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Abstract

Deep multi-view clustering has attracted increasing
attention in the pattern mining of data. However,
most of them perform self-learning mechanisms in
a single space, ignoring the fruitful structural in-
formation hidden in different-level feature spaces.
Meanwhile, they conduct the reconstruction con-
straint to learn generalized representations of sam-
ples, failing to explore the discriminative ability of
complementary and consistent information. To ad-
dress the challenges, a Multi-granularity invAriant
Structure clusTERing scheme (MASTER) is pro-
posed to define a bottom-up process that extracts
multi-level information in sample, neighborhood,
and category granularities from low-level, high-
level, and semantics feature space, respectively.
Specifically, it leverages the self-learning recon-
struction with information-theoretic overclustering
to capture invariant sample structure in the low-
level feature space. Then, it models data diffu-
sion of the clustering process in the reliable neigh-
borhood to capture invariant local structure in the
high-level feature space. Meanwhile, it defines
dual divergences induced by the space geometry to
capture invariant global structure in the semantics
space. Finally, extensive experiments on 8 real-
world datasets show that MASTER achieves state-
of-the-art performance compared to 11 baselines.

1 Introduction

Multi-view clustering (MVC), as a fundamental task in ma-
chine learning, is attracting more and more prominent atten-
tion across various domains, such as image recognition and
text classification, in the last few years [Wang et al., 2024a;
Zhou et al., 2024; Jin et al., 2023; Liu et al., 2024a;
Yu et al., 2023]. It can be interpreted as an evolution of
vanilla clustering for samples collected with multiple views.

*Corresponding authors: Qingchen Zhang and Peng Li.

That is, MVC is capable of distilling complementary struc-
ture information of samples from multiple views/modalities
to learn partition patterns in an unsupervised manner, such
that samples within the same group are more similar to each
other than samples from different groups [Chen et al., 2023b;
Cui et al., 2024; Zou et al., 2024; Wang et al., 2024b].

With an encouraging renaissance of deep learning, some
edge-cutting deep multi-view clustering methods have made
significant progress in mining intrinsic patterns of data [Ren
et al., 2024; Gao et al., 2024]. The deep multi-view clustering
methods can be roughly divided into two groups, i.e., non-
contrastive learning methods and contrastive learning meth-
ods, in accordance with self-learning mechanisms. The for-
mer draw on some vanilla clustering strategies, such as k-
means and subspace clustering, as self-learning mechanisms
to train neural networks, and they capture clustering-friendly
complementary information of data via minimizing struc-
ture divergences between similar samples and maximizing
structure divergences between dissimilar samples to model
multi-view data partition. For example, [Xu e al., 2023] in-
troduces a self-supervised multi-view embedded clustering
scheme to constrain structure consistencies between view-
consensus features and view-specific features for MVC. The
latter construct inter-view and intra-view contrastive learning
mechanisms between data in multiple views to train their own
multi-view fusion network, and they learn sample-invariant
complementary information of data structure via pulling posi-
tive pairs of samples close and pushing negative samples apart
to support the partition of multi-view data. For instance, [Yan
et al., 2023] introduces a structure-guided contrastive learn-
ing clustering scheme to weight similarities between samples
in extracting invariant complementary information.

Although previous methods improve clustering perfor-
mance by a significant margin, there still exist two challenges
in mining intrinsic patterns of multi-view data. First, most of
them perform self-learning mechanisms in a single space to
extract data structure from multiple views for pattern mining,
ignoring the fruitful multi-granularity structure information
hidden in different-level feature spaces. Second, they learn
generalized representations of samples in each view via the
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reconstruction constraint to preserve consistent and comple-
mentary information, which causes degradations of the dis-
criminative ability of view-specific representations. When
confronted with multi-view data of complicated distributions,
they may not produce desired clustering patterns.

To address the challenges, a Multi-granularity invAriant
Structure clusTERing scheme (MASTER) is proposed to de-
fine a bottom-up clustering process, which captures fruitful
structure information hidden in different-level feature space
in a cascaded manner for multi-view data partition. In
detail, MASTER consists of a sample-oriented representa-
tion learning strategy (SRL), a reliable neighborhood-driven
diffusion strategy (RND), and a semantics-invariant clus-
ter strategy (SIC). SRL leverages self-learning reconstruc-
tions with information-theoretic overclustering in encoding-
decoding paradigms. It maximizes cross-view mutual infor-
mation to perform sample clustering that interprets each sam-
ple as a single cluster in the low-level feature space, cap-
turing invariant structure in the sample granularity for the
enhancement of the discriminative ability. RND conducts a
cross-view neighborhood distillation mechanism in the high-
level feature space via imitating data diffusion of the clus-
tering process. It introduces the cluster assignment informa-
tion to dynamically refine neighbor relationships, learning in-
variant local structure in the neighborhood granularity. SIC
defines dual divergences between assignment predictions of
multi-view samples with simplexes of the semantics space.
It leverages the space geometry to capture invariant global
structure in the category granularity, maximizing inter-cluster
separation and intra-cluster compactness for intrinsic pattern
mining. Finally, extensive experiments are carried out on 8
benchmark datasets in comparison with 11 methods, and the
results show MASTER achieves state-of-the-art performance.

Thus, the key contributions of the article can be concluded
in the three-fold aspects.

* A multi-granularity invariant structure clustering
scheme is proposed to define a bottom-up clustering
process, which constructs a consistent hierarchy struc-
ture from the perspective of sample, neighborhood,
and category to extract fruitful complementary and
consistent information for MVC.

MASTER imitates data diffusion in the clustering pro-
cess to implement a cross-view neighborhood distilla-
tion mechanism, which can dynamically capture reliable
affinity relationships in the neighborhood granularity to
facilitate the extraction of invariant local structure from
complementary information.

L]

Plenty of experiments are conducted on 8 real-world
datasets and the results show MASTER achieves the
state-of-the-art performance on multi-view data cluster-
ing in comparison with 11 methods.

2 Related Work

2.1 Non-contrastive Learning Methods

Non-contrastive learning methods introduce various self-
learning mechanisms along with novel multi-view neural ar-
chitectures, which measure structure divergences between

samples, to extract clustering-friendly complementary infor-
mation for clustering. Those methods can be divided into
two-stage and one-stage methods.

The former train multi-view architectures with the aid
of innovative self-learning mechanisms to learn clustering-
friendly fusion representations, which perform additional
clustering algorithms to divide multi-view samples [Zhou et
al., 2024]. For instance, [Li et al., 2023] introduces an
adversarial encoding-decoding architecture via defining an
inter-view consistent cycle and an intra-view consistent cy-
cle of data, which endows fusion representations of multi-
view samples with clustering structure. [Dong et al., 2023]
introduces a multi-view encoder-decoder architecture for bi-
partite graphs, which aligns complementary information in
each view to produce informative fusion representations of
multi-view samples. The latter design effective self-learning
mechanisms to train multi-view fusion neural architectures
to produce clustering results in an end-to-end manner, which
can cooperate structure discovery of data with complemen-
tary information fusion between views to promote sample
partition [Xu er al., 2024]. For example, [Zhou and Shen,
2020] designs a multi-view adversarial-attention fusion ar-
chitecture, which leverages the geometry induced by sim-
plexes of semantic space to guide divisions of multi-view
data. [Gao er al., 2024] proposes an adaptive multi-view
semantics-invariant fusion network via constraining seman-
tics alignments between views with samples, which further
designs clustering as a Markov decision process of data par-
titions in an end-to-end manner.

2.2 Contrastive Learning Methods

Contrastive learning methods define cross-view contrastive
learning mechanisms along with novel multi-view fusion ar-
chitectures, which maximize similarities between positive
samples and dissimilarities between negative samples, to
learn view-invariant structure from views. Those methods
can be also divided into two-stage and one-stage methods.
The former usually construct cross-view contrastive learn-
ing to model fusion features with view-invariant information
of samples, and perform additional clustering constraints for
pattern mining [Lu ef al., 2024]. For example, [Xu et al.,
2022] proposes a multi-level feature learning architecture via
stacking contrastive learning networks on the middle layer
of view-specific encoding-decoding networks, where cross-
view consistencies of high-level features and semantic la-
bels are constrained in a parallel manner for MVC. [Luo et
al., 2024] introduces a view-agnostic multi-view fusion con-
trastive architecture via interpreting the feature-dimensional
concatenation between normalized data in each view as data-
level fusion of samples, which conducts the vanilla con-
trastive learning on samples with the help of the manual nois-
ing/deleting data of samples in some views. The latter lever-
age cross-view contrastive learning to capture the distribu-
tions of data partition, which benefits from explorations of
view-invariant information of samples in the semantic space
[Zhang et al., 2024b]. For instance, [Chen er al., 2023a] pro-
poses a cluster-level multi-view contrastive learning cluster-
ing method, which leverages view-invariant information via
pulling positive pairs of clustering centroids close and push-
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Figure 1: The flowchart of MASTER. SRL. Given a multi-view dataset {x“}l 1,0=1>» MASTER transforms data into the low-level feature

space to obtain view-specific representations {z} } - YU 1

within the encoder-decoder architecture, i.e., z; = Enc” (x7) and X{ = Dec® (27 ),

and then leverages self-learning reconstructions with information- theoretlc overclustering to capture invariant structure in the sample gran-

ularity. RND. MASTER learns the high-level representations {hy}~"} =1 from {20} )

i1,0—1 by the feature mapping function 9, ie.,

hY = 9°(z?). Subsequently, MASTER conducts a cross-view diffusion mask matrix T*' via introducing the cross-view indicator matrix
Y into the neighborhood distillation mechanism, to learn invariant local structure in the neighborhood granularity. SIC. MASTER gener-

N,V

ates the assignment predictions {p? } "} v from {z}; 07 )

via the semantic mapping function ¢"

,ie., p; = ¢" (z7). Then, it leverages

dual divergences between assignment predlctlons in the semantic space to capture invariant global structure in the category granularity.

ing negative pairs of clustering centroids apart. [Yang et al.,
2023] proposes a dual contrastive learning paradigm with an
attention-weighted multi-view fusion encoder-decoder net-
work, where pseudo-label graphs are used to calibrate global
and local cross-view similarities between samples in end-to-
end clustering, respectively.

3 Method

A multi-granularity invariant structure clustering scheme is
proposed to define a bottom-up clustering process. It designs
a sample-oriented representation learning strategy, a reli-
able neighborhood-driven diffusion strategy, and a semantics-
invariant cluster strategy, to construct a consistent hierarchy
structure from the perspective of sample, neighborhood, and
category. The architecture of MASTER is shown in Figure 1.

3.1 The Sample-oriented Representation Learning
Strategy

The sample-oriented representation learning strategy (SRL)
leverages the invariant structure of each multi-view sample to
enhance the discriminative ability of view-specific represen-
tations, which captures more complementary and consistent
information from the low-level feature space in the sample
granularity. To accomplish this, SRL constructs self-learning
reconstructions within encoding-decoding paradigms in each

view to model intrinsic view-specific representations from the
data manifold. Then, SRL defines an information-theoretic
overclustering that interprets each sample as an independent
cluster, which endows view-specific representations with the
discriminative invariant sample structure.

Specifically, given a multi-view dataset X = {x“}l_1 el
with C' classes, which includes N samples with V' views,
SRL constructs an encoder-decoder pair that perform the
self-learning reconstruction on data in each view, to capture
view-specific representations z}, i.e., z; = Enc’ (x}) and

7

x?= Dec? (z}), which extracts generalized complementary
and consistent information from data manifold. Thus, SRL
constrains the self-learning reconstruction on data in the low-

level feature space via

1 vV N
Lrec ZZHXU - %7 (D

v:l i=1
where || - || stands for the Euclidean norm and XY is the i-th

reconstruction sample in the v-th view. Eq. (1) can utilize the
data manifold preservation to distill generalized complemen-
tary structure information for subsequent data partition.
Then, SRL maximizes the cross-view mutual informa-
tion between view-specific representations to implement the
information-theoretic overclustering, which endows view-
specific representations with discriminative structure in the
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sample granularity. In detail, given view-specific representa-
tions z? and z! in two views, SRL performs the information-
theoretic overclustering via maximizing 1(z?;z!), which is
further transformed into the sample-level clustermg on the
basis of the data processing inequality, as follows:
I(z?;2!) > 1(s?;sl), )

7994

where I(;) represents the mutual information. s! denotes
the probability vector of overclustering, and each element
st[m] = exp(zy[m)) /Y2 M_ exp(z![m/))(M > C). Then,
SRL leverages the uniqueness concept of samples that each
multi-view sample is a single cluster to maximize mutual in-

formation I(s?;s).

17"

p(sylst)
p(sy)

psilsD) . s~ 21D
ORI

max I[(s¥;s!) < min —Eg log

p(sy)

L3L(4)
3)
where E stands for the expectation operator. S denotes the
set of s¥. p(s ”|s )/p(s?) measures the influence of knowing

s on sy, j # i SRL constrains the information-theoretic
overclusterlng on the multi-view dataset as

N V V

Loc=Y_> > L) )

i=1 v=1 l#v

Thus, SRL leverages the structural information of each sam-
ple to enhance the discriminative ability of generalized repre-
sentations via

‘CSRL o ‘Crec + CYﬁoc ©)]

where « is a trade-off parameter.

3.2 The Reliable Neighborhood-driven Diffusion
Strategy

The reliable neighborhood-driven diffusion strategy (RND)
focuses on extracting cross-view invariant structure from
complementary information in the neighborhood granularity
to promote local consistency of affinity relationship in the
high-level feature space for multi-view sample partition. To
achieve this, RND defines a cross-view neighborhood distil-
lation mechanism that imitates inherent paradigms of data
diffusion in the clustering process, i.e., approaching, leav-
ing, and staying, to dynamically learn an invariant structure-
enhanced neighbor relationship with the help of the clus-
ter assignment information. In detail, RND models the ap-
proaching paradigm for the in-neighborhood multi-view sam-
ples with the same cluster assignment, to enhance the intra-
neighborhood consistency of data structure. RND models
the leaving paradigm for the out-of-neighborhood multi-view
samples with different cluster assignments, to strengthen the
inter-neighborhood divergences of data structure. Mean-
while, it models the staying paradigm for the multi-view sam-
ples that do not satisfy the above two conditions, to ensure the
robustness of the data structure. RND learns reliable neigh-
bor relationships via modeling three diffusion paradigms in

the high-level feature space to enhance the exploration of in-
variant local structure.

Specifically, given the view-specific representations Z” =
{zY} N, of the v-th view in the low-level feature space, RND
conducts a feature mapping function ¥" to generate the high-
level representations HY = {hY}Y , ie., h? = 99(zY).
Subsequently, RND 1ntroduces the cross-view indicator ma-
trix YU € RY*N of cluster assignments to implement the
neighborhood distillation mechanism. The mechanism adap-
tively refines neighbor relationships to generate a diffusion
mask matrix T* € RV*Y between the v-th view and the
[-th view:

1 if hl € ¢l (hy), yU 1
t} =40 lfhl ¢ v'(hy), vy =0

-1 therw1se (6)
% 0 otherwise

where 1! (h?) denotes the K -nearest neighbor set of h? in the
[-th view. y”’ = 1 indicates that two samples are assigned to

the same cluster (y? = yj), vice versa. In Eq. (6), t;?} =
indicates that in-neighborhood samples with the same cluster
assignment should approach each other. t;‘;’j = 0 indicates
that the out-of-neighborhood samples with different cluster
assignments should leave each other. t?! = —1 indicates that
the sample does not satisfy the above two conditions should
stay stationary.

Thus, RND utilizes the neighborhood distillation mech-
anism induced by the data diffusion, to dynamically max-
imize intra-neighborhood similarities and minimize inter-
neighborhood similarities in the high-level feature space,
which is formulated as follows:

vV Vv

Laxp =YY H(T H'H)T)+H(T" H'H"))
v=1 l#v

(N

where H denotes the cross entropy function.

3.3 The Semantics-invariant Cluster Strategy

The semantics-invariant cluster strategy (SIC) aims to cap-
ture the invariant global structure of the semantics space from
complementary and consistent information in the category
granularity, which ensures inter-cluster separation and intra-
cluster compactness for intrinsic pattern mining. To this end,
SIC defines dual divergences, i.e., the simplex constraint and
orthogonal constraints, between the assignment predictions
of multi-view samples with the simplexes of the semantics
space in two dimensions, which leverages the geometry of
the semantics space to guide explorations of invariant global
structure in the category granularity.

To be specific, given the view-specific representations
VARES {zf}lN:l of multi-view data in the v-th view, SIC de-
fines a semantic mapping function ¢ from view-specific rep-
resentations of samples to the assignment predictions P* =
{pf}f\il, i.e., p! = ¢ (z}), which can leverage the discrim-
inative complementary and consistent information of each
view to capture invariant global structure of multi-view data.
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Algorithm 1 MASTER
NV

Input: The multi-view dataset X = {x}'};>; ,_;
Parameter: Learnable parameters in encoders Enc”, de-
coders Dec?, feature mapping functions ¥, and semantic
mapping functions ¢ of multiple views

Output: Clustering partition P

1: while not converged do

2:  Sample structure learning:

3:  Extract view-specific representations by encoder-
decoder pairs z¥ = Enc? (x?) and XY= Dec" (z?).

4:  Compute probability vectors of overclustering by
s¢[m) = exp(z[m]}/ Y Y, _ exp(a! [m]).

5 Neighborhood structure learning:

6:  Generate high-level representations hY = 9" (z?).

7:  Generate diffusion mask matrices T by Eq. (6).

8:  Global structure learning:

9:  Obtain assignment predictions p} = ¢" (z}).

0: Update learnable parameters by minimizing Eq. (5),

Eq. (7), and Eq. (10).

11: end while

P’U

M=

. . .o, =Y o 1
12: return Clustering partition P = {»

v=1

Afterwards, SIC interprets the C' simplexes in the C-
dimensional semantics space as the cluster centroids, and it
minimizes the divergence between samples and the corre-
sponding cluster centroid via the cross entropy, which can
push multi-view samples within the same cluster towards the
same simplex to capture clustering-friendly invariant struc-
ture of multi-view data. SIC computes the loss induced by
the centroids with C' dimensions as follows:

1 LE ,
EZNZZcilogpi ®)

i=1v=1
1 ifmaxPp,;, =D
Cik = { 0 ortherwise
where c;, is the k-th element of the i-th simplex of the se-
mantics space, and p;;, denotes the k-th element in the aver-
age assignment prediction vector of the i-th multi-view sam-
ple. In such a manner, SIC pushes samples within the same
cluster towards the same simplex and samples of the differ-
ent clusters apart, maximizing the inter-cluster separation and
intra-cluster compactness.

Then, SIC recasts each column of the assignment predic-
tion matrix in each view as the representations of cluster
centroids in the sample dimension, and it forces inter-view
and intra-view orthogonal constraints between the centroids,
which can further maximize cross-view consistencies to cap-
ture the invariant global structure across views. SIC computes
the loss induced by the centroids with N dimensions with the
simplex via contrastive learning as follows:

v Vv 2
L:ZZH(PZ)TP”—IH )

1=1v=1

1 \%4
Tzl,QC,ﬁ:Vzpv
v=1

where I denotes the identity matrix with C' x C' dimensions.

Dataset Class Sample View Type

BDGP 5 2500 2 Vector
CCV 20 6773 3 Vector
MNIST-USPS 10 5000 2 Image
Fashion-MV 10 10000 3 Image
Caltech-2V 7 1440 2 Vector
Caltech-3V 7 1440 3 Vector
Caltech-4V 7 1440 4 Vector
Caltech-5V 7 1440 5 Vector

Table 1: The detailed statistics of the 8 multi-view datasets

Eq. (9) constrains inter-view consistencies and intra-view
compactness of multi-view sample assignments. Thus, SIC
captures the invariant structure of the semantics space in the
category granularity via:

1 N V vV Vv T 9
Lsio =+ D> eilogp + 3. > | P -1
l=1v=1

i=1v=1
(10)
The overall loss of MASTER is shown in Eq. (11). Algo-
rithm 1 lists the detailed steps of MASTER.

L = Lsrr + BLrND + YLsIC (11)

where [ and ~y are trade-off parameters.

4 Experiment

4.1 Experiment Settings

Benchmark Datasets: Plenty of experiments are conducted
on 8 real-world datasets to validate the performance of MAS-
TER. In detail, MNIST-USPS is a handwritten digit dataset
that contains 5000 bi-view samples within 10 classes. BDGP
is a Drosophila embryo dataset that contains 2500 bi-view
samples within 5 classes. CCV is a video dataset with 6773
tri-view samples belonging to 20 classes. Fashion is an image
dataset about products, which contains 10000 tri-view sam-
ples within 10 classes. Caltech-2V, Caltech-3V, Caltech-4V,
and Caltech-5V are created from the Caltech dataset that con-
sists of RGB images with multiple views. The statistics of the
8 datasets are listed in Table 1.

Comparison Methods: 11 methods with state-of-the-art per-
formance are used to verify the superiority of MASTER,
which are composed of non-contrastive learning methods and
contrastive learning methods. The former consist of SDMVC
[Xu et al., 2023], MVCAN [Xu et al., 2024], DMAC-SI [Gao
et al., 2024], CAMVC [Zhang et al., 2024a], DSMVAGC
[Wang et al., 2024al, and AEVC [Liu et al., 2024b]. The
latter include DealMVC [Yang et al., 2023], GCFAgg [Yan
et al., 20231, SCM [Luo er al., 2024], CSOT [Zhang ef al.,
2024b], and DIVIDE [Lu er al., 2024]. In the experiments,
the comparison methods are implemented according to set-
tings in the original papers, and the grid search is utilized on
the trade-off parameters suggested by the authors to guaran-
tee the best performance of the comparison methods.
Implementation Details: MASTER consists of V' encoder-
decoder pairs, a feature mapping network, and a seman-
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BDGP CCV MNIST-USPS Fashion-MV

Method ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DealMVC(2023) 0.9600 0.9197 0.9069 0.2935 0.2882 0.1426 0.9778 0.9615 0.9765 0.9636 0.9522 0.9636
SDMVC(2023) 0.9816 0.9447 09548 0.3125 0.3085 0.3364 0.9880 0.9815 0.9880 0.8626 0.9215 0.8405
GCFAgg(2023) 0.9870 0.9624 0.9870 0.3543 0.3292 0.3812 0.9956 0.9871 0.9956 0.9758 0.9674 0.9758
MVCAN(2024) 0.9732 0.9287 09732 0.3269 0.3111 0.3622 0.9818 0.9778 09818 0.9205 0.9489 0.9217
DMAC-SI(2024) 0.9880 0.9634 09723 0.3012 0.2998 0.3185 0.9882 0.9826 0.9882 0.8857 0.9247 0.8623
CAMVC(2024) 0.9540 0.8746 0.9540 0.2709 0.2656 0.2987 0.8098 0.7022 0.8098 0.7897 0.7817 0.7886
SCM(2024) 0.9710 0.9130 0.9557 0.2562 0.2353 0.2909 0.9882 0.9672 0.9747 0.9347 0.9072 0.9347
DSMVAGC(2024) 0.8932 0.8372 0.8932 0.2337 0.1908 0.2679 0.8289 0.7543 0.8593 0.7902 0.7605 0.7938
AEVC(2024) 0.7126 04513 0.7125 0.1640 0.1132 0.1874 0.8181 0.6967 0.8189 0.8257 0.7779 0.8235
DIVIDE(2024) 0.9514 0.9039 09514 0.3101 0.3012 0.3373 0.9676 0.9244 09676 0.9290 0.8791 0.9292
CSOT(2024) 0.9896 0.9655 0.9896 0.3167 0.3098 0.3468 0.9924 0.9787 0.9924 0.9754 0.9663 0.9754
MASTER 0.9920 0.9727 0.9920 0.3805 0.3441 0.4159 0.9964 0.9892 0.9964 0.9916 0.9790 0.9916

Caltech-2V Caltech-3V Caltech-4V Caltech-5V
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DealMVC(2023) 0.5207 0.4289 0.3054 0.5871 0.5606 0.4398 0.7580 0.6952 0.6470 0.8407 0.7651 0.7208
SDMVC(2023) 0.5350 0.4508 0.5893 0.6786 0.6049 0.6943 0.7543 0.6888 0.7741 0.8789 0.7825 0.8789
GCFAgg(2023) 0.6643 0.5008 0.6643 0.6400 0.5345 0.6529 0.7343 0.6610 0.7343 0.8336 0.7331 0.8336
MVCAN(2024) 0.5698 0.5017 0.5988 0.6807 0.6037 0.6971 0.7392 0.6609 0.7862 0.8914 0.8077 0.8907
DMAC-SI(2024) 0.6087 0.5323 0.6333 0.7008 0.6312 0.7098 0.7998 0.7276 0.7998 0.8802 0.7850 0.8802
CAMVC(2024) 0.6345 0.4864 0.6345 0.7114 0.5959 0.7150 0.8414 0.7272 0.8414 0.8821 0.7988 0.8821
SCM(2024) 0.6271 0.4708 0.6271 0.6500 0.5186 0.6836 0.7143 0.5788 0.7143 0.8055 0.7298 0.8041
DSMVAGC(2024) 0.5371 0.4537 0.5312 0.5898 0.5547 0.5977 0.6039 0.5717 0.6022 0.6644 0.5724 0.6426
AEVC(2024) 0.5743 0.4633 0.5843 0.6795 0.5673 0.6886 0.7604 0.5664 0.7604 0.7564 0.6731 0.7564
DIVIDE(2024) 0.5822 0.5294 0.5822 0.6089 0.5375 0.6077 0.6432 0.5793 0.6552 0.7515 0.6829 0.7515
CSOT(2024) 0.6390 0.5440 0.6420 0.7050 0.6230 0.7150 0.8120 0.6900 0.8120 0.7910 0.7126 0.7910
MASTER 0.6900 0.5875 0.6900 0.7307 0.6446 0.7450 0.8432 0.7600 0.8440 0.9124 0.8255 0.9124

Table 2: The numerical results on the 8 datasets in comparison with 11 state-of-the-art methods in terms of ACC, NMI, and PUR.

tic mapping network, which are implemented via fully-
connected layers with the following architectures: D-500-
500-2000-256, 256-2000-500-500-D, 256-128, and 256-C,
respectively. D and C' represent the dimensionality of the
original data and semantic features, respectively. MASTER
optimizes the overall networks via the Adam optimizer with
a learning rate of 0.0003 across all datasets. In the optimiza-
tion, the number of training epochs is set to 350. The batch
size is set to 256. The values of «, /3, and K are determined
via the ablation experiments with the grid search strategy on
each dataset. v is set to 1 on all the datasets.

Evaluation Metrics: Three standard clustering metrics, i.e.,
accuracy (ACC), normalized mutual information (NMI), and
purity (PUR) are utilized to verify the superior performance
of MASTER, and the larger value of the metrics indicates the
better clustering performance. In the experiments, the results
shown in Tables ??, Table 3, and Figure 2, are the average of
5 runs for all the metrics to guarantee a fair comparison.

4.2 Clustering Performance

Table ?? demonstrates the numerical results produced on the
8 datasets. Those results show that MASTER outperforms all
the comparison methods by a significant margin in terms of
the three evaluation metrics, which can be concluded in three
observations below. @ BDGP, MNIST-USPS, and Fashion-
MYV: The clustering results are very high and close to the max-
imum value 1, meaning that there is not much room for im-
provement on the three datasets. That is, the multi-view sam-

ples, which are assigned into incorrect clusters by the second-
best method, are very hard to distinguish in pattern mining. In
such a condition, MASTER can still assign more samples into
the correct clusters and achieve better performance in terms
of all the evaluation metrics on the three datasets. @ CCV and
Caltech-2V: The clustering results are relatively low, meaning
that it is hard to recognize some multi-view samples. That is,
the multi-view samples that are often assigned to incorrect
clusters by the second best method, are very hard to distin-
guish in pattern mining. In such a condition, MASTER can
still assign more samples into the correct clusters and achieve
better performance in terms of all the evaluation metrics on
the three datasets. @ Caltech-3V, Caltech-4V, and Caltech-
5V: The clustering results are of significant gains, indicating
that MASTER is competent to capture intrinsic patterns from
the complementary and consistent information of multi-view
data. In detail, MASTER outperforms all the comparison
methods more and more significantly as the number of views
increases. Especially, MASTER outperforms the second-best
method by 2.10%, 1.78%, and 2.17% in terms of ACC, NMI,
and PUA on Caltech-5V.

4.3 The Ablation and Hyper-parameter Analyses

Ablation Results: Table 3 demonstrates the ablation results
on MNIST-USPS and Caltech-2V, which is utilized to evalu-
ate the effectiveness and rationality of MASTER in terms of
ACC and NMI. As shown in Table 3, there are three variants.
MASTER w/o SRL, MASTER w/o RND, and MASTER w/o
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Figure 2: The results of the hyper-parameter analysis. (a), (b), and (c) show the results of «, 3, v on Caltech-2V. (d) demonstrates the results

on the in-neighborhood sample number K in RND.
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Figure 3: The clustering result visualizations of MASTER on 5 datasets.
MNIST-USPS Caltech-2V sults show that MASTER is of high robustness and can find
ACC  NMI  ACC  NMI the optimal number of in-neighborhood samples.
MASTER w/o SRL  0.9852 0.9618 0.6644 0.5500 4.4  The Visualization Results
MASTER w/o RND 0.9854 0.9842 0.6323 0.5273 Figure 3 visualizes the clustering results that are carried out
MASTER w/o SIC  0.9928 0.9795 0.6799 0.5819 on 5 datasets to further evaluate the clustering superiority of
MASTER 0.9964 0.9892 0.6900 0.5875 MASTER. In detail, 1000 multi-view samples are randomly

Table 3: The ablation results on MNIST-USPS and Caltech-2V in
terms of ACC and NMI.

SIC represent removal of SRL, RND, and SIC, respectively.
Two observations can be concluded from Table 3. © The
three variants yield inferior results on both datasets. That is,
the removal of each component causes a decrease in cluster-
ing performance, which validates the effectiveness of each
component. @ MASTER outputs the best clustering results
on both datasets in terms of ACC and NMI, which further
validates the design rationality of MASTER.

Hyper-parameter Results: Figure 2 presents the influence
of the trade-off parameters «, 3, and v on Caltech-2V in
terms of ACC. In detail, all trade-off parameters are set in
{100, 10, 1, 0.1, 0.01, 0.001}. Then, one parameter is fixed
and the other two are adjusted in the hyper-parameter anal-
yses. As shown in the results of Figure 2, MASTER is ro-
bust to the selection of trade-off parameters. That is, when
a, B, and ~ are in {10, 1, 0.1}, {10, 1, 0.1, 0.01}, and {1,
0.1, 0.01}, respectively, MASTER can produce stable results
close to the optimal result within a large range of settings. In
addition, Figure 2(d) illustrates the influence of the selection
of in-neighborhood sample number K in RND, and the re-

selected from each of 5 datasets, which are further input into
MASTER to produce assignment predictions. Then, the t-
SNE algorithm is conducted on the assignment predictions to
output the visualization of clustering results.

As shown in Figure 3, multi-view samples belonging to
the same cluster are densely clustered within the same re-
gion, and there are no overlaps between distinct clusters.
This observation substantiates that MASTER is competent
to mine patterns that ensure the inter-cluster separation and
intra-cluster compactness.

5 Conclusion

In this paper, a multi-granularity invariant structure clustering
scheme is proposed to define a bottom-up process, which ex-
tracts multi-level information in sample, neighborhood, and
category granularities. Specifically, MASTER captures in-
variant sample structure in the low-level feature space, invari-
ant local structure in the high-level feature space, and invari-
ant global structure in the semantics space, in which the three
components cooperate to enhance the discriminative ability
of the complementary and consistent information for MVC.
Finally, extensive experiments on 8 real-world datasets verify
that MASTER achieves state-of-the-art performance in com-
parison with 11 baselines.
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