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Abstract
Current feature fusion strategies often fail to ad-
equately account for the influence of activation
intensity across different scales on small object
features, which impedes the effective detection
of small objects. To address this limitation, we
propose the Region-Adaptive Feature Disentangle-
ment and Enhancement (RAFDE) strategy, which
improves both downsampling and feature fusion by
leveraging activation intensity variations at multi-
ple scales. First, we introduce the Boundary Tran-
sitional Region-enhanced Downsampling (BTRD)
module, which enhances boundary transitional re-
gions containing both strongly and weakly acti-
vated features, thereby mitigating the loss of cru-
cial boundary information for small objects. Sec-
ond, we present the Regional-Adaptive Feature Fu-
sion (RAFF) module, which adaptively disentan-
gles and fuses co-activated and uni-activated re-
gions from adjacent levels into the current level,
effectively reducing the risk of small objects be-
ing overwhelmed. Extensive experiments on sev-
eral public datasets demonstrate that the RAFDE
strategy is highly effective and outperforms state-
of-the-art methods. The code is available at
https://github.com/b-yanchao/RAFDE.git.

1 Introduction
Object detection using Unmanned Aerial Vehicles (UAVs)
plays a critical role in various applications, such as remote
sensing [He et al., 2024] and autonomous driving [He et al.,
2023]. However, the prevalence of small objects in UAV im-
agery poses a substantial challenge for models in extracting
effective features, leading to a significant performance dis-
parity between small and regular objects [Khanam R, 2024].

To address this challenge, multi-scale feature fusion meth-
ods leverage the distinct receptive field properties at each
level by combining feature maps from different scales [Lin et
al., 2017; Yang et al., 2024]. However, due to the limited fea-
tures of small objects, these methods often result in weak ac-
tivations, which increases the likelihood of losing critical in-

∗ Corresponding author: Yang Ning and Xiushan Nie.

Figure 1: Our main motivation. (a) Traditional methods (e.g., FPN)
typically rely on “addition” or “concatenation” to integrate adjacent
levels, which often fail to adequately account for the activation in-
tensity differences across multiple scales. As a result, the fused fea-
ture maps exhibit poor activation for small objects. (b) To address
this issue, we propose a new feature fusion strategy that consists
of two operations: BTRD (BTR) and RAFF (CAR and UAR). The
fused feature map has a stronger response for small objects.

formation with existing downsampling strategies [Hou et al.,
2020]. Furthermore, directly fusing multi-scale features from
adjacent levels can cause strong activations from medium to
large objects to overwhelm those of small objects at the cur-
rent level [Huang et al., 2024b]. This exacerbates the loss of
small object features and further diminishes the availability
of learnable features for small objects (Fig. 1(a)).

To address the challenge that existing downsampling and
feature fusion strategies lead to significant loss of small ob-
ject details, thereby resulting in suboptimal performance for
small objects, we have investigated the activation intensity
of objects at different scales across adjacent levels. Based
on these insights, we propose the Region-Adaptive Feature
Disentanglement and Enhancement (RAFDE) strategy, which
effectively reduces the loss of small object detail features.
Specifically, through visualization of the feature maps gen-
erated by the backbone, we observed that small objects tend
to activate only the central region due to their limited feature
representation. This increases the risk of losing small objects
during the backbone’s downsampling process (see the orange
box in F3). To mitigate this, we introduce the Boundary Tran-
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sitional Region-enhanced Downsampling (BTRD) module.
This module disentangles and enhances the boundary transi-
tional regions, which contain both strongly and weakly acti-
vated features, effectively reducing the loss of critical bound-
ary features for small objects during the downsampling pro-
cess (see the BTRD in Fig. 1(b)).

Through the methods outlined above, we obtained multi-
scale feature maps that effectively activate a larger number of
small objects. However, there remains a need for a suitable
strategy to fuse these features effectively. While extensive re-
search on multi-scale feature fusion exists, most methods rely
on addition or concatenation to combine feature maps, and
still struggle with the loss of small object details (see yellow
boxes in Fig. 1(a)). In multi-scale feature fusion, addition can
enhance and filter critical features but may result in the loss
of fine details. In contrast, concatenation preserves more de-
tails but may overwhelm small object features and introduce
redundant information [Xiao et al., 2024]. To address these
challenges, we propose the Region-Adaptive Feature Fusion
(RAFF) module, which disentangles co- and uni-activated re-
gions across adjacent levels and applies addition and concate-
nation strategies for fusion, respectively. This approach effec-
tively mitigates the risk of small object features being over-
whelmed. Finally, we integrate this module to replace the
Feature Pyramid Network in fusing feature maps from three
adjacent levels, significantly reducing the loss of small object
features after fusion (see yellow boxes in Fig. 1(b)).

The RAFDE is a simple yet effective method that can
be seamlessly integrated with various convolution-based de-
tectors. It significantly enhances model performance while
maintaining a minimal increase in computational cost and
substantially reducing the number of parameters. In sum-
mary, the key contributions of our work are reflected in three
main aspects:

• We introduce the Boundary Transitional Region-
Enhanced Downsampling (BTRD) module, which en-
hances boundary transitional regions that contain both
strongly and weakly activated features, thereby reducing
the loss of critical boundary details for small objects.

• We propose the Region-Adaptive Feature Fusion
(RAFF) module, which disentangles co-activated and
uni-activated regions across adjacent levels, selectively
enhancing and fusing key features to mitigate the risk of
small objects being overwhelmed.

• We evaluated the RAFDE on the VisDrone and Drone-
vs-Bird datasets, achieving mAP improvements of
3.4% and 2.3%, respectively. The results demonstrate
that RAFDE significantly enhances small object detec-
tion across different scenarios, underscoring its effec-
tiveness in UAV detection.

2 Relate Work
2.1 Unmanned Aerial Vehicle Object Detection
In computer vision, detecting objects in UAV images is a
challenging yet crucial task, as these objects typically exhibit
a long-tailed distribution and are predominantly small. Due
to the limited and densely packed nature of object features,

existing models often struggle to extract effective representa-
tions, resulting in suboptimal performance.

In recent years, deep learning methods have made signif-
icant progress in addressing the challenges associated with
small object detection. For instance, data augmentation tech-
niques, such as copy-pasting, scaling, and cropping, increase
the diversity and quantity of small object samples in UAV
scenes, thereby enhancing dataset size [Meethal et al., 2023;
Wang et al., 2023]. However, while these methods are ef-
fective for specific datasets, they lack generalizability due to
their heavy dependence on particular data sources. Contex-
tual learning strategies [Du et al., 2023; Sun et al., 2022;
Huang et al., 2024b] improve object and scene classification
and localization by leveraging environmental and inter-object
relationships. Nonetheless, not all objects have clear contex-
tual information, and the use of incorrect context can neg-
atively impact performance.Additionally, alternative meth-
ods [Dai et al., 2024; Lei et al., 2023; Moser et al., 2024], in-
cluding improvements in loss functions and attention mecha-
nisms, have also boosted small object detection performance.

The widely used multi-scale feature fusion module effec-
tively combines high- and low-level features, thereby im-
proving the representation of small objects. However, tradi-
tional fusion strategies may overwhelm small object features
by failing to account for the impact of large object activa-
tions in high-level features on small object activations in low-
level features. To overcome these limitations, we propose
the RAFDE strategy, a plug-and-play solution designed to re-
duce the risk of small object features being overwhelmed and
lost, thereby improving small object detection performance.
Additionally, we introduce a boundary transitional region-
enhanced downsampling technique for the backbone, which
generates multi-scale feature maps that activate more small
object features. This approach significantly reduces model
parameters while improving overall performance.

2.2 Multi-scale Object Detection Strategy
Multi-scale detection strategies address object scale varia-
tions by integrating high-level features, which capture richer
semantics and larger receptive fields, with low-level features
that preserve finer details, thereby enhancing small object de-
tection.

Traditional computer vision methods typically extract fea-
tures at a single scale, limiting their ability to detect ob-
jects of varying sizes or handle scenes with different pro-
portions. To overcome this limitation, researchers devel-
oped the Feature Pyramid Network (FPN) [Lin et al., 2017;
Li et al., 2024], which combines feature maps from mul-
tiple scales. By merging these maps, FPN leverages both
detailed and semantic information, improving small object
detection and addressing the constraints of single-scale fea-
tures. However, this approach lacks effective integration be-
tween high-level and low-level features. To address this, the
PAFPN [Liu et al., 2018b] extended FPN by introducing a
bottom-up path, allowing high-level features to retrieve finer
details from low-level ones. Despite this, a significant seman-
tic gap remains between high-level and low-level features,
complicating the selection of a fusion method that minimizes
the loss of small object features. For instance, AFPN [Yang et
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Figure 2: The definition of disentangled regions. (a) shows the co-
activated regions with strongly activated features across three lev-
els. (b) illustrates the uni-activated regions with strongly activated
features in the adjacent levels and weakly activated features in the
middle level. (c) depicts the boundary transition regions containing
both strongly and weakly activated features. Note that the elliptical
areas in the figure represent strongly activated features, while the
other white areas indicate weakly activated features.

al., 2024] merges adjacent low-level features first, then grad-
ually incorporates high-level features to reduce the semantic
gap between non-adjacent levels. To further enhance multi-
scale fusion, EFC [Xiao et al., 2024] addresses the inadequa-
cies of simple concatenation or addition by emphasizing the
contextual relationships between features at each level, im-
proving feature relevance.

While current methods effectively combine high-level se-
mantics with low-level details, they often ignore that activa-
tions at different scales correspond to objects of varying sizes.
This can lead to activations from larger objects overshadow-
ing smaller ones during direct fusion, limiting model perfor-
mance. To address these challenges, we propose a new fea-
ture fusion module that considers activation intensity across
different scales, reducing the risk of small objects being over-
whelmed during fusion process.

3 Method
3.1 Preliminary
To facilitate the understanding of our subsequent paper, we
first provide the mathematical definition of the co-activated
region, the uni-activated region, and the boundary transitional
region, as shown in Fig. 2, respectively.

Consider three consecutive feature maps, F3, F4, and F5,
where each element fk

i,j represents the activation intensity at
position (i, j) on the k-th feature map, with i and j as the row
and column indices, respectively, and k ∈ {3, 4, 5}. Given
a threshold T , if the activation intensity fk

i,j exceeds this
threshold, the position (i, j) is considered strongly activated
on the corresponding feature map [Selvaraju et al., 2017].

Specifically, let Ak denote the set of all normalized strong
activation features on the k − th feature map. Then, the fol-
lowing definition holds:

Ak = {(i, j)|fk
i,j ≥ T, (i, j) ∈ Fk}, k ∈ {3, 4, 5}. (1)

Thus, as shown in Fig. 2(a), the co-activated region Φ can
be defined as:

Φ = {(i, j)|f3
i,j ≥ T ∧f4

i,j ≥ T ∧f5
i,j ≥ T} = A3∩A4∩A5.

(2)
Then, with the help of the weakly activated region of A4

shown in Fig. 2(b), the uni-activated region Ω can be de-
fined as:

Ω = (A3 ∩ (1−A4)) ∪ (A5 ∩ (1−A4)). (3)

Finally, as shown in Fig. 2(c), for the feature map F5 that
simultaneously contains strongly and weakly activated re-
gions, we define the boundary transitional region Ψ as:

Ψ = A+sin
k ∩A+sout

k , k ∈ {3, 4, 5}, (4)

where A+sin
k and A+sout

k denote the operations of expand-
ing region Ak outward and inward by widths sin and sout,
respectively. sin + sout defines the width of the boundary
transitional region, i.e., the pooling kernel size.

3.2 Regional Adaptive Feature Fusion Module
In multi-scale feature fusion, it is important to acknowledge
that feature maps at different levels have distinct receptive
fields, which activate objects of varying scales [Lin et al.,
2017]. However, existing fusion strategies that simply merge
adjacent levels often result in large objects in high-level fea-
tures overwhelming small objects in low-level features.

To address these challenges, we propose the Region-
Adaptive Feature Fusion (RAFF) module. The module care-
fully disentangles the co-activated regions and uni-activated
regions across adjacent levels, effectively integrating the
unique features from adjacent levels into the current level by
leveraging the advantages of both fusion strategies. Specif-
ically,as illustrated in the RAFF module in Fig. 3, we first
align the high-level features F o

i+1 and low-level features F o
i−1

with the dimensions of the current-level feature map Fi.
Specifically, the transformations of Fi+1 and Fi−1 are de-
fined as follows:

Fi+1 = UP (F o
i+1), Fi−1 = DWConv(F o

i−1), (5)

where UP (·) denotes the upsampling operation, and
DWConv(·) refers to depthwise separable convolution,
which reduces both computational cost and parameter count
while maintaining performance.

We then apply the channel attention mechanism to em-
phasize relevant channel information, compressing it into a
single-channel feature map. As a result, the activation maps
for the three adjacent levels are represented as δi−1, δi, δi+1:

δi+k = FN→1(ECA(Fi+k)), k = −1, 0, 1, (6)

where ECA(·) refers to the efficient channel attention mech-
anism [Wang et al., 2020].

For the low-level features, we enhance δi−1 and δi using
the spatial attention mechanism [Woo et al., 2018], resulting
in their enhanced features ηi−1 and ηi, respectively. Specif-
ically, referring to Eq. (2), the co-activated regions Φs

i and
Φd

i for the low- and high-level feature maps, respectively, can
be approximated as:

Φs
i = σ(ηi−1 × ηi), Φ

d
i = σ(δi+1 × δi). (7)
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Figure 3: The architecture of the proposed RAFDE method consists of two key modules. The BTRD module focuses on enhancing object
boundaries to minimize the loss of critical features for small objects, generating multi-scale feature maps that activate more small objects.
Next, the RAFF module integrates distinctive features from different scales, effectively reducing the risk of small object features being
overwhelmed. To preserve high-level semantic information, we use a concatenation operation to fuse these features into F3 (red dotted box),
significantly improving small object detection performance.

For the features within the co-activated regions, we apply
addition to enhance them, reducing the risk of introducing
redundant features and the potential for activated features to
be overwhelmed. Consequently, the enhanced features F c

i
from the co-activated regions of the adjacent three levels can
be defined as:

F c
i = Fi + Fi−1 × Φs

i + Fi+1 × Φd
i . (8)

Following the definition in Eq. (3), we can further obtain
the approximated uni-activated regions Ωs

i and Ωd
i in the

low- and high-level feature maps, respectively, as follows:

Ωs
i = σ(δi−1)× (1− Φs

i ), Ω
d
i = σ(δi+1)× (1− Φd

i ). (9)

For the features within the uni-activated regions, we apply
concatenation to enhance them, thereby reducing the loss of
unique features in adjacent levels. Therefore, the final feature
map after region-adaptive fusion F final

i is represented as:

F final
i = F c

i ⊕ (Fi−1 × Ωs
i ) ⊕ (Fi+1 × Ωd

i ). (10)

The RAFF module effectively disentangles co-activated
and uni-activated regions from adjacent levels, seamlessly
fusing distinctive features from these levels into the current
level through addition and concatenation. By substituting the
traditional feature pyramid structure [Liu et al., 2018b] with
the RAFF module, we achieve better integration of critical
information across multiple feature scales, while mitigating
the risk of larger object features overwhelming the details of
small objects.

3.3 Boundary Transitional Region-enhanced
Downsampling

Due to their limited features, small objects often produce
weak activations, which increases the likelihood of losing de-
tailed information during downsampling in existing backbone
networks, particularly at critical boundaries [Hou et al., 2020;
Chen et al., 2023]. This makes it challenging to capture suf-
ficient and effective features for small objects, ultimately re-
sulting in poor detection performance.

To address the aforementioned challenges, we propose
the Boundary Transitional Region-enhanced Downsampling
(BTRD) module, which enhances the boundary transitional
regions that contain both strongly and weakly activated fea-
tures. This approach minimizes the loss of crucial informa-
tion related to small objects during downsampling. Specifi-
cally, as shown in Fig. 3, we utilize coordinate convolution
to integrate positional information into the feature map Fi,
resulting in the enhanced feature map F ′

i :

F
′

i = Conv(AddCoords(Fi)), (11)

where AddCoords(·) denotes the coordinate convolution op-
eration [Liu et al., 2018a] used to embed coordinate informa-
tion, and Conv(·) refers to the convolution operation with a
kernel and stride of 1.

Next, we compute the weights for the boundary transitional
regions by calculating the difference between the maximum
pooling and average pooling operations (see purple dotted
box in Fig. 3). Specifically, we first transform the feature
map F

′

i into a single-channel activation map F a
i , which is de-

fined as F a
i = SA(FN→1(F

′

i )). Referring to Eq. (4), the
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boundary transitional region Ψi for the feature map F a
i can

be approximated as follows:

Ψi = σ(σ(MP (F a
i ))− σ(AP (F a

i ))), (12)

where SA(·) denotes the spatial attention operation [Woo et
al., 2018], MP (·) denotes the maximum pooling operation,
AP (·) denotes the average pooling operation, and σ repre-
sents the sigmoid function. Experimental results indicate that
a pooling kernel size of 2 × 2 yields the optimal performance,
as detailed in Sec. 4.5.

We then reconstruct the feature map F
′

i using the obtained
boundary transitional weights Ψi. By applying average pool-
ing to filter out noise and using maximum pooling combined
with the weights to emphasize important regions, we effec-
tively highlight significant features while minimizing the in-
fluence of irrelevant regions. The reconstructed feature map
F re
i is defined as follows:

F re
i = AP (F

′

i ) +MP (F
′

i )× Ψi. (13)

Finally, in order to minimize information loss, we first split
the feature map F re

i into two channels (F re1
i , F re2

i ) and ap-
ply max pooling to preserve critical information in the tran-
sitional regions. Concurrently, we use convolution to capture
detailed information from other activated regions. The down-
sampled feature map F down

i is defined as:

F down
i = EMA(Conv(F re1

i × (1− Ψi)) ⊕ MP (F re2
i × Ψi)),

(14)
where ⊕ denotes the concatenation operation, and
EMA(·) refers to the efficient multi-scale attention
mechanism [Ouyang et al., 2023], which helps focus the
feature maps on the foreground object, thereby reducing
background interference.

The BTRD module enhances the boundary transitional re-
gions containing both strongly and weakly activated features,
mitigating the risk of information loss for small objects. This
method preserves more unique features of small objects, re-
sulting in multi-scale feature maps with stronger representa-
tion capabilities for small objects.

4 Experiments
We have integrated our RAFDE module with the latest YOLO
model and conducted experiments on two widely used drone
image benchmarks: the VisDrone dataset [Du et al., 2019]
and the Drone-vs-Bird dataset [Coluccia et al., 2021]. The
VisDrone dataset consists of 7,019 high-resolution images
(2000 × 1500) containing 10 classes of small, densely packed
objects. Of these, 6,471 images are used for training, 548 for
validation, and 1,610 for testing. The Drone-vs-Bird dataset
includes 1,387 training images and 434 test images, featur-
ing both UAV and environmental data. We evaluated the
model’s performance using Mean Average Precision (mAP ),
where mAP50 corresponds to an Intersection over Union
(IoU) threshold of 0.5, and mAP is calculated as the average
across IoU thresholds ranging from 0.5 to 0.95. Due to space
limitations, additional experimental results can be found in
the supplementary materials.

4.1 Implementation Details
We implemented our RAFDE strategy using PyTorch [Paszke
et al., 2019]. All models were trained for 150 epochs, with
YOLOv11m serving as the baseline. Our approach employs
the same loss function as YOLOv11 [Khanam R, 2024],
which includes both object classification loss and bounding
box regression loss. For the classification loss, we combine
BCELoss [Zheng et al., 2020] and FocalLoss [Li et al., 2020],
while for the regression loss, we use CIoULoss [Wang et al.,
2023]. The input resolutions were set to 640 × 640 and
1280 × 1280 for the VisDrone dataset, and 640 × 640 for
the Drone-vs-Bird dataset. All models were trained using the
Adam optimizer with an initial learning rate of 0.01 and a de-
cay rate of 1e-5. Training and testing were conducted on a
single RTX A6000 GPU, with batch sizes of 8 and 2 for input
resolutions of 640 × 640 and 1280 × 1280, respectively.

4.2 Comparison with State-of-the-Art Methods
Table 1 presents a comparison of our RAFDE with state-
of-the-art methods on two widely used datasets. On the
VisDrone dataset, using an input resolution of 1280 ×
1280, our method was compared with SDPDet [Yin et al.,
2024], EFC [Xiao et al., 2024], and YOLOv11 [Khanam R,
2024]. The results demonstrate that our method not only has
fewer parameters but also delivers competitive performance,
with improvements in mAP (36.80%→38.0%) and mAP50

(57.6%→59.6%). Additionally, we evaluated our method on
the Drone-vs-Bird dataset using a 640 × 640 input resolution,
where it achieved significant improvements over the baseline,
with mAP rising from 52.30% to 54.60% and mAP50 in-
creasing from 93.10% to 96.30%. These results demonstrate
that our method is highly competitive compared to existing
state-of-the-art methods.

4.3 Ablation Studies
We evaluated the effectiveness of each component of
our RAFDE method using the VisDrone validation set.
YOLOv11m with a 640 × 640 input resolution was used as
the baseline, and the metrics mAP and mAP50 were em-
ployed for evaluation. As shown in Table 2, the incorpora-
tion of the RAFF module, which disentangles co- and uni-
activated regions in adjacent low-level and high-level feature
maps, effectively mitigates the risk of small object features
being overwhelmed during feature fusion. This approach not
only reduced the model parameters from 20.06M to 14.40M,
but also significantly enhanced its performance, with mAP
improving from 26.6% to 28.8%, and mAP50 increasing
from 43.5% to 47.0%.

By incorporating the BTRD module to enhance the bound-
ary transitional regions, which contain both strongly and
weakly activated features, our method effectively reduces the
loss of critical features for small objects. This modification
led to a further reduction in model parameters from 14.40M
to 11.02M, while also achieving a notable performance boost,
with mAP improving from 28.8% to 30.0% and mAP50 in-
creasing from 47.0% to 48.5%. Compared to the baseline,
our RAFDE method significantly improves small object de-
tection performance, with minimal increase in GFLOPs and
a substantial reduction in model parameters.
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Datasets Method Backbone Size #P(M)↓ mAP↑ mAP50↑

VisDrone

CZ FCOS Det [Meethal et al., 2023] ResNet18 1380 × 800 - 33.91 56.20
GFL V1+CEASC [Du et al., 2023] ResNet18 1380 × 800 - 28.70 50.70

FCOS+FGE+SAW [Huang et al., 2024a] ResNet50 1380 × 800 - - 51.50
GFL+EFC [Xiao et al., 2024] ResNet18 1380 × 800 39.38 30.10 52.10
YOLOC [Liu et al., 2024a] ResNet101 1024 × 600 - 29.70 52.40
SDPDet [Yin et al., 2024] ResNeXt101 1380 × 800 - 34.20 57.80

STF-YOLO [Hui et al., 2024] CSPDarknet53 1280 × 1280 46.74 36.73 -
YOLOv10 [Wang et al., 2024] CSPDarknet53 1280 × 1280 16.40 35.60 56.10
YOLOv11† [Khanam R, 2024] CSPDarknet53 1280 × 1280 20.06 36.80 57.60

Brstd [Huang et al., 2024b] CSPDarknet53 640 × 640 - 27.30 45.9
SDP [Ma et al., 2023] CSPDarknet53 1333 × 800 96.70 30.20 52.50

DINO-DETR [Zhang et al., 2022] ResNet50 1333 × 800 - 35.80 58.30
DNTR [Liu et al., 2024b] ResNet50 1333 × 800 - 33.10 53.80

RAFDE(ours) CSPDarknet53 640 × 640 11.02 30.00 48.50
RAFDE(ours) CSPDarknet53 1280 × 1280 11.02 38.00 59.60

Drone-vs-Bird

YOLOv5 [Nguyen et al., 2023] CSPDarknet53 640 × 640 90.96 - 74.60
DETR+MNMS [Kassab et al., 2024] ResNet50 640 × 640 - 41.90 82.20

YOLOv7 [Wang et al., 2023] CSPDarknet53 640 × 640 37.20 49.20 93.00
YOLOv10 [Wang et al., 2024] CSPDarknet53 640 × 640 16.40 50.30 91.70
YOLOv11† [Khanam R, 2024] CSPDarknet53 640 × 640 20.06 52.30 93.10

RAFDE(ours) CSPDarknet53 640 × 640 11.02 54.60 96.30

Table 1: Performance comparison with state-of-the-art methods on VisDrone and Drone-vs-Bird. The symbol ‘†’ indicates the baseline of
RAFDE and the ‘-’ stands for the result that is not reported.

Baseline RAFF BTRD #P(M) GFLOPs mAP mAP50

✓ 20.06 68.2 26.6 43.5
✓ ✓ 14.40 76.4 28.8 47.0
✓ ✓ ✓ 11.02 72.0 30.0 48.5

Table 2: Ablation study of each component on the VisDrone val-
idation set. RAFF stands for Regional-Adaptive Feature Fusion
module. BTRD stands for Boundary Transitional Region-enhanced
Downsampling module.

4.4 Visualization
Figure 4 demonstrates the effectiveness of our method com-
pared to the baseline on the VisDrone test dataset. Specif-
ically, our approach improves the detection of distant small
objects, addressing the issue of missed detections. In the
first and second rows, YOLOv11 struggles with detecting
distant small objects, missing several distant “people” (see
first column, fourth row) and misclassifying “traffic cones”
as “people” (see second column, second row). In contrast,
our method detects more small objects (see third row, fourth
and fifth columns) and reduces false detections (see second
column, second and fourth rows). These results highlight the
ability of our method to preserve the fine details of small ob-
jects, enabling the model to learn from a broader range of
small object samples during training, which significantly en-
hances detection performance.

4.5 Pooling Kernel Size Selection in BTRD
In the BTRD module, a fixed region size is required for scan-
ning in order to extract the maximum and average values
within the region. These values are then used to identify the
boundary transitional regions containing both strongly and
weakly activated features, by calculating their differences. To

Pooling Kernel Size 2 × 2 3 × 3 5 × 5
mAP 30.0 29.1 28.0
mAP50 48.5 47.5 45.8

Table 3: Comparing the impact of different pooling kernels on model
performance.

determine the optimal region size, we tested scanning regions
of 2 × 2, 3 × 3, and 5 × 5. The results, shown in Table 3, indi-
cate that larger regions tend to introduce more noise, thereby
reducing performance. Therefore, we selected the 2 × 2 re-
gion size for optimal performance.

4.6 Multi-level Semantics Selection in RAFF
When replacing the PAFPN [Liu et al., 2018b] with our
RAFF module in YOLOv11, we investigated the influence
of low-level detail information and high-level semantic in-
formation on the detection of both small and regular-sized
objects. As shown in Fig. 1(b), the high-level feature map,
used for detecting regular-sized objects, effectively activates
with detailed information from adjacent levels. However, as
seen in Table 4, the low-level feature map, used for detect-
ing small objects, experiences a significant performance drop
when deprived of high-level semantic information. Fig. 5 fur-
ther demonstrates that the absence of high-level semantic in-
formation in the low-level feature map causes small objects
to blend into the background, resulting in a considerable loss
of detected small objects (highlighted in red boxes in Fig. 5).
To address this issue, we directly concatenate high-level and
low-level feature maps to retain critical semantic information
(as shown in the red box in Fig. 3), leading to a significant
improvement in the model’s ability to detect small objects.
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Figure 4: Comparison of the performance of baseline and our RAFDE on the VisDrone test dataset.

(b)with high-level semantics (a) without high-level semantics

Figure 5: Influence of low-level feature map with or without high-
level semantic information on the activation of small objects.

Ours RAFDE AP AR mAP mAP50

without high-level semantics 52.2 42.4 26.9 43.9
with high-level semantics 56.7 45.4 28.8 47.0

Table 4: Effect of low-level feature map with or without high-level
semantic information on model performance.

4.7 Effectiveness of RAFDE on Other Backbones
Our plug-and-play method can be easily integrated into any
model featuring an FPN structure. To showcase the versatil-
ity of RAFDE, we incorporated it into the popular MMDe-
tection framework [Chen et al., 2019] and conducted tests
on the VisDrone dataset. Specifically, we selected two two-
stage models: Faster R-CNN [Ren et al., 2016] and Cas-
cade R-CNN [Cai and Vasconcelos, 2018]. All experiments
were performed on a single RTX A6000 GPU, using a batch
size of 4 and an input resolution of 1333 × 800. The mod-
els were trained for 12 epochs with configurations consistent
with the baseline. Performance was evaluated using COCO
metrics, including APs and APm, which represent the aver-
age precision for small and medium objects, respectively, at
IoU thresholds ranging from 0.5 to 0.95. Additionally, ARs

was used to measure the average recall for small and medium
objects under the same IoU settings, while AP and AR rep-
resent the overall average precision and recall across the full
IoU range. Additionally, AP50 denotes the average preci-
sion at an IoU threshold of 0.5. As shown in the table be-
low, our method consistently improves model performance
across different backbones, particularly for small objects
(e.g., Faster R-CNN: 13.3% → 16.5%).

Methods APs APm AP50 AP ARs AR

Faster-RCNN 13.3 31.7 43.2 26.5 23.4 35.9
+RAFDE(Ours) 16.5 33.3 45.3 27.7 23.5 36.5
Cascade-RCNN 17.1 33.0 44.3 27.9 25.1 37.1
+RAFDE(Ours) 18.9 35.8 45.6 28.9 26.6 38.9

Table 5: Performance of our RAFDE on other backbone networks.

5 Conclusion
In this study, we present a lightweight approach to enhance
UAV object detection by investigating the impact of activa-
tion strengths of objects at different scales in adjacent levels
of feature maps on downsampling and fusion. First, we em-
ployed the BTRD module to strengthen the boundary tran-
sitional regions, mitigating the loss of crucial boundary fea-
tures for small objects during downsampling. Second, we in-
troduced the RAFF module, which replaces the conventional
FPN structure. This module performs region-adaptive fusion
of the co- and uni-activated regions, which are disentangled
from adjacent levels, into the current level. This approach
reduces feature loss and mitigates the risk of small objects
being overwhelmed. Extensive experiments confirm that our
RAFDE strategy reduces model parameters while remaining
competitive with other state-of-the-art methods.
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