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Abstract

The objective of snapshot spectral compressive
imaging reconstruction is to recover the 3D hyper-
spectral image (HSI) from a 2D measurement. Ex-
isting methods either focus on network architec-
ture design or simply introduce image-level prior
to the model. However, these methods lack guid-
ing information for accurate reconstruction. Rec-
ognizing that textual description contain rich se-
mantic information that can significantly enhance
details, this paper introduces a novel framework,
CAMM, which integrates text information into the
model to improve the performance. The frame-
work comprises two key components: Fine-grained
Alignment Module (FAM) and Multimodal Fusion
Mamba (MFM). Specifically, FAM is used to re-
duce the knowledge gap between the RGB domain
obtained by the pre-trained vision-language model
and the HSI domain. Through the double con-
straints of distribution similarity and entropy, the
adaptive alignment of different complexity features
is realized, which makes the encoded features more
accurate. MFM aims to identify the guiding effect
of RGB features and text features on HSI in space
and channel dimensions. Instead of fusing features
directly, it integrates prior at image-level and text-
level prior into Mamba’s state-space equation, so
that each scanning step can be accurately guided.
This kind of positive feedback adjustment ensures
the authenticity of the guiding information. To our
knowledge, this is the first text-guided model for
compressive spectral imaging. Extensive experi-
mental results the public datasets demonstrate the
superior performance of CAMM, validating the ef-
fectiveness of our proposed method.

1 Introduction
Snapshot spectral compressive imaging offers significant ad-
vantages over traditional spectral imaging techniques, includ-
ing cost-effectiveness, fast data acquisition, and optimized

∗Corresponding Authors
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Figure 1: Comparison of our method with previous methods.

resource utilization. These benefits have driven its increas-
ing adoption in various applications, such as remote sensing
and medical imaging. Based on compressive sensing theory,
the Coded Aperture Snapshot Spectral Imaging (CASSI) sys-
tem [Wagadarikar et al., 2008] was developed to efficiently
capture hyperspectral images (HSIs) in a single shot. This
is achieved by modulating the HSI signal across multiple
spectral bands and integrating the modulated information into
a two-dimensional compressed measurement. The Single-
Dispersion CASSI (SD-CASSI) system has emerged as a re-
search focus due to its simple architecture, with most ex-
isting algorithms tailored for this system [Cai et al., 2022b;
Dong et al., 2023; Zhang et al., 2024c; Wu et al., 2025;
Zhang et al., 2024b]. However, it is constrained by energy
limitations in sensor devices, which often compromise spa-
tial resolution to achieve higher spectral resolution. Further-
more, the scarcity of prior information in blind imaging pro-
cesses further limits the advancement of unimodal imaging
algorithms. Consequently, fusion of multimodal data has be-
come a critical strategy to enhance imaging accuracy.

The Dual-Camera CASSI (DC-CASSI) system represents
a hardware-centric solution, incorporating an additional cam-
era to capture the scene simultaneously [Wang et al., 2016;
Wang et al., 2015; He et al., 2021]. This configuration splits
the light into two paths using a beam splitter, where an un-
coded grayscale or panchromatic camera is used to address
ill-posed reconstruction challenges. A lot of research is start-
ing to emerge on it. [Chen et al., 2024] leverages RGB im-
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age to enhance spatial details designs a generative model to
improve spectral quality. [Cai et al., 2024a] adopts spec-
tral–spatial MLP with a network using CASSI measurements
and RGB as inputs for efficiency. [Wang et al., 2024a] ex-
ploits intra-inter similarity between prior image and HSI via
Transformer. Despite the promising performance of the meth-
ods in image-to-image restoration, they often fail to enhance
key components due to a lack of guiding information. Com-
pared to image-level priors, text descriptions of images pro-
vide richer semantic information with not only the overall
style but also the local features of main objects, which can
be used as supplementary information. However, text inte-
gration into the reconstruction network faces two problems: I.
Vision-language models are trained on RGB images, but there
is a gap between the hyperspectral data we use and those
data. Thus, how to improve alignment between hyperspectral
features and text information? II. Due to the dimensional-
ity difference of different modalities, how to use the obtained
image-level prior and text-level prior to accurately guide HSI
reconstruction?

Considering this, we propose a new multimodal learn-
ing framework, CAMM, to achieve high-quality reconstruc-
tion in this paper. It consists of two modules: Fine-grained
Alignment Module (FAM) and Multimodal Fusion Mamba
(MFM). Specifically, FAM reduces the bias between the pre-
trained Vision-Language Models (VLMs) which used to en-
code image and text information and the knowledge required
for our tasks. Due to the different properties of features in
different regions, it considers the joint constraints of distri-
bution similarity and information entropy, and balances the
optimization of simple and complex regions through adaptive
strategies, making the alignment more comprehensive. This
operation increases the reliability of the prior. Building on
this, we propose MFM to promote the guidance of image-
level prior and text-level prior to HSI. Instead of fusing the
features of different modalities at one time, it integrates the
features which act as the prior into the state-space equation,
so that each scanning iteration of Mamba can obtain accurate
guidance. This kind of positive feedback adjustment enables
each position in space to obtain more accurate semantic infor-
mation. In addition, we extend the public datasets, including
CAVE dataset and KAIST dataset, with textual data generated
by GPT-4V, with manual verification. Comprehensive ex-
perimental assessments substantiate the efficacy of CAMM,
showcasing its ability to attain state-of-the-art performance
in HSI reconstruction tasks.

In summary, our contributions are as follows:

• We introduce a novel framework, CAMM, which intro-
duces text information into spectral snapshot reconstruc-
tion for the first time. Its effectiveness has been thor-
oughly validated through comprehensive ablation stud-
ies and comparisons with existing methods.

• A fine-grained alignment module, FAM, is designed to
promote the alignment of regions with different fea-
ture complexity by the dual measurement of distribution
overlap degree and information entropy.

• We design a component, MFM, in which the positive
feedback adjustment mechanism improves Mamba scan-
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Figure 2: The formation process of the DC-CASSI.

ning, so that image-level prior and text-level prior can
provide reliable information to HSI at the global level.

2 Related Works
2.1 Model of DC-CASSI System
The theoretical system diagram of DC-CASSI is shown
in Figure 2. A 3D HSI cube can be denoted by X ∈
Rnx×ny×nλ , where nx, ny , nλ represent height, width, and
number of wavelengths. First, the scene goes through a beam-
splitter. If the energy of the light is evenly spilt, the RGB
measurement can be written as:

YR =
1

2

∫
Λ

ωR,G,B(λ)X(x, y, λ)dλ+N (1)

where x ∈ nx, y ∈ ny , λ ∈ nλ, X(x, y, λ) is the 3D HSI
cube. Λ is the spectral response range of the RGB detector
and ω(λ) is the spectral response function, N is the noise. In
CASSI system, the scene is first modulated by the mask M :

X ′(x, y, :) =
1

2
M(x, y)⊙X(x, y, :) (2)

where X ′ ∈ Rnx×ny×nλ denotes the modulated data. Fol-
lowing the horizontal shift by a distance d in accordance with
the dispersion process, the signal can be formulated as:

X ′′(x, y, :) = X ′ (x, y + dλ, :) (3)

Finally, the captured 2D compressed measurement Y ∈
Rnx×(ny+d(nλ−1)) can be obtained by:

YC =
1

2

nλ∑
λ=1

M (x, y + dλ)⊙X (x, y + dλ, :) +G (4)

where G ∈ Rnx×(ny+d(nλ−1)) is the measurement noise. Af-
ter combining Eq. 1 and Eq. 4and rewriting them as linear
transformations, the imaging model can be obtained:{

Yr = ΦrX +Nr

Yc = ΦcX +Nc
(5)

where Φr is the sensing matrix of the RGB detector. Φc is
the sensing matrix of the CASSI detector, which is usually
considered as the shifted mask.

2.2 HSI Reconstruction
Various strategies have been developed to address the chal-
lenges of HSI reconstruction from DC-CASSI system. In
[Wang et al., 2015], the grayscale camera measurement is
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Figure 3: Overview of the proposed CAMM with FAM and MFM. The MFMs in the encoder only accept the guidance of RGB image
features, while those in the decoder accept the guidance of RGB image features and text features improved by FAM.

appended to the CASSI measurement. Then the external
similarity between the HSI and the panchromatic image is
explored [Wang et al., 2016]. A novel regularization term
[Chen et al., 2023] has been proposed to incorporate the se-
mantic information from the RGB/gray measurements. [Li
et al., 2024a] facilitates the effective enhancement of imag-
ing quality through the mechanism of attention, with a focus
on the spatial and spectral domains. [Cai et al., 2024b] em-
beds a dynamic mask module in front of the cross-attention-
based dual-stream network to improve the quality of the re-
construction. However, there are multiple degradations that
affect structural information and fine-grained details during
imaging. Due to the lack of sufficient information from other
modalities, the reconstruction results can easily be affected.

2.3 State Space Model

State Space Models (SSMs) have garnered significant inter-
est due to their capability to model long-range dependencies
while maintaining linear computational complexity. These
models employ a continuous framework to transform a one-
dimensional input signal into an output via intermediate im-
plicit states. Mamba [Gu and Dao, 2023], an advanced
SSM, is an input-dependent selection mechanism derived
from structured state space models(S4) [Gu et al., 2021a].
Its adaptability has led to extensive research in diverse do-
mains such as language understanding [Gu et al., 2021b] and
general vision [Zhu et al., 2024; Liu et al., 2024b]. Re-
cently, Mamba has also made some progress in the direction
of multimodal fusion [Li et al., 2024b; Zhang et al., 2024a;
Liu et al., 2024a]. However, these studies lack the explo-
ration of HSI reconstruction tasks. Since VLMs are usually
pre-trained on RGB datasets, how to apply the learned knowl-
edge to a different domain, HSI, needs to be explored.

3 Method
3.1 Overall Architecture
The CAMM architecture, as illustrated in Figure 3, is a U-
shaped network. The process begins by inverting the mea-
surement to recover the original shape. Following this, the
mask is expanded along the channel dimension to create a 3D
mask. This 3D mask is then processed through a convolution
operation to generate the initial value. Both the encoder and
decoder of the network contain two MFMs. The difference
is that the encoder only accepts the guidance of RGB image
features, while the decoder accepts the guidance of the RGB
features as well as the text features. For convenience, we use
vanilla Mamba as the bottleneck of the network and the model
handling the RGB image. To extract vision embeddings and
text embeddings, we encode RGB image and text using the
pre-trained CLIP [Radford et al., 2021]. For the subsequent
fine-grained alignment operation of FAM, we add a kind of
adapter [Wang et al., 2024b] to the CLIP encoder and train it,
freezing other parameters.

3.2 Fine-grained Alignment Module (FAM)
The process of FAM is shown in the lower part of Figure 3.
We use CLIP, an efficient and widely used VLM, to align
vision and textual features. The contrast learning of CLIP
is achieved by cosine similarity between samples, which is
a coarse-grained alignment. However, for our task, the net-
work needs detailed and accurate information to guide recon-
struction. In addition, the pre-trained CLIP acquires universal
knowledge on a large amount of data, and when applied to a
specific task, fine-tuning is required to reduce the bias be-
tween different data. Considering this, a double-constrained
fine-grained alignment method is proposed.

The alignment process can be explained by the principle of
energy minimization. The distribution of the two kinds of fea-
tures are similar to two objects in a physical system, their sim-
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Figure 4: (a) Detailed structure of MFM. The process of SSM in encoder and decoder are shown in (b) and (c), respectively.

ilarity can be measured by Bhattacharyya distance [Kailath,
2003], while information entropy [Tsai et al., 2008] measures
the complexity or confusion of each distribution. Specifically,
for the vision feature probability distribution PV and the text
feature probability distribution PT , the Bhattacharyya dis-
tance is defined as:

DB (PV ,PT ) = − ln

(∑
x

√
PV (x)PT (x)

)
(6)

and the entropy of PV and PT is expressed as:

H (PV ) = −
∑
x

PV (x) lnPV (x) (7)

H (PT ) = −
∑
x

PT (x) lnPT (x) (8)

Under this assumption, the process of alignment between
distributions can be understood as minimizing the potential
energy of both by adjusting the weights. In physics, the gravi-
tational potential energy between two objects is inversely pro-
portional to the distance between them, and for PV and PT ,
we can think of their similarity as inversely proportional to
the gravitational potential energy:

UB = − 1

BC (PV , PT )
(9)

where BC (PV , PT ) =
∑

x

√
PV (x)PT (x) is the Bhat-

tacharyya coefficient. When it is smaller, the potential energy
is larger, indicating a large difference, so we need to pay more
attention to the weight of the Bhattacharyya distance.

Using the idea of minimizing gravitational potential en-
ergy, we introduce a response parameter, kB , and adjust the
weight of this term through the exponential decay function:

λB =
1

1 + exp (−kB · (1−BC (Pv, PT )))
(10)

a small BC (PV , PT ) means that the distribution similarity
is low, and an increase in λB means that the Bhattacharyya
coefficient contributes more to the alignment process.

In physics, free energy reflects the order or disorder of a
system, and information entropy reflects the complexity of a
system. In order to adaptively adjust the influence of infor-
mation entropy on alignment, we define the following free
energy function:

FH = H (PV ) +H (PT ) (11)

When the entropy difference |H (PV )−H (PT )| is larger,
it means that the information complexity is higher and the
disorder of the system increases. To minimize energy, it is
necessary to increase the focus on areas with complex infor-
mation. Therefore, we combine the entropy difference and
the free energy and introduce an adaptive adjustment via the
exponential decay function:

λH =1− |H (PV )−H (PT )|
max (H (PV ) , H (PT ))

·

1

1 + exp (−kH · |H (PV )−H (PT )|)

(12)

where kH is a hyperparameter that controls the decay rate.
When |H (PV )−H (PT )| is large, the weight of information
entropy λH increases.

The Bhattacharyya distance and information entropy dur-
ing alignment affect the similarity and complexity of the two
distributions, and ultimately we want to minimize the total
energy of the system. Therefore, we combine the weights of
the two terms to construct the following loss function:

Lalign = λBDB (PV ,PT ) + λH (H (PV ) +H (PT )) (13)

The two combine to build a more complex and comprehen-
sive alignment constraint, allowing the model to not only look
for the minimization of overlapping regions, but also to make
fine adjustments to the features of complex distributions. This
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combination can improve the mathematical expression of the
model’s feature alignment, so that it has a stronger ability to
capture small differences and features in the feature space.

3.3 Multimodal Fusion Mamba (MFM)
The structure of MFM is shown in Figure 4. Because
of Mamba’s powerful global modeling capabilities and low
complexity, we use it in the backbone network.

In the encoder, we first input RGB image into Mamba to
extract features. Since RGB image retains better spatial fea-
tures, we use it to supplement spatial information for HSI.
To facilitate later feature fusion, we map its channel to the
same dimension as the HSI. Next, we input the HSI into an-
other Mamba to extract features. Instead of just adding the
extracted RGB features to achieve enhancement, we also con-
sider the guided process of the hidden state. For each status
update during the scanning, we add the value of the hidden
state obtained from the previous processing of RGB. In this
way, we refine the feature fusion by step-by-step instruction,
making Mamba’s output more accurate each time. For this
Mamba, the state space equation becomes:

hk = A(hk−1 + λhRGB
k−1 ) +Bxk

yk = Chk +DyRGB
k

(14)

where hRGB and yRGB are the hidden state and output of
the Mamba that deals with RGB image, respectively. λ is the
hyperparameter that adjusts the degree of guidance.

In the decoder, we supplement spatial and channel in-
formation for HSI with visual and text features encoded by
CLIP. Because their dimensions (1D) do not match those of
HSIs (3D), it is a problem how to fuse information from
different modalities. As a common tensor decomposition
method, CP decomposition mines implicit relationships in
data according to which we can represent the original tensor
in terms of low-dimensional tensors. For an N-order tensor
X ∈ RI1×I2×···IN , its CP decomposition can be written as:

X =
k∑

i=1

ωivi1 ⊗ vi2 ⊗ · · · ⊗ viN (15)

where vin ∈ RIn is a rank-1 Kronecker basis vector, ωi is the
scalar weight, and k is a predefined number called CP rank.

For HSI, the data are 3D tensors. We can implement
CP decomposition and rank-1 tensor generation according
to [Zhang et al., 2021]. The three basis vectors vi1 ∈ RH ,
vi2 ∈ RW and vi3 ∈ RC contain HSI information in terms
of height, width, and channel dimensions respectively. At the
same time, they have the conditions to align with the dimen-
sions of the vision and text features encoded by CLIP. Specif-
ically, we use the linear layer to extract height and width in-
formation from vision features and channel information from
text features. The process is:

fH = ΨH
v (Fvision) , fW = ΨW

v (Fvision) , fC = ΨC
t (Ftext)

(16)
where ΨH

v , ΨW
v , and ΨC

t are linear layers that extract infor-
mation in three directions.

To integrate information from them and corresponding ba-
sis vectors, we utilize multi-head cross attention (MHCA).

Since we are looking to match the relevant features from
the extracted information, the basic vector is selected as the
query. Take the height dimension for example:

vi1 = LN(GELU(Conv(vi1))), fH = LN(fH)

vi1 → Q, fH → K,V, v′i1 = MHCA(Q,K,V)
(17)

where v′i1 is used to obtain rank-1 tensor Oi through Kro-
necker product.

Once the rank-1 component tensor are available, we aggre-
gate them into a low-rank tensor. To learn the weights ωi, a
3× 3 convolutional layer is used to fuse different tensors:

Ylr = Conv (Concat (O1,O2, . . . ,Ok)) (18)
The aggregated tensor, which encapsulates comprehensive

contextual details, serves as a 3D attention map that captures
global correlations across various dimensions and frequency
ranges. Consequently, we enhance the image features by ap-
plying the Hadamard product between this aggregated tensor
and the original input features.

To enable Mamba to better capture the relationship be-
tween features in different locations during scanning, instead
of using input to generate parameters B, C and ∆, we use the
enhanced image features to accomplish the task. In this way,
the hidden state and the output obtained by each scanning
step will be more accurate, and the network can obtain more
accurate global information while ensuring that the input in-
formation is not lost. This positive feedback makes Mamba’s
output always maintain good results.

3.4 Loss Function
We adopt Charbonnier Loss [Lai et al., 2018] between the
output x̂ and the clean HSI x to optimize the reconstruction:

Lrec =

√
∥x̂− x∥2 + ϵ2 (19)

where ϵ = 10−3 is a constant.
For the training of the overall framework, we also take

alignment loss into account. Therefore, the overall loss func-
tion can be expressed as:

Ltotal = Lrec + ξLalign (20)
where the penalty coefficient ξ is set to 0.2 by default.

4 Experiments
4.1 Experimental Settings
CAVE Dataset and KAIST Dataset. The KAIST dataset
[Choi et al., 2017] consists of 30 HSIs with a space size of
2704 × 3376. The CAVE data [Yasuma et al., 2010] is of
spatial size 512 × 512. In our experiments, adhering to the
methodology outlined in [Meng et al., 2020], we choose 10
scenes from the KAIST dataset to serve as the testing dataset.
Each scene is cropped to a data size of 256 × 256 × 28.
Additionally, we select 10 scenes from the CAVE dataset,
with each scene having a size of 512 × 512 × 28.Follow-
ing previous works [Meng et al., 2020; Huang et al., 2021;
Cai et al., 2022a], we select 28 wavelengths ranging from 450
nm to 650 nm for acquiring HSI data through spectral inter-
polation. To simulate spectral dispersion, a two-pixel shift is
applied between neighboring spectral channels. Furthermore,
we extend two datasets by incorporating corresponding tex-
tual data, offering rich semantic insights.
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Algorithms S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

TV-DC 35.81
0.947

33.22
0.885

31.07
0.879

40.11
0.947

33.32
0.944

34.62
0.943

31.09
0.885

32.31
0.916

29.36
0.862

33.84
0.953

33.47
0.910

PFusion 40.09
0.979

38.84
0.968

38.70
0.966

46.65
0.936

32.07
0.980

37.12
0.980

39.74
0.964

36.75
0.965

34.52
0.931

35.53
0.979

38.00
0.965

DAUHST 37.25
0.958

39.02
0.967

41.05
0.971

46.15
0.983

35.80
0.969

37.08
0.970

37.57
0.963

35.10
0.966

40.02
0.970

34.59
0.956

38.36
0.967

RDLUF-MixS2 37.94
0.966

40.95
0.977

43.25
0.979

47.83
0.990

37.11
0.976

37.47
0.975

38.58
0.969

35.50
0.970

41.83
0.978

35.23
0.962

39.57
0.974

PIDS 42.09
0.983

40.08
0.949

41.50
0.968

48.55
0.989

40.05
0.982

39.00
0.974

36.63
0.940

37.02
0.948

38.82
0.953

38.64
0.980

40.24
0.967

MiJUN-9stg 39.26
0.973

41.78
0.983

44.31
0.983

48.53
0.994

39.30
0.985

38.22
0.979

41.00
0.983

36.72
0.978

43.84
0.985

35.56
0.967

40.86
0.982

DAUHST-DC-9stg 41.59
0.985

45.19
0.991

43.47
0.984

48.92
0.993

40.27
0.988

41.17
0.988

40.73
0.979

40.11
0.986

43.50
0.988

41.33
0.990

42.62
0.987

In2SET-9stg 42.56
0.989

46.42
0.994

44.55
0.986

50.63
0.996

42.01
0.992

42.49
0.991

41.59
0.983

40.53
0.989

43.83
0.990

42.33
0.994

43.69
0.990

CasFormer 39.75
0.993

49.52
0.987

47.13
0.989

56.29
0.979

41.19
0.992

37.52
0.970

47.67
0.969

37.01
0.939

41.70
0.983

46.09
0.998

44.39
0.980

PiE 45.54
0.993

45.20
0.989

44.61
0.985

49.81
0.993

43.73
0.991

43.32
0.992

45.17
0.989

40.65
0.986

44.26
0.985

42.08
0.988

44.44
0.989

SSMLP 46.92
0.996

50.75
0.998

46.79
0.990

52.22
0.998

45.96
0.997

47.81
0.998

45.25
0.991

45.89
0.997

46.26
0.993

47.83
0.998

47.57
0.996

Ours 48.85
0.998

53.61
0.998

47.88
0.993

55.13
0.997

46.99
0.997

48.57
0.998

46.35
0.993

47.74
0.998

48.08
0.996

49.27
0.999

49.25
0.997

Table 1: The PSNR (upper) in dB and SSIM (lower) results on 10 scenes (S1∼S10) in KAIST. The best results are in bold.

Component PSNR SSIM
w/o FAM & MFM 46.77 0.991
w/o MFM 47.81 0.994
w/o FAM 48.83 0.996
CAMM 49.25 0.997

Table 2: Ablation study on individual components.

Implementation Details. In line with standard data aug-
mentation protocols, our method incorporates random flip-
ping and rotation strategies. The model is developed using
PyTorch on a single Nvidia GeForce A800 GPU, employing
the Adam optimizer with hyperparameters β1 set to 0.9 and
β2 set to 0.999. The training consists of 300 epochs, applying
a cosine annealing scheduler with linear warm-up. We con-
figure the learning rate to 4 × 10−4 and the batch size to 4.
PSNR and SSIM [Wang et al., 2004] are used as our metrics.
Following [Zhang et al., 2021], we set the CP rank as 4.

4.2 Quantitative Results
We perform a comparative analysis of CAMM against
various other techniques, including CASSI-based methods
(DAUHST [Cai et al., 2022b], RDLUF-MixS2 [Dong et al.,
2023], MiJUN [Qin et al., 2025]) and DC-CASSI-based algo-
rithms (TV-DC [Wang et al., 2015], PFusion [He et al., 2021],
PIDS [Chen et al., 2023], DAUHST-DC [Wang et al., 2024a],
In2SET [Wang et al., 2024a], CasFormer [Li et al., 2024a],
PiE [Chen et al., 2024], SSMLP [Cai et al., 2024a]). The
comparative results across 10 simulation scenes in KAIST are
presented in Table 1. It can be seen that the method of adding

the prior image is much better than the traditional CASSI-
based method, and our method is superior to other methods
with RGB images as the prior images. In addition, most of
the current advanced methods use deep unfolding networks
with multiple stages of iteration. By contrast, our network
achieve the best performance using only end-to-end network,
which proves the effectiveness of adding text messages.

4.3 Qualitative Results
As shown in Figure 5, the proposed CAMM exhibits excep-
tional performance, generating smoother textures and more
precise edge details while preserving the spatial consistency
of uniform regions. It can be seen from the spectral density
curves that our method achieves the highest correlation coeffi-
cient, demonstrating superior spectral accuracy. These results
highlight the efficacy of the proposed FAM and MFM.

4.4 Ablation Study
We conduct a break-down ablation experiment to explore
the impact of each component, which can be seen in Table
2. After FAM and MFM are removed, the PSNR decreased
by 0.42dB and 1.44dB respectively, confirming that the two
modules proposed by us have a good effect on reconstruction.
Impact of the FAM. The results of models using different
alignment methods on KAIST are shown in Table 3, and the
errors of the results on CAVE are shown in Figure 6. CLIP
represents its own contrast loss based on cosine similarity,
and BC distance represents the Bhattacharyya distance. It can
be seen that the performance of our FAM is higher than the
other two methods and has a better recovery effect in complex
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Figure 5: Visual comparsions of reconstructed HSIs in scene 3 and scene 5 with 2 spectral channels. The region within the white/yellow box
is chosen for the analysis of the reconstructed spectra.

MFM
parallel 
Mamba

cross-modal 
attention

Figure 6: Residual maps between the reconstruction results and GT
using different methods on the CAVE-Watercolors.

Method PSNR SSIM
CLIP 48.38 0.996
CLIP + BC distance 48.87 0.996
FAM 49.25 0.997

Table 3: Comparison of different alignment methods.

areas. This highlights the effectiveness of our module in im-
plementing adaptive alignment strategies in different regions.

Impact of the MFM. The results of models using different
multimodal fusion methods on KAIST are shown in Table
4, and the reconstructed results on CAVE are shown in Fig-
ure 7. Cross-modal attention represents using cross-attention
for RGB-HSI and text-HSI. Parallel Mamba means letting
the features of different modalities pass through Mamba sep-
arately before performing similar fusion operations. It can
be seen that the performance of our MFM is higher than the
other two methods and has small global error. This is due to
the fact that MFM effectively blends the features of different
modalities, supplementing the missing information for HSI.

with cross-modal 
attention

with parallel 
Mamba

with MFM GT

Figure 7: Visualization of HSI results using different methods on
the oil-painting. The first line is the RGB image obtained with the
reconstruction result, and the second line is the error map between
the result and the real value on a channel.

Method PSNR SSIM
cross-modal attention 47.94 0.995
parallel Mamba 48.36 0.996
MFM 49.25 0.997

Table 4: Comparison of different multimodal fusion methods.

5 Conclusion
In this paper, we introduce CAMM for snapshot spectral
compressive imaging. Considering that image-level prior
lacks rich semantic information to guide restoration, we intro-
duce text description into the reconstruction network for the
first time. FAM is proposed to further align vision-language
knowledge with HSI features, adaptively processing regions
of varying complexity. MFM further guides recovery using
RGB and text features. By integrating image-level and text-
level priors into Mamba’s state update equation and output
equation, we enhance features for detailed HSI reconstruc-
tion. Extensive experiments on public datasets validate our
method’s effectiveness.
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