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Abstract
In current training-free Conditional Diffusion Mod-
els (CDM), the sampling process is steered by the
gradient, which measures the discrepancy between
the guidance and the condition extracted by a pre-
trained condition extraction network. These meth-
ods necessitate small guidance steps, resulting in
longer sampling times. To address the issue of slow
sampling, we introduce AccCtr, a method that sim-
plifies the conditional sampling algorithm by max-
imizing the sum of two objectives. The local maxi-
mum set of one objective is contained within the lo-
cal maximum set of the other. Leveraging this rela-
tionship, we decompose the joint optimization into
two parts, alternately maximizing each objective.
By analyzing the steps involved in optimizing these
objectives, we identify the most time-consuming
steps and recommend retraining condition extrac-
tion network—a relatively simple task—to reduce
its computational cost. Integrating AccCtr into cur-
rent CDMs is a seamless task that does not impose a
significant computational burden. Extensive testing
has demonstrated that AccCtr offers superior sam-
ple quality and faster generation times.

1 Introduction
Recently, diffusion models [Song and Ermon, 2019; Ho et al.,
2020; Song et al., 2021] have achieved significant success in
generative tasks like generation [Nichol and Dhariwal, 2021;
Shen et al., 2025a; Shen et al., 2025b], inpainting [Chung
et al., 2023], super-resolution [Saharia et al., 2023]. They
employ classifier-guided [Dhariwal and Nichol, 2021] and
classifier-free [Ho and Salimans, 2021] techniques for con-
ditional generation. Despite the effectiveness, these methods
require additional training. Recent advances addressed these
issues by developing training-free methods that leverage the
differential loss guidance during the denoising process [Yu et
al., 2023; Bansal et al., 2024; Yang et al., 2024b].

Training-free methods avoid extra training but require pre-
cise guidance steps for accuracy, increasing sampling time.
This is because the tangent space defined by the differential

∗Corresponding author.

loss can only approximate a local image manifold area. For
starting point is remote from target, multiple approximation
are needed to span the gap. More denoising iterations are cru-
cial to navigate the curvature of manifold and reach the condi-
tion. Current approaches [Chung et al., 2023; Yu et al., 2023;
Bansal et al., 2024] use small loss-guided steps to ensure pre-
cision, slowing down the process considerably. Yang [2024b]
made progress by enabling larger guidance steps through op-
timization, constraining the steps within boundaries of inter-
mediate data, improving algorithm efficiency.

Different from Yang [2024b], we improve the efficiency
by viewing the sampling process as alternative optimizing
two objectives: log p(z0) for unconditional generation and
log p(y|z0) for conditional generation, where p(·) denotes the
image distribution, p(y|z0) presents the distribution of condi-
tion y given image z0 and z0 represents the denoised image of
diffusion model at time step 0. We denote the image manifold
consisting of z0 as M0. This interpretation streamlines sam-
pling by reducing optimization steps necessary for each ob-
jective. Our study reveals that reducing the optimization steps
for log p(z0) is straightforward, but not so for log p(y|z0).
Taking a well-trained model s(zt), we can estimate the de-
noised image z0|t, i.e. the projection of zt on the manifold
M0, in one step. However, maximizing log p(y|z0|t) in-
volves the gradient of E(y, z0|t,Cψ) and requires multiple
gradient descent steps to reach the final outcome.

To reduce the step needed for maximizing the conditional
distribution p(y|z0|t), we propose retraining the condition ex-
traction network Cψ(·) to enhance its ability so that the gra-
dient of E(y, z0|t,Cψ) provides a more accurate direction
for larger steps. Consequently, we retrain Cψ(·) with two
distinct objectives. The first is to ensure that Cψ(z0|t) effec-
tively extracts the necessary conditions from z0|t. The second
is to adjust the gradient of E(y, z0|t,Cψ) so that it provides
accurate guidance for larger steps.

In summary, our contributions are fourfold: 1. We intro-
duce a novel maximization framework that provides insights
into the analysis of training-free CDMs. 2. We identify the
key bottleneck in the generation speed of current training-free
CDMs using this framework. 3. We propose a loss to retrain
the condition extraction network to address this bottleneck.
4. Our model outperforms previous models in efficiency and
sample quality.
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2 Related Work
Conditional Diffusion Models (CDMs) are typically divided
into two categories: training-required methods and training-
free methods. A key aspect of both types of models is the esti-
mation of the conditional score∇zt log p(zt,y) or its compo-
nent ∇zt

log p(y|zt), which is derived from the relationship
∇zt

log p(zt,y) = ∇zt
log p(zt) +∇zt

log p(y|zt).
Training-required CDMs are divided into two main

branches. The first branch is the classifier-guided diffu-
sion model [Dhariwal and Nichol, 2021], training a time-
dependent classifier denoted as pϕ(y|zt, t) to approximate
the posterior probability p(y|zt). Consequently, we have
∇zt log p(zt,y) = ∇zt log p(zt) + ∇zt log pϕ(y|zt, t),
where the first term represents the unconditional score func-
tion, while the second term signifies the adjustment that con-
verts the unconditional score into a conditional one. The
other branch is the classifier-free diffusion model [Ho and
Salimans, 2021]. This approach employs a neural network to
approximate the conditional score ∇zt

log p(zt,y). Notable
examples include Stable Diffusion [Rombach et al., 2022],
ControlNet [Zhang et al., 2023], and ControlNet++ [Li et al.,
2024], ControlNeXt [Peng et al., 2024], and AnyControl [Sun
et al., 2024]. These models are great at creating realistic im-
ages but require more data and training time.

Training-free CDMs eliminates classifier training by
defining a loss E(y, z0|t,Cψ) and using its gradient to ap-
proximate the conditional score ∇zt

log p(y|zt). In the lit-
erature, researchers devised various strategies to improve the
conditional score estimation. MCG [Chung et al., 2022] ad-
dresses deviations with a correction term. DPS [Chung et al.,
2023] integrates diffusion sampling with manifold constraints
for better noise handling. FreeDoM [Yu et al., 2023] employs
a time-travel strategy for robust generation. UGD [Bansal et
al., 2024] and DiffPIR [Zhu et al., 2023] guide clean sam-
ples z0 to intermediate manifolds zt. LGD [Song et al.,
2023] exploits Monte Carlo sampling for estimation refine-
ment. MPGD [He et al., 2024] and DSG [Yang et al., 2024b]
apply guidance within data manifolds, with DSG providing a
closed-form solution. These approaches often require around
100 sampling steps for quality generation, contrasting with
the typically less than 20 steps needed by training-required
CDMs.

In this paper, we delve into the rationale behind the in-
creased sampling steps required for training-free CDMs and
propose a strategy to enhance their efficiency.

3 Diffusion as Maximization
Diffusion models [Yang et al., 2024a] are understood through
different perspectives, such as DDPM [Ho et al., 2020],
SMLD [Song and Ermon, 2019], and SDE [Song et al.,
2021]. SMLD interprets the diffusion model’s role as iden-
tifying z0 = argmaxz p(z) that maximizes the image distri-
bution. The projection z0|t of intermediate results zt from
the reverse process in DDPM can be viewed as a sequence
{z0|T , · · · , z0|1} that progressively maximizes the distribu-
tion p(z0|t). This section is dedicated to presenting a maxi-
mization view for diffusion model in relation to our method.

3.1 Maximization For Unconditional Diffusion
In this section, we review the sampling process of DDPM.
Specifically, diffusion models are represented as: pθ(z0) =∫
pθ(z0:T ) dz1:T , where z1, . . . , zT are latent variables of the

same dimension as the data z0 ∼ q(z0). The joint distribu-
tion pθ(z0:T ) is defined by a Markov chain with Gaussian
transitions starting from zT ∼ N (zT ;0, I):

pθ(z0:T ) := p(zT )
∏T

t=1
pθ(zt−1|zt) (1)

pθ(zt−1|zt) := N (zt−1;µθ(zt, t),Σθ(zt, t)) (2)

The forward diffusion process, gradually introducing Gaus-
sian noise to the data, is defined by a Markov chain with a
predetermined variance schedule β1, . . . , βT :

q(z1:T |z0) :=
∏T

t=1
q(zt|zt−1) (3)

q(zt|zt−1) := N (zt;
√

1− βtzt−1, βtI) (4)

Let M0 represent the image manifold generated by the diffu-
sion model. This process allows for sampling zt at any step t
and deriving its projection onto M0 in closed form:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I) (5)

⇔ zt =
√
ᾱtz0 +

√
(1− ᾱt)ϵ (6)

⇔ z0 =
1√
ᾱt

zt −
√

(1− ᾱt)√
ᾱt

ϵ(zt) (7)

⇔ z0 =
1√
ᾱt

zt +
(1− ᾱt)√

ᾱt
s(zt) (8)

Here, ᾱt :=
∏T

t=1
αs, αt := 1 − βt. ϵ ∼ N (0, I).

ϵ(zt) denote the noised contained in zt and the score
function s(zt) := ∇zt log p(zt) satisfying ϵ(zt) =
−
√
1− ᾱts(zt) due to Tweedie’s formula [Efron, 2011].

Let µ̃(zt, z0, t) :=
√
ᾱt−1βt

1−ᾱt
z0 +

√
αt(1−ᾱt−1)

1−ᾱt
zt and β̃t :=

1−ᾱt−1

1−ᾱt
βt, q(zt−1|zt, z0) can be written as

q(zt−1|zt, z0) = N (zt−1; µ̃(zt, z0, t), β̄tI) (9)

⇔ zt−1 =

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
β̄tϵ

By defining sθ(zt) as the network to approximate the score
function s(zt) and substituting it into Equation (8), we obtain
ẑ0|t−1, an estimation for z0 according to zt−1.

ẑt−1 =

√
ᾱt−1βt

1− ᾱt
ẑ
(t)
0 +

√
αt(1− ᾱt−1)

1− ᾱt
ẑt +

√
β̄tϵ

ẑ0|t−1 =
1

√
ᾱt−1

ẑt−1 +
(1− ᾱt−1)√

ᾱt−1
sθ(ẑt−1) (10)

We conclude that ẑ0|t is the projection of ẑt onto the image
manifold M0 and the sequence {ẑ0|t}maximizes log p(ẑ0|t).
Therefore, we regard the two equations as the solver that
maximizes log p(ẑ0|t) on M0.
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3.2 Maximization For Conditional Diffusion
Conditional diffusion models employ the conditional score
s(zt|y) := ∇zt

log p(zt|y) as a substitute for s(zt) in Equa-
tion (10), enabling the generation of images conditioned on
y. This function is articulated via Bayes’ theorem as fol-
lows: s(zt|y) = s(zt) +∇zt

log p(y|zt). To sidestep train-
ing, a practical approach is to use an energy function, de-
fined as: log p(y|zt) = −λE(y, z0|t,Cψ), where z0|t =
1√
ᾱt
(zt + (1− ᾱt))sθ(zt). In this expression, λ is a positive

parameter. Consequently, Equation (10) can be restructured
accordingly.

ẑt−1 =
√
ᾱt−1βt

1−ᾱt
ẑ0|t +

√
αt(1−ᾱt−1)

1−ᾱt
ẑt +

√
β̄tϵ (11)

ẑ′0|t−1 = 1√
ᾱt−1

ẑt−1 +
(1−ᾱt−1)√

ᾱt−1
sθ(ẑt−1) (12)

ẑ0|t−1 = ẑ′0|t−1 − λ (1−ᾱt−1)√
ᾱt−1

∇ẑt−1
E(y, ẑt−1,Cψ) (13)

Similar to the discussion for Equation (10) in Section 3.1, the
green Equations (11)(12) serve as a solver maximizing the
marginal distribution p(ẑ′0|t). Given Equation (6), we have

∇ẑt
E(y, ẑt,Cψ) ≈

√
ᾱt

−1∇ẑ′
0|t
E(y,

√
ᾱtẑ

′
0|t,Cψ) (14)

Putting this into the yellow Equation (13), we conclude that
it operates as a gradient descent step for E(y, ẑ′0|t−1,Cψ).
Thus, the sequence {ẑ′0|t} maximizes log p(ẑ′0|t), while the
sequence {ẑ0|t} maximizes log p(y|ẑ0|t). To summarize,
these equations alternately maximize the two objectives
log p(ẑ′0|y) and log p(y|ẑ0|t) on the image manifold M0

with each step focusing on one objective.

4 Alternative Maximization For Conditional
Diffusion

In this section, we frame the conditional diffusion process
as an alternating maximization algorithm for two objectives:
p(z0|t) and p(y|z0|t). This insight helps us understand why
training-free CDMs require more sampling steps and leads to
a strategy for speeding up the process.

4.1 The Local Maxima Characteristics
The distribution p(·) is particularly pronounced at the natural
image z0. Given that the condition extraction function Cψ(·)
is finely tuned for natural imagery, the conditional distribu-
tion p(y|z0) := 1

C exp (−λE(y, z0,Cψ)) , reaches its zenith
when y aligns seamlessly with z0|t. This distribution is more
concentrated than p(y|z) for images z in the vicinity of z0,
such that p(y|z0) ≥ p(y|z). Thus, for a fixed y, the maxi-
mum of p(y|z0) should occur where p(z0) is at its local max-
imum. This implies that the local maxima of p(y|z), given y,
are a subset of the local maxima of p(z). In essence, wherever
p(z) experiences a local peak, p(y|z) is also likely to peak,
provided that y accurately represents z. This relationship un-
derscores the pivotal role of the conditional distribution in
guiding the generative process towards images that not only
conform to the natural image distribution but also match the
specified conditions.

Algorithm 1 Alternative Maximization Sampling

1: Input: The iteration number J , the unconditional diffu-
sion count N for solving p(z0|t) and the conditional cor-
rection count M for solving py(z0|t). The time reversal
step K.

2: ẑ0|JN ←
√
ᾱJN

−1
(ẑJN + (1− ᾱJN )sθ(ẑJN ))

3: ẑJN ∼ N (0, I)
4: for j = J, . . . , 1 do
5: for n = 0, . . . , N − 1 do
6: t← jN − n

6: ẑt−1 ←
√
ᾱt−1βt

1−ᾱt
ẑ0|t +

√
αt(1−ᾱt−1)

1−ᾱt
ẑt +

√
β̄tϵ

7: ẑ0|t−1 ← 1√
ᾱt−1

ẑt−1 +
(1−ᾱt−1)√

ᾱt−1
sθ(ẑt−1)

8: end for
9: t← (j − 1)N

10: for m = 0, . . . ,M − 1 do
10: ẑ

(m)
K|t ←

√
ᾱK ẑ

(m)
0|t +

√
(1− ᾱK)ϵ

11: ẑ
(m)
0|t ←

1√
ᾱt
ẑ
(m)
K|t +

(1−ᾱK)√
ᾱK

sθ(ẑ
(m)
K|t )

12: ẑ
(m+1)
0|t ← ẑ

(m)
0|t − λ∇

ẑ
(m)

0|t
E(y,

√
ᾱtẑ

(m)
0|t ,Cψ)

13: end for
14: ẑ0|t ← ẑ

(M)
0|t

15: end for
16: Return the result =0

4.2 Alternatve Maximization

We shift focus from the probabilistic details of p(z0|t) and
p(y|z0|t) in the following sections, treating them as func-
tions of z0|t under a given condition y. We refer to p(y|z)
as py(z), recognizing that the local maxima of py(z) are
contained within those of p(z). The conditional genera-
tion aims to maximize log p(z0|t,y) by sequentially opti-
mizing log p(z0|t) and log py(z0|t). This strategy, as out-
lined in the proposition 1, efficiently optimizes the likelihood
log p(z0|t,y) = log p(z0|t) + log py(z0|t).

Proposition 1 (Convergence of Alternative Maximization).
Let A(z) and B(z) be two functions defined on the same do-
main. Suppose that: SB , the local maxima point set of B(z),
is a subset of SA, the local maxima point set of A(z). Then,
the alternating maximization of A(z) and B(z) converges to
a local maximum of the function A(z) +B(z).

We provide the proof in the appendix. In light of Proposi-
tion 1, the two green Equations (11)(12) in Section 3.2, along
with the yellow Equation (13), serve as maximization solvers
for log p(z0) and log py(z0). The alternative maximization
sampling process is elaborated in Algorithm 1, where the
green section and yellow section correspond to the implemen-
tation of the green Equations (11)(12) and the yellow Equa-
tion (13), respectively. Notably, steps 9, 10, and 11 of Al-
gorithm 1 ensure that the gradient ascent for log py(z0) is
consistently performed on the image manifold M0, as char-
acterized by the diffusion model.
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Experiment 1: J = 20, N = 1

and M = 1
Experiment 2: J = 20, N = 5

and M = 1
Experiment 3: J = 20, N = 1

and M = 5
Experiment 4: J = 100, N = 1

and M = 1

Figure 1: Analysis of the Impact of Iteration Counts: Total J , Unconditional N and Conditional M . From top to bottom, each row shows the
outcomes of FreeDoM, DSG, and UGD under conditions of edge, style, and bounding box control. Four experiments were conducted in total.
Observations reveal that the first two setups failed to achieve the desired control, whereas the last two were successful. This insight indicates
that the total number of conditional iterations, J ×M , is crucial for control effectiveness, given that the first two experiments had a total of
20, while the last two had 100. To achieve the desired results, a higher total count of conditional correction seems to be necessary.

5 AccCtr: Accelerating Training-free
Conditional Diffusion

The input of Algorithm 1 includes several parameters. In this
section, we will examines the impact of the total iterations J ,
the iterations N for maximizing p(z0|t) (green section), and
M for maximizing py(z0|t) (yellow section).

5.1 Why Traning-Free CDMs Sampling Is Slow?
Speeding up the sampling speed requires reducing inference
steps. The variation in sampling methods often obscures the
root causes of this slowness. Proposition 1 helps break down
the sampling process into two phases: maximizing log p(z0|t)
via unconditional diffusion implemented by the green Equa-
tions (11)(12) and maximizing log py(z0|t) through condi-
tional correction implemented by the yellow Equation (13).
By integrating existing algorithms into the framework de-
tailed in the appendix, we can identify the phase that slows
down the sampling process. As depicted in Figure 1, we con-
ducted four experiments. The first section outlines the condi-
tion y, with each row corresponding to a different CDMs and
showing performance under y. Four experiments were tested
to ensure consistent behavior across methods.
Experiment 1: With J = 20, N = 1, M = 1, 20 itera-

tions were allocated to maximize both log p(z0|t) and
log py(z0|t). Results are in the first section of Figure 1.

Experiment 2: With J = 20, N = 5, M = 1, 100 and
20 iterations maximizes log p(z0|t) and log py(z0|t), re-
spectively. Results are in the second section of Figure 1.

Experiment 3: With J = 20, N = 1, M = 5, 20 iterations
were allocated to maximize log p(z0|t) and 100 steps to
log py(z0|t). Results are in the third section of Figure 1.

Experiment 4: We set J = 100, N = 1, M = 1, resulting
in 100 iterations for both log p(z0|t) and log py(z0|t).
Results are in the second section of Figure 1.

Figure 1 shows that the first two experiments lacked con-
trol, while the last two succeeded. Thus a higher number of
conditional correction iterations J × M is crucial for con-
trol; the first two experiments used 20 iterations, while the
last two used 100. These results suggest that reducing the op-
timization steps for log p(z0|t) is tolerable, but cutting steps
for log py(z0|t) harms sample quality.

Experiment 5 tracks the development of the extracted con-
dition from the intermediate outputs ẑ

(m)
0|t , investigating the

impact of reducing maximization steps for log py(z0|t). Fig-
ure 2 shows that as m increases, the extracted condition aligns
more closely with the target condition. We used MSE loss to
measure the difference between the intermediate edge condi-
tion and the target edge image. The bottom row of Figure 2
shows a decrease in MSE as m increases, indicating improved
guidance conformity across iterations.

These findings suggest that reducing the conditional cor-
rection count M can cause a loss of control over the final
output, as intermediate conditions may deviate from the tar-
get. The issue lies in the linear manifold assumption. The
gradient descent approximates the local image manifold us-
ing the tangent space. If the starting point is far from the
target, additional linear manifolds are needed. Thus, increas-
ing the iteration number for conditional correction is vital for
navigating the manifold’s curvature and obtaining a sample
closer to the target condition.

5.2 Our Approach
Our five experiments suggest that Cψ(·) require more itera-
tions as ∇z0|tE(y, z0|t,Cψ) does not provide accurate esti-
mates for large steps. To reduce the number of maximiza-
tion steps for log py(z0|t), we propose refining the condition
extraction network Cψ(·) to improve its accuracy, enabling
more precise gradient directions for larger steps. Therefore,
it is logical to retrain Cψ(·) with two distinct objectives.
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Figure 2: Evolution of Extracted Conditions Across Intermediate Results ẑ(m)

0|t of Algorithm 1 at J = 16 step with N = 1. As the conditional
correction count m increases from 2 to 14, the generated results in the first row progressively approximate the final outcome, and the extracted
conditions in the second row become more akin to the condition. Correspondingly, the MSE plot in the last row exhibits a decreasing trend.

The 1st term: L1(y, z0|t,Cψ) is to effectively extract nec-
essary conditions from zt. Here, z0|t represents the pro-
jection of zt onto the manifold M0.

The 2st term: L2(y, z0, z0|t,Cψ) is to adjust the gradient
of the first term so that it provides accurate directional
guidance for larger steps.

The first loss can be constructed using two strategies. The first
approach defines L1(y, z0|t,Cψ) = L(y − Cψ(D(z0|t))),
where the similarity metric L can be MSE, Cross-Entropy
loss, or another appropriate measure depending on the guid-
ance y. D is the pre-trained decoder that converts z0|t into an
image, and Cψ is the network for tasks such as segmentation,
depth mapping, or HED. A limitation of this method is that it
requires different metrics for different guidance types. MSE
loss may not always be suitable; for example, cross-entropy
loss works better for segmentation guidance. In this paper,
we shift the similarity comparison from the pixel domain to
the latent domain, as shown in Equation 15, where E is the
encoder that converts an image into its latent representation.
This approach offers two key benefits: 1) it allows MSE loss
for various types of guidance, and 2) it enables high-level la-
tent semantic comparisons [He et al., 2024].

L1(y, z0|t,Cψ) :=
∥∥E(y)−E(Cψ(D(z0|t))

∥∥2
2

(15)

The second loss fine-tunes the gradient for larger time
steps, aiming to achieve the final outcome in a single iteration.
Putting E(y, z0|t,Cψ) = L1(y, z0|t,Cψ , we employ the
conditional score function∇zt

log p(zt|y) = ∇zt
log p(zt)+

∇zt
log py(zt) with∇zt

log py(zt) ≈
√
ᾱt∇z0|t log py(z0|t)

to replace the score function in Equation 8. This adjustment
ensures that the gradient is more accurately aligned for larger
steps. Consequently, we obtain:

L2(y, z0, z0|t,Cψ) :=

∥∥∥∥z0 − zt + (1− ᾱt)s(zt)√
αt

−λ(1− ᾱt)∇z0|tL1(y, z0|t,Cψ)
∥∥2
2

(16)

bear
toy

bonsai
plot

Condition

kite
on sky

M = 10 M = 5 M = 1 M = 0

Figure 3: Visual Quality Assessment of Generated Images Across
Various Conditional Correction Counts M and Guidances. The first
column presents various guidances. The second column lists the
prompts. Columns three to end display the results for different val-
ues of M with J = 20, N = 1.

In this work, we use the two loss terms to retrain the condi-
tion extraction network Cψ(·), which is then integrated into
Algorithm 1. Given that z0|t can be derived from zt us-
ing Equation 8, and zt can be recovered from z0 via Equa-
tion 6, we can efficiently train the condition extraction net-
work Cψ(·) with just the pair (y, z0).

6 Experiment
In this section, we conduct thorough experiments and com-
parisons to showcase the efficacy and strengths of our AccCtr
sampling approach.

6.1 Implementation Details
We employed the SD-V1.5 model as the backbone. To facili-
tate the training process, we selected the Adam optimizer and
set its learning rate to 1e−5. With a batch size of 1, the model
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Figure 4: Compatibility Demonstration of MSE Metric for Diverse Guidance Types Using our Condition Extraction Network. We present 10
distinct guidances and their corresponding generated results in this section. Regardless of the variance in guidance, we opt for the same MSE
metric to calculate the gradient of E(y, z0|t,Cψ).

UGD FreeDom DSG Ours
Unconditional Diffusion

Count N (Times) 500 100 100 20
Conditional Correction

Counts M (Times) 3000 90 90 20
Total Sampling
Spend (Second) 2357 83 53 8

Table 1: Quantitative Running Cost Comparison. We specify the
unconditional diffusion count N , conditional correction counts M ,
and sampling time in this table. It is clear that our method provides
the fastest outcomes.

was subjected to 200, 000 training steps on the COCO2017
dataset [Lin et al., 2014], lasting roughly 60 hours.

6.2 Illustrating Sampling Acceleration
In this section, we explore the acceleration capabilities of Ac-
cCtr. Proposition 1 suggests that training-free CDMs can be
distilled into the optimization of two key objectives. Our ex-
perimental results indicate that while the maximum number
of iterations for the unconditional objective can be signifi-
cantly reduced, the same cannot be said for the conditional
diffusion, which requires a higher number of iterations. To
address this, AccCtr proposes retraining the condition extrac-
tion networks Cψ(·) to decrease the number M of condi-
tional correction iterations needed for the conditional objec-
tive log py(z0|t).

Figure 3 presents the visual quality of images generated
by AccCtr for different values of M . It’s evident that our
method can achieve satisfactory results even at M = 1, po-
tentially greatly enhancing the sampling speed for CDMs.
When M = 0, the sampling process does not incorporate
conditional control, resulting in outputs that are unaffected by
the guidance. Therefore, setting M = 1 represents the quick-
est scenario for conditional generation. To offer an overview
of the acceleration capabilities of our method, we present a
quantitative comparison of the running costs in Table 1. We
specifically evaluate our method against FreeDoM [Yu et al.,

‘‘two
sheep on
grass”

Condition UGD FreeDom DSG

Figure 5: Compatibility Demonstration of our Condition Extraction
Network in Conditional Generation Across Different Methods. We
have replaced the pre-defined condition extraction networks used by
UGD, FreeDoM, and DSG with our own networks. The resulting
generated images are displayed in the second row, while originals
are in the first.

2023], DSG [Yang et al., 2024b], and UGD [Bansal et al.,
2024] with respect to the iteration number N for uncondi-
tional diffusion, the iteration number M for conditional cor-
rection, and the total sampling time. It can be observed that
our method incurs the lowest running costs in Table 1.

6.3 Condition Extraction Network’s Compatibility
In Section 5.2, we highlighted our condition extraction net-
work assess the similarity between the guidance and interme-
diate results using MSE. This approach differs from previous
methods that employed different metrics for different guid-
ances. Figure 4 shows the visualization results with different
guidances, where the similarity is consistently measured by
MSE. The results confirm the compatibility of condition ex-
traction networks for diverse guidances.

Replacing existing pre-defined condition extraction net-
works with ours is viable, as shown in Figure 5 for Free-
DoM [Yu et al., 2023], DSG [Yang et al., 2024b], and
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Depth Canny Segmentation HED
FID↓ CLIP↑ MSE↓ FID↓ CLIP↑ SSIM↑ FID↓ CLIP↑ mIoU↑ FID↓ CLIP↑ SSIM↑

ControlNet 19.3954 0.2793 90.1302 17.3429 0.2801 0.4138 22.1217 0.2795 0.4217 20.1402 0.2836 0.5941
T2I-Adapter 23.9216 0.2913 94.9317 17.6812 0.3011 0.3954 22.0173 0.2995 0.2564 - - -

ControlNet++ 18.0139 0.2985 87.2173 20.1487 0.3024 0.5138 24.9371 0.2931 0.5438 16.3124 0.3121 0.6768
UGD 26.0034 0.2621 95.6792 26.8452 0.2513 0.3737 27.5437 0.2692 0.3327 28.3487 0.2537 0.4235

FreeDom 27.7825 0.2579 97.1242 27.9547 0.2487 0.3537 28.3619 0.2465 0.3131 28.4034 0.2472 0.4231
DSG 27.2147 0.2466 96.5637 26.6153 0.2571 0.3411 28.0198 0.2538 0.3285 28.9572 0.2514 0.4127
Our 22.4376 0.2932 86.0179 21.3846 0.3041 0.5217 22.9631 0.3011 0.4018 20.6734 0.3235 0.5104

Table 2: Quantitative Comparison for Controllable Generation. We selected the depth, canny, and segmentation conditions, which are
universally provided by various methods. The best results are highlighted in bold. “-” indicates that the method does not provide a public
model for specific condition.

M
=

5

The
majestic
mountain

Condition

M
=

1

w/o L1 w/o L2 L1 & L2

Figure 6: Ablation Study For Training Loss. Each row shows gen-
erated results for different M . Each column displays the generated
results from condition extraction networks trained with various loss
configurations.

UGD [Bansal et al., 2024]. The first row shows original re-
sults, and the second row shows results with our networks.
The sampling quality is comparable, proving our network’s
compatibility.

6.4 Ablation Study For Training Loss
Our training loss for the condition extraction networks Cψ(·)
consists of two key terms. In this section, we conduct an ab-
lation study on these terms to assess their individual contri-
butions, with the final results presented in Figure 6. It is clear
that without L1, the generation result does not align with the
condition, even with a larger number M of conditional cor-
rections. On the other hand, when L2 is removed, control-
lability remains the same, regardless of the number of con-
ditional corrections. In contrast, using condition extraction
networks trained with both terms yields significantly better
results.

6.5 Sampling Quality Comparison
In this section, we conduct quantitative comparison for sam-
pling quality comparison. Total six methods including three
training-free CMDs (FreeDoM [Yu et al., 2023], DSG [Yang
et al., 2024b], UGD [Bansal et al., 2024] ) and three
training-required CMDs (ControlNet [Zhang et al., 2023],
T2I-Adapter [Mou et al., 2024], ControlNet++ [Li et al.,
2024] ) are compared. The test is conducted on COCO2017
validation set with timesteps set to 20. For text alignment, we

evaluated the CLIP Scores [Radford et al., 2021]. For condi-
tional consistency, we measured MSE [Sara et al., 2019] for
depth maps, SSIM [Wang et al., 2004] for edge maps, and
mIoU [Rezatofighi et al., 2019] for segmentation maps. For
conditions not originally supported by training-free CDMs,
we have integrated our condition extraction network into their
existing algorithms. It is evident that AccCtr leads among
pioneering training-free approaches in Table 2, and even
when compared to training-required methods, our approach
remains competitive. For a qualitative comparison, please re-
fer to the supplementary material.

6.6 Balancing Training and Inference Time
Balancing training and inference time is crucial. AccCtrl,
compared to training-free methods like FreeDoM [Yu et al.,
2023], DSG [Yang et al., 2024b], and UGD [Bansal et al.,
2024], markedly decreases inference time but requires addi-
tional retraining. Training-required methods including Con-
trolNet [Zhang et al., 2023], T2I-Adapter [Mou et al., 2024],
ControlNet++ [Li et al., 2024] generally have faster inference
times than their training-free counterparts, but this comes
with longer training periods (1000+GPU/hours). However,
AccCtrl reduces training time (less than 100GPU/hours) due
to its condition extraction network Cψ(·) starting with good
initial weights. Thus, without retraining, AccCtrl can still
function like traditional training-free methods. In contrast,
other training-required methods fail without training. AccC-
trl thus offers a favorable trade-off between training and in-
ference time.

7 Conclusion
Slow sampling is a common issue in training-free CDMs. To
solve this problem, we introduce a novel framework that re-
formulates training-free CDMs into the maximization of two
objectives. By counting the optimization steps for each ob-
jective, we identify the phase that is the bottleneck for sam-
pling speed and propose retraining the condition extraction
networks as a strategy to expedite conditional sampling. Our
extensive experiments confirm that AccCtr can significantly
reduce the computational cost without compromising sample
quality. Most importantly, our method exhibits broad com-
patibility, holding potential to accelerate a variety of other
methods. This conclusion underscores the versatility and ef-
ficacy of our approach in addressing the common challenge
of slow sampling speeds in training-free CDMs.
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