets, compared to h = 0.4.
Thus, we set the reminder rate to 0.4 in our model. Figs.
4(b), (d), and (f) illustrate the variation in accuracy for dif-
ferent dimensional interaction coefficients when the missing
rate is 0.1. Excessively large coefficients result in suboptimal
outcomes, while the optimal performance is attained when
λ1 = 0.1. Thus, we adopt λ1 = 0.1 for most datasets.

6 Conclusion
In this paper, we first focus on multi-view incomplete at-
tributed graph clustering. We propose the TOTF framework
which trains missing-aware encoders first to capture view-
specific information and then freezes their parameters to dis-
cover common information available for clustering. Further-
more, we propose the correlation strength-aware graph neural
network to discover inherent relationships of attributes. Also,
we introduce the missing position reminder mechanism for
discriminators. Experiments illustrate that our method can
perform excellent performances across all incomplete rates.
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