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Abstract
Researchers, policy makers, and engineers need to
make sense of data from spreading processes as di-
verse as rumor spreading in social networks, vi-
ral infections, and water contamination. Classi-
cal questions include predicting infection behav-
ior in a given network or deducing the network
structure from infection data. Most of the research
on network infections studies static graphs, that
is, the connections in the network are assumed to
not change. More recently, temporal graphs, in
which connections change over time, have been
used to more accurately represent real-world infec-
tions, which rarely occur in unchanging networks.
We propose a model for temporal graph discov-
ery that is consistent with previous work on static
graphs and embraces the greater expressiveness of
temporal graphs. For this model, we give algo-
rithms and lower bounds which are often tight. We
analyze different variations of the problem, which
make our results widely applicable and it also clar-
ifies which aspects of temporal infections make
graph discovery easier or harder. We round off
our analysis with an experimental evaluation of our
algorithm on real-world interaction data from the
Stanford Network Analysis Project and on tempo-
ral Erdős-Renyi graphs. On Erdős-Renyi graphs,
we uncover a threshold behavior, which can be ex-
plained by a novel connectivity parameter that we
introduce during our theoretical analysis.

1 Introduction
Predicting the spread of infections requires precise knowl-
edge about the network in which they take place. These
spreading processes can be vastly different; they involve ev-
erything from diseases, misinformation, marketing material
to contaminants in sewage networks. All of these can be
modeled in a similar fashion, and we can thus utilize a com-
mon algorithmic toolkit for their analysis. Most famously,
the influence maximization problem, introduced by [Kempe
et al., 2003], wants to find which node in a network should
be infected to maximize the number of nodes infected by
the spreading process. Other problems include finding a

sensor placement to detect outbreaks as quickly as possible
[Leskovec et al., 2007], or to estimate the source (of an infec-
tion or rumor) from data about the spreading process [Beren-
brink et al., 2023; Luo et al., 2013; Zhu and Ying, 2016].

One common assumption is that the underlying network
is known. However, this is not true in many real-world sce-
narios, and thus, we require algorithms for network discov-
ery. While discovering networks is a fundamental problem
in data mining, which can be approached from different an-
gles [Rong et al., 2016; Park and Honorio, 2016], one nat-
ural approach is to discover the underlying network from
the infection data itself. This idea has been extensively
studied [Pouget-Abadie and Horel, 2015; Lokhov, 2016;
Daneshmand et al., 2014; Netrapalli and Sanghavi, 2012]. In
particular, [Chistikov et al., 2024] consider a model where
the party wishing to discover the network may even intervene
in the spreading process, e.g., by publishing a social media
post and watching its spread. Beyond this application, net-
work discovery is an interesting and relevant problem in its
own right. After having discovered the network from infec-
tion data, we are free to abstract away from the spreading pro-
cess and use the resulting network in a host of different ways.
This is especially relevant for the study of social networks,
both real-world and online, where infection data can reveal
underlying structures that are otherwise difficult to observe.

To the best of our knowledge, every paper that studies net-
work discovery makes the same simplifying assumption: the
underlying network is static. That is, the connections of the
network do not change over time. In most applications, that
is not a realistic assumption. For example, if two people are
linked in an in-person social network, that does not imply that
a disease can spread from one to the other at every point in
time, but only when they physically meet. Motivated by this
fact, researchers have begun to study the classical infection
analysis tasks on temporal graphs.

Temporal graphs are a model of dynamic networks where
the edges only exist at some time steps. This model has
received considerable attention from theoretical computer
scientists for both foundational problems [Michail, 2016;
Danda et al., 2021; Casteigts et al., 2021a; Akrida et al.,
2019] and a growing number of applications, including social
networks [Casteigts et al., 2021b]. For our purposes, a tem-
poral graph G = (V,E, λ) with lifetime Tmax ∈ N is a static
graph G = (V,E) with a function λ : E → 2[Tmax] indicat-
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ing that edge e ∈ E exists precisely at the time steps λ(e).
[Gayraud et al., 2015], are the first to study the influence
maximization problem on temporal graphs under the inde-
pendent cascade model (introduced by [Kempe et al., 2003]).
[Deligkas et al., 2024] build on this work and analyze the
influence maximization problem on temporal graphs under
the SIR model (a standard biological spreading model closely
related to the susceptible-infected-resistant model [Hethcote,
1989]). However, no work on network discovery on temporal
graphs has been conducted yet.

Our Contribution is twofold: (i) we define the temporal
network discovery problem as a round-based, interactive two-
player game, (ii) we provide algorithms and lower bounds for
different parameters of the network discovery game, and val-
idate our results both with theoretical proofs, as well as ex-
periments conducted on real-world and synthetic networks.
Statements where proofs or details are omitted to the full ver-
sion due to space constraints are marked with ⋆.

In Section 3, we define the two-player game. In each
round, the Discoverer (abbreviated D) initiates infections and
observes the resulting infection chains, aiming to identify the
time labels of all edges in as few rounds as possible. The Ad-
versary (abbreviated A) gets to pick the shape and temporal
properties of the graph, with the aim of forcing D to take as
long as possible to accomplish their task.

In Section 4, we provide the DiscoveryFollow algorithm,
which solves the graph discovery problem in 6 |E(G)| +
|ECδ(G)| ⌈Tmax/δ⌉ rounds, where |ECδ(G)| are the δ-edge
connected components. Intuitively, this is a grouping of the
edges such that only edges from the same component may
influence each other during infection chains. In Section 5,
we prove that the running time of the DiscoveryFollow al-
gorithm is asymptotically tight in the number of edges. For-
mally, we prove there is an infinite family of graphs such that
any algorithm winning the graph discovery game requires at
least Ω(|E(G)|) rounds. Crucially, this cannot be improved
even if D is allowed to start multiple infection chains per
round. We also prove that there is an infinite family of graphs
such that the minimum number of rounds required to win the
graph discovery game grows in Ω(nTmax/(δk)), where k is
the number of infection chains D may start per round.

We finish our theoretical analysis in Section 6, where we
explore variations of the graph discovery problem. We ana-
lyze the case where the feedback D receives about the infec-
tion chains is reduced to infection times. Surprisingly, we are
able to show that our DiscoveryFollow algorithm directly
translates to this scenario. We also discuss what happens if D
has no information about the static graph in which the infec-
tions are taking place. Third, we allow the temporal graph to
now contain multiedges or more than one label per edge.

In Section 7, we empirically validate our theoretical re-
sults. Using both synthetic and real-world data, we exe-
cute the DiscoveryFollow algorithm and observe its per-
formance. We utilize the natural temporal extension of
Erdős-Renyi graphs [Casteigts et al., 2022] as well as the
comm-f2f-Resistance data set from the Stanford Large
Network Dataset Collection [Kumar et al., 2021], a social
network of face-to-face interactions. Beyond the running

time, we closely analyze which factors affect the performance
of the algorithm. We see that the density of the graph affects
the performance since, in dense graphs, it needs to spend less
time finding new δ-edge connected components. On Erdős-
Renyi graphs, we provide evidence that this effect is medi-
ated by the number of δ-edge connected components, which
exhibits a threshold behavior in Tmax/(|V (G)| p), where p
is the Erdős-Renyi density parameter. This prompts us to
give a conjecture on this threshold behavior, which mirrors
the famous threshold behavior in the connected components
of nodes in static Erdős-Renyi graphs [Erdos et al., 1960].

2 Preliminaries
For n ∈ N+, x ∈ N, let [x, n] := {x, . . . , n} and [n] := [1, n].

A temporal graph G = (V,E, λ) with lifetime Tmax is
composed of an undirected (underlying) static graph G =
(V,E) together with a labeling function λ : E → 2[Tmax], de-
noting e ∈ E being present precisely at time steps λ(e). We
also write V (G) for the nodes of G, and E(G) for its edges. A
temporal path a sequence of timed edges (e1, t1), . . . , (eℓ, tℓ)
that forms a path in G with strictly increasing labels, i. e., for
all i ∈ [ℓ], ti < ti+1 and ti ∈ λ(ei). Apart from Section 6, we
consider simple temporal graphs where each edge has exactly
one label. Abusing notation, we therefore also use λ as if it
were defined as λ : E → [Tmax], and regard temporal paths
as the corresponding sequence of nodes.

We use the susceptible-infected-resistant (SIR) model, in
which a node is either in a susceptible, infected, or resis-
tant state. This model of temporal infection behavior is based
on [Deligkas et al., 2024] (and more historically flows from
[Kermack et al., 1927] and [Pastor-Satorras et al., 2015]). An
infection chain in the SIR model unfolds as follows. At most
k ∈ N nodes may be infected by D at arbitrary points in time,
which we call seed infections denoted as S ⊆ V × [0, Tmax].
Otherwise, a node u becomes infected at time step t if and
only if it is susceptible and there is a node v infectious at time
step t with an edge uv with label t. Then u is infectious from
time t+ 1 until t+ δ, after which u becomes resistant. Note
that if a susceptible node has two or more infected neighbors
at the same time, it can be infected by any one of them, but
only one. Thus, a given set of seed infections may result in
multiple possible infection chains.

The infection log of an infection chain records which node
was infected by which neighbor at what time. Formally, the
infection log is a set L ⊆ V 2× [0, Tmax], where (u, v, t) ∈ L
indicates that u infected v at time step t. A seed infection at u
at time t is denoted by (u, u, t) ∈ L. The infection timetable
T ⊆ V×[0, Tmax] records only when a node became infected,
omitting which neighbor caused the infection. We call an
infection log L consistent with a given set of seed infections
S if there is an infection chain seeded with S that produces L.
Consistency for infection timetables is defined analogously.

While multiple consistent infection logs may exist for a set
of seeds, there is exactly one consistent infection timetable.

⋆ Lemma 1. Let S ⊆ V×[0, Tmax] be a set of seed infections,
and L1, L2 be two infection logs consistent with S. Then the
induced infection timetables Ti := {(v, t) | (u, v, t) ∈ Li}
(for i = 1, 2) are the same, that is, T1 = T2.
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3 Modeling Temporal Graph Discovery
We model temporal graph discovery (TGD) as a game, where
the Discoverer D seeks to uncover information about the
graph (e.g., edges and their time labels), while the Adversary
A influences the infection behavior (e.g., by assigning edge
labels) with the goal of delaying D’s progress. See Figure 1
for a description of the structure of the game.

Input: Tmax, δ, k, n ∈ N
1. D learns the nodes and possibly additional information.
2. In each round, D submits up to k seed infections S and

A responds with an infection log consistent with S.
3. To end the game, D submits a temporal graph G to A.

A responds with a temporal graph G′ consistent with all
infection logs. If G′ ̸= G, A wins. Otherwise, D wins.

Figure 1: The temporal graph discovery game

As default, we assume D learns the static edges in Step 1.
This is a strong, but convenient assumption, and we later
show that many of our results translate to other variations.

We measure the quality of a D strategy by the number of
rounds it needs to win the game.

Definition 1. For parameters Tmax, δ, k and a static graph
G, define the graph discovery complexity as the minimum
number of rounds required for D to win any TGD game.

We start off with the simplest algorithm: brute-forcing all
combinations of nodes v ∈ V (G) and time steps t ∈ [Tmax]
as seed infections. This will serve as a baseline for comparing
more sophisticated algorithms and possible lower bounds.

⋆ Theorem 1. There is an algorithm that wins the TGD game
in |V (G)|Tmax rounds.

4 An Algorithm for Graph Discovery
Before proposing a better algorithm for TGD, we consider a
simpler problem: finding an ideal patient zero.

Definition 2. A node v is an ideal patient zero (IPZ) with
time t if seed-infecting {(v, t)} causes every node to become
infected. We call (v, t) an IPZ pair.

We adapt the TGD game. D submits either a pair (u, t),
representing its guess for an IPZ, or ⊥ if it believes none ex-
ists. A responds with a graph G = (V,E, λ) consistent with
all infection logs. A wins if D’s guess is incorrect or if ⊥ is
submitted when an IPZ exists.

Observe that testing for each node if at every time it could
spread an infection (u, λ(u, v) − 1) for every neighbor v,
does not always find an existing patient zero. Instead, brute-
forcing every combination as in Theorem 1, discovers every
IPZ pair in Tmax |V (G)| rounds.

Corollary 1. There is a strategy for D that can win the IPZ
game in Tmax |V (G)| rounds.

The number of rounds required by the algorithm is trivially
bad in its efficiency, as it is brute-forcing the entire graph
instead of using the temporal graph’s structure at all.

Note, two edges can only participate in the same infection
chain if they are connected by a series of edges with time la-
bels differing by at most δ. This leads to a new connectivity
parameter for temporal graphs, reflecting the constraint that
nodes remain infectious for only a limited time, and thus, in-
fection chains must also respect these timing constraints.

Definition 3. Let G be a temporal graph and δ ∈ N+. Con-
sider the relation linking two edges if their time difference at
a shared endpoint is at most δ. Let ECδ be the partitioning
of edges obtained by taking the transitive closure of this re-
lation. We call the resulting equivalence classes the δ-edge
connected components (or δ-ecc’s for short) of G.

Any infection chain caused by a single seed node (e.g., an
IPZ) must be contained in a single δ-ecc. This motivates Al-
gorithm 1. See Figure 2 for an illustration of an execution.

Algorithm 1: Follow discovers the neighbors of v0.
Explore discovers their respective δ-ecc’s.

fun Follow(G, δ):
1. Pick node v0 ∈ V (G) arbitrarily.
2. For i ∈ [0, ⌈Tmax/δ⌉], perform a round with
seed infection (v0, iδ).

3. For each edge e = v0u that successfully infects:
Explore(e, λ(e)).

fun Explore(u, t):
1. For each t′ ∈ {t− δ − 1, t− 1, t}: If there has
been no round with seed infection (u, t′), seed an
infection (u, t′). Store that this has been done.

2. For each newly infected edge uv with infection
time t: Explore(v,t).

The next result is the crucial property allowing us to argue
that Algorithm 1 does not miss relevant edges.

Corollary 2. If Follow discovers an edge from a δ-ecc, it
discovers the whole component.

This tool in hand, we prove the correctness of Algorithm 1,
which requires at most 6 |E(G)|+ ⌈Tmax/δ⌉ rounds.

⋆ Theorem 2. The Follow algorithm (Algorithm 1) cor-
rectly solves the IPZ problem.

Proof sketch. Observe that Step 2 always finds all edges ad-
jacent to v0 and by Corollary 2, the Explore algorithm dis-
covers the whole δ-ecc’s of these edges. Finally, we show that
if an IPZ exists, their infection chain must be subset of one of
these components.

We now extend this idea to obtain a better TGD algorithm,
see Algorithm 2. Note that its running time does not only
depend on the static, but also the temporal structure of the
graph. Recall that Follow explores precisely the δ-ecc’s ad-
jacent to the start node v0 and note that a graph is discovered
if and only if all its δ-ecc’s are discovered.

⋆ Theorem 3. Algorithm 2 wins any instance of the TGD
game on G in at most 6 |E(G)|+ |ECδ(G)| ⌈Tmax/δ⌉ rounds.
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v0

1. Finding components at v0

Seed at 0, 2, 4, . . .

1
5

v0
Seed infected nodes at t, t− 1, t− δ − 1

1
5

2. Explore components

13
4

Repeat
. . . v0

Discovered edge labels and components

Combine information from all rounds

1
5

13
4

Figure 2: An execution of the Follow algorithm. In this example, δ = 2. We perform the initial search for an edge at v0. Ringed nodes
indicate seed infections. Next, we explore the two nodes we found in the initial search by performing seed infections at t, t− 1, and t− δ− 1
where t is the time step we observed the node being infected. We repeat that until we have no such seed infections to perform without
repetitions. Since no δ-ecc spans all nodes, we conclude that no IPZ pair exists.

Algorithm 2: The TGD extension of Follow.
fun DiscoveryFollow(G, δ):

while there is a node v0 with an adjacent edge for
which the label is still unknown do

In steps of size δ perform rounds such that v0
is seed-infected at 0, δ, 2δ, . . . , Tmax.

For each edge e = v0u which successfully
infects from v0 to a neighbor:
Explore(u, λ(e)).

5 Lower Bounds for Graph Discovery
We build a toolkit for proving lower bounds in the TGD game.
Initially, every edge could have any label. As the game pro-
gresses, information is revealed to D. A successful infection
attempt determines the edge’s label, while an unsuccessful
attempt where one endpoint remains susceptible reduces the
possible labels by at least one. With this, we can use a poten-
tial argument to establish lower bounds on TGD complexity.

⋆ Theorem 4. Let G be a temporal graph and Tmax, δ, k pa-
rameters for the TGD game. For a sequence of seed infection
sets S1, . . . , Sa, define Φ(i) as the sum of the sizes of the sets
of consistent labels over all edges after rounds 1 to i. Then,
S1, . . . , Sa is a witnessing schedule if Φ(a) = |E(G)|.

Recall that the brute-force algorithm for TGD takes
O(nTmax) rounds (Theorem 1). In the worst case, this can
be improved by at most a factor of δk.

Theorem 5. For all δ, k ∈ N+ and Tmax ≥ 4, there is an
infinite family of temporal graphs {Gn}n∈N such that each Gn

has Θ(n) nodes and the minimum number of rounds required
to win the TGD game on it grows in Ω(n(Tmax − 3)/(δk)).

Proof. Let n, δ ∈ N+ and Tmax ≥ 4, with n even for simplic-
ity. We construct a temporal graph Gn on vertices v1, . . . , vn.
The edges are as follows (with some edge labels already given
which A will always assign). First, v1, . . . , vn−2 form a path
where every even-indexed edge has label Tmax, Second, vn−1

has an edge to each v1, . . . vn−2 with fixed label Tmax − 2,
vn−1 and vn share an edge with fixed label Tmax − 1, and vn
has an edge to each v1, . . . vn−2 with fixed label Tmax.

Assume D acts arbitrarily. For edges with fixed labels, A
responds that label. For all other edges, A replies “infection
failed” as long as at least one consistent label would remain;
otherwise, it replies with any consistent label.

We apply the potential argument from Theorem 4 to all
edges that do not have a fixed label. We call those (n− 3)/2
edges relevant. Initially, each relevant edge has Tmax possible
labels, so Φ(0) ≥ (n− 3)/2 · Tmax. In each round, for every
node that gets infected, at most δ labels are removed per adja-
cent relevant edge, either due to failed infection attempts, or
a successful infection with δ or fewer labels remaining. Thus,
the potential decreases by at most δk per round. Dividing the
initial potential by this maximum decrease shows that any D
needs at least ⌊(n · (Tmax − 3))/(2δk)⌋ rounds.

5.1 Witness Complexity
The witness complexity of a temporal graph is the minimum
number of rounds required for a D, knowing all labels, to
convince an observer of the labeling’s correctness.

Definition 4. A length a witnessing schedule for a temporal
graph G is a sequence of seed infection sets S1, . . . , Sa such
that after performing a rounds with the respective seed infec-
tion sets, all labels in the graph are uniquely determined by
the logs of these rounds. The witness complexity of a tempo-
ral graph G is the length of its shortest witnessing schedule.

Observe that the graphs constructed in the proof of Theo-
rem 5 have witness complexity O(n), which is significantly
lower than their graph discovery complexity. However, wit-
ness complexity is a powerful tool for establishing lower
bounds on graph discovery complexity, particularly when
seeking bounds independent of Tmax. The following lemma
states the formal relationship between the two complexities.

⋆ Lemma 2. Let G be a temporal graph and Tmax, δ, k pa-
rameters as defined above. Then the witness complexity of
G in this instance is at most as large as the graph discovery
complexity for the same parameters.

Note however, that the witness complexity technique can
only ever be at most the number of edges in a graph.

⋆ Theorem 6. For any instance (G, Tmax, δ, k), the witness
complexity is at most |E(G)|.

We now show that this worst case is actually tight, and
there are graphs that asymptotically require about one round
per edge to witness correctly. Observe that this bound is irre-
spective of k, thus does not have one of the major shortfalls
of our previous lower bounds for the TGD game.

⋆ Theorem 7. There is an infinite family of temporal graphs
{Gn}n∈N whose witness complexity grows in Ωk(|E(Gn)|).
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We will now define {Gn}n∈N. Then we formalize when
an infection attempt is relevant, in the sense that it makes
meaningful progress towards winning the witness complexity
game. Lastly, we show that there can be at most one such
relevant infection attempt per round in {Gn}n∈N.

Intuitively, each graph in {Gn}n∈N contains four node sets:
L, R, B, and C. The nodes in L and R form a complete
bipartite graph, where the edges between a node in L and all
nodes in R are assigned to distinct phases. The nodes in R are
connected such that once a node in R is infected, it spreads
the infection through R without additional input from L. The
sets B and C serve as gadgets to ensure that at the end of each
phase, all nodes in L and R become infected via edges outside
L and R. This prevents further information being gathered
about the labels between L and R, ensuring the lower bound
on the complexity of the discovery process.

For x ∈ N, we construct a temporal graph Gn of size
n := 5x. The vertices are given by V (Gn) := L ⊔ R ⊔
B ⊔ C with L := {ℓ1, . . . , ℓx}, R := {r1, . . . , r2x}, B :=
{b1, . . . , bx}, C := {c1, . . . , cx}. Denote by R2 the nodes in
R with an even index. Then the edges are given by E(Gn) :=
L×R2⊔R2⊔L×B⊔B×R⊔B2⊔C×R⊔{bici | i ∈ [x]}.
The labels on the edges are defined as follows:

Let P = {p1, . . . , px} be a set of x edge-disjoint Hamil-
tonian paths on R. Such paths exists by [Axiotis and Fo-
takis, 2016]. Note that by their construction, for every path,
there are at most two nodes with an odd index in a row. As-
sume without loss of generality that each pj begins at r2j ,
and write rp(i,j) for the j-th node from R2 on the path pi.
Denote by p−1(i, j) its index on pi. Let k be arbitrary,
Tmax := x(4x+ 1), and δ := 4x+ 1. Now,

for ℓi ∈ L, j ∈ [x], set λ(ℓi, rp(i,j)) :=

iδ + 4(p−1(i, j)) + 1,

for pq ∈ P, j ∈ [x], set λ((pq)j , (pq)j+1) := qδ + 2j + 1,

for bi ∈ B, j ∈ [x], set λ(bi, r(pi)j)) := iδ + 2j + 2,

for i < j ∈ [x], set λ(bi, bj) := (i+ 1) · δ − 2,

for i ∈ [x], set λ(bi, ci) := (i+ 1) · δ − 1,

for i > j ∈ [x], set λ(bi, cj) := (i+ 1) · δ − 2,

for ci ∈ C, rj ∈ R, set λ(ci, rj) := (i+ 1) · δ,
for ℓi ∈ L, bj ∈ B, set λ(ℓi, bj) := (j + 1) · δ.

Observe that the temporal edges of Gn can be partitioned
into x sets, each having labels in a fixed interval of size δ and
for i ∈ [x], let Ei = {e ∈ E(Gn) | λ(e) ∈ [δ · i, δ · (i+ 1)−
1]}. We refer to the edges Ei and corresponding intervals as
phases. Now, an infection attempt between some li ∈ L and
r2j ∈ R2 is called relevant if (i) it happens at λ(lir2j) and is
successful, or (ii) it happens at λ(lir2j) − 1, is unsuccessful,
and exactly one endpoint was infected before the attempt.

The result then follows from the following three properties:
(1) for each edge in L × R2, there has to be at least one rel-
evant infection attempt to win the witness complexity game,
(2) there is at most one relevant infection per phase, and (3)
there is at most one phase with a relevant infection per round.

Lower Bound Upper Bound
Basic model
Ωk(m) Ok(m+ |ECδ(G)|Tmax/δ)

Infection times only
Ωk(m) Ok(m+ |ECδ(G)|Tmax/δ)

Unknown static graph
Ωm,|ECδ(G)|(nTmax/(δk)) O(nTmax)

Multilabels
Ω|ECδ(G)|(nTmax/(δk)) O(nTmax)

Multiedges
Ω(nTmax/(δk)) Ok(m+ |ECδ(G)|Tmax/δ)

Table 1: Overview of upper and lower bounds on the number of
rounds for different variations of the graph discovery game. A sub-
script to a Landau symbol indicates variables that the asymptotic
growth is independent of.

6 Extending the Model
So far, we examined a simple version of the TGD game
with restricted assumptions about infection behavior and the
knowledge of D. These might seem restrictive and less close
to the real-world processes. In this section, we lift these re-
strictions and show that either the theoretical behavior re-
mains unchanged, or the problem becomes trivial, offering
no significant improvement over brute-force. See Table 1 for
an overview of the resulting lower bounds and algorithms.

In summary, our DiscoveryFollow algorithm works
if D only gets infection-time feedback or if we allow multi-
edges, lifting the two most restrictive assumptions previously
made. We also prove that variations where D needs to ensure
the non-existence of a high number of edges or labels (such
as the unknown static graph or multilabel variations) do not
allow for significant improvements over the trivial algorithm
and that our DiscoveryFollow algorithm is not applica-
ble. Results and proofs of this section have been moved to
the appendix due to space constraints.

7 Experimental Evaluation
The gap between the lower and upper bounds for the TGD
problem is small, but only tells us about the worst-case per-
formance, motivating us to investigate the performance of our
TGD algorithm on common synthetic graphs and real-world
data. We formulate three hypotheses we aim to test.
Hypothesis 1. The number of rounds required to discover a
temporal graph is linear in the number of edge labels.

This first hypothesis is motivated by the worst-case analy-
sis from Theorem 3. We aim to test how closely the perfor-
mance of our algorithm in practice matches this theoretical
bound. Note, this also takes into account the effect of the
additional optimization described in the setup.
Hypothesis 2. Graphs with higher density spend fewer
rounds on component discovery.

The DiscoveryFollow algorithm works in two distinct
phases: (1) the main loop in Algorithm 2 discovers new δ-
ecc’s (the component discovery phase) and (2) the Explore
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routine explores the found components (the component explo-
ration phase). Both of these stages require D to spend rounds,
and their respective cost is dependent on the structure of the
graph to be explored. As we prove in Theorem 3, the compo-
nent discovery phase is triggered at most |ECδ(G)| times. We
hypothesize that |ECδ(G)| tends to be lower in denser graphs
as the components tend to merge as more edges are inserted,
which would lead to a relatively lower cost for component
discovery as compared to component exploration.

Hypothesis 3. In Erdős-Renyi graphs, the percentage of
rounds spend on component discovery shows a threshold be-
havior in Tmax/(|V (G)| · p). This is mediated by |ECδ(G)|.

Hypothesis 3 is a specification of Hypothesis 2 for Erdős-
Renyi graphs. We can view this hypothesis as the temporal
extension of the typical threshold behavior that static Erdős-
Renyi graphs exhibit in np [Erdos et al., 1960]. We also con-
jecture this behavior holds provably in Conjecture 1.

Setup. We perform our evaluation on two data sets. One
is synthetically generated, while the other is real-world data.
First, we evaluate our algorithm on Erdős-Renyi graphs.
While the model has been developed for static graphs, it is
commonly extended to temporal graphs [Angel et al., 2020].
To generate a simple temporal graph from an Erdős-Renyi
graph, we simply choose each edge label uniformly at ran-
dom from the set [Tmax]. This means that Tmax is now the
third parameter to generate these graphs, in addition to the
classical ones n (the number of nodes) and p (the density pa-
rameter). Denote such a graph as ERT (n, p, Tmax).
Secondly, to evaluate our algorithm on real-world data,
we employ a data set from the Stanford Large Net-
work Dataset Collection [Kumar et al., 2021]. The
comm-f2f-Resistance collection is described by the
project as a set of 62 “dynamic face-to-face interaction net-
work[s] between a group of participants”.

In our implementation, we employ a small optimization
upon Algorithm 2. We skip what we call redundant seed in-
fections. A seed infection (v, t) ∈ V (G)× [0, Tmax] is redun-
dant if we already know the labels of all edges adjacent to v
at the time in the algorithm we would perform this seed infec-
tion. This does not depend on t. For an illustration, consider
Figure 2. There, the DiscoveryFollow algorithm would,
after discovering the only edge adjacent to the leftmost node
by a seed from its other adjacent node, perform seed infec-
tions at the leftmost node even though we already know the
label of the only edge we could possibly discover.

We run DiscoveryFollow on all graphs from the
comm-f2f-Resistance dataset and for a wide range
of parameters for the temporal Erdős-Renyi graphs. We
test with 1 to 100 nodes in steps of size 5, for proba-
bilities p ∈ {.01, .05, .1, .15, .2, .25, .3, .35, .4, .5, .7, .9}.
We pick Tmax as a factor of n, testing with Tmax/n ∈
{.05, .1, .2, .3, .4, .5, .7, .9, 1, 2, 3, 5, 7, 10}. Similarly, δ is 1
or a multiple of Tmax, namely δ/Tmax ∈ {.01, .05, .1, .3, .5}
We record the number of rounds needed to complete the dis-
covery and how many of these rounds are spent in the com-
ponent discovery versus the component exploration phases of
the algorithm. Both our implementation and analysis code

are available under a permissive open-source license and can
be used to replicate our findings.1

7.1 Results
We now critically evaluate our hypotheses against the data
thus obtained and compare the effects between the different
data sets and parameters. Particularly, we pay attention to
evidence on how the different hypotheses interact. Finally, we
give Conjecture 1 as a result of our analysis of Hypothesis 3.

Hypothesis 1. To investigate our first hypothesis, we com-
pare how the number of rounds relates to the number of edges.
See Fig. 3 for the results on our datasets. We can see that
in Erdős-Renyi graphs, the relationship closely follows the
6 |E(G)| line predicted by our theoretical results. Clearly, this
effect is influenced by other parameters such as p, Tmax, and
n, whose roles we will examine in the discussion of the other
hypotheses. However, if we consider graphs with the same
p and ratio Tmax/n (i.e., one facet and one color in Fig. 3),
we see that the relationship is strictly linear—the points form
a tightly distributed straight line. We see that the trend for
p ≤ 0.25 is slightly above 6 |E(G)| and slightly under it for
larger values of p. This occurs since, when p is small, more
time is spent on component discovery than on component ex-
ploration. We will explore this more thoroughly in the dis-
cussion of the results regarding Hypothesis 2.

In the SNAP data set, the trend is linear in the number of
edges, but significantly less than 6 |E(G)| rounds are required
to discover the graph. In fact, the gradient of the regression
line is only 1.78. This can be explained by the optimiza-
tion skipping redundant infections as outlined in our setup,
as this enables the algorithm to require less than the 6 infec-
tions per edge, which would otherwise be strictly required. In
summary, while there is a strong linear relationship follow-
ing the 6 |E(G)| line, the number of rounds also significantly
depends on other properties of the graph. We can see these
effects in both synthetic and real-world data.

Hypothesis 2. As this hypothesis is about the relationship
between graph density and time spent on component discov-
ery, we only analyze it on the Erdős-Renyi graphs. The SNAP
dataset does not have significant differences in graph density.

In Figure 4a, we plot the percentage of time spent on com-
ponent discovery dependent on the parameter p (which spec-
ifies the density of the graph). We observe a clear and strong,
inversely proportional relationship. This leads us to accept
Hypothesis 2. This is explained from the theoretical analysis
of DiscoveryFollow, as we expect denser graphs to have
fewer δ-ecc’s, thus less need to discover new components.

Hypothesis 3. Examining Fig. 4b, we see a threshold be-
tween np/Tmax = 0.01 and np/Tmax = 1.00 where we
move from spending only a small amount of rounds on com-
ponent discovery to spending close to all of our rounds on
component discovery. Our hypothesis, that this is mediated
by the size of the δ-ecc’s, is supported by the results in Fig. 4c.
The additional differentiation by color for larger values of
np/Tmax can be explained since the size of a component is
constrained by the size of the graph.

1See https://github.com/BenBals/dynamic-network-discovery.
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Figure 3: Number of rounds by number of edges for the DiscoveryFollow algorithm on the two data sets. The black line indicates the
6 |E(G)| line (our theoretical bound for the component exploration phase), and the red line is the trend line (i.e., the linear regression).
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(c) Mean size of the δ-ecc’s by np/Tmax.

Figure 4: Cost of component discovery in the DiscoveryFollow algorithm. Subfigures (b) and (c) use logarithmic axes, and the color
denotes the number of nodes.

Note that big δ-ecc’s imply that we can discover many
edges in the component exploration phase for a single node
explored in the component discovery phase. That means the
plotted percentage shrinks as the average size of δ-ecc’s in-
creases. This behavior is similar to that seen in static Erdős-
Renyi graphs, where if np = 1, there almost surely is a largest
connected component (in the classical sense) of order n2/3.
And if np approaches a constant larger than 1, there asymp-
totically almost surely is a so-called giant component contain-
ing linearly many nodes [Erdos et al., 1960]. This motivates
us to conjecture the following similar behavior.
Conjecture 1. Let δ = 1, p ∈ [0, 1], Tmax, n ∈ N and G :=
ERT (n, p, Tmax). Then

• if Tmax/(np)
n→∞−−−−→ c where c < 1, then

|ECδ(G)| / |E(G)| n→∞−−−−→ 0, and
• if Tmax/(np) > 1, then almost surely, all δ-ecc’s have

size at most O(log n2) = O(log n).

Investigating the connectivity behavior of random temporal
graphs in a way that respects their inherent temporal aspects is
an interesting and little understood problem [Casteigts et al.,
2022; Casteigts et al., 2024]. The authors theoretically study
sharp thresholds for connectivity in temporal Erdős-Renyi
graphs, and conjecture about a threshold for the emergence
of a node-based giant (i.e., linear size) connected component.
This conjecture can be seen as capturing the equivalent be-
havior under waiting time constraints (i.e., where edges are
only considered if their edge labels do not differ too much).

8 Conclusion
We give a comprehensive theoretical and empirical study
of TGD in temporal graphs. DiscoveryFollow pro-
vides an efficient TGD strategy requiring only 6 |E(G)| +
|ECδ(G)| ⌈Tmax/δ⌉ rounds. Our lower bound proves that
any algorithm must spend at least Ω(|E(G)|) rounds, show-
ing DiscoveryFollow is close to optimal. Our empirical
analysis highlights the relevance of our theoretical results for
practical applications and gives rise to interesting insights of
its own. We see that on Erdős-Renyi graphs, the observed per-
formance of DiscoveryFollow matched our theoretical
analysis. On real-world data from the SNAP collection, the
algorithm even slightly outperforms our predictions. Finally,
we observe a close link between the parameters of the tempo-
ral Erdős-Renyi model, the temporal connectivity structure of
the resulting graphs, and our algorithmic performance, creat-
ing a bridge between our theoretical insights on δ-connected
components and their empirical behavior.

Future work can tighten the lower bound from Theorem 5
and give a lower bound that is tight in k and δ. Another av-
enue is to investigate |ECδ(G)| further. In particular, to prove
or disprove the observed threshold in Erdős-Renyi graphs
(Conjecture 1) and investigate an analogue to the static lnn/n
threshold. Finally, future research can explore more varia-
tions of TGD, such as finding specific nodes or checking for
structural properties instead of discovering the whole graph.
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