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Abstract
Personalized federated graph neural networks
(PFGNN) are an emerging technology that al-
lows multiple graph data owners to collaboratively
train personalized models without sharing raw data.
However, the Non-IID nature of graph data can
cause the coupling of global and local knowl-
edge parameters, which disrupts the optimization
in personalized federated learning. Additionally,
node neighbors may carry global and local knowl-
edge, and their direct inclusion in training may in-
troduce noise, degrading federated model perfor-
mance. In this work, we propose the Adaptive
Decoupling Personalized Federated Graph Neural
Network (ADPFedGNN), which leverages multi-
party collaboration to train personalized models for
classifying local client graph nodes. We use two au-
tomatically updated masks and mutual information
minimization to decouple global and local param-
eters in FGNN. We employ reinforcement learning
to adaptively select appropriate neighbors for train-
ing global or local knowledge-related parameters
while filtering out irrelevant nodes. We also de-
sign a personalized federated masked parameter ag-
gregation mechanism that efficiently updates local
personalized model parameters and aggregates the
masked parameters. Experimental results on three
public datasets demonstrate that ADPFedGNN out-
performs existing methods, achieving average im-
provements of 5.66 percent, 5.83 percent, and
12.45 percent in ACC, F1, and Recall, respectively.

1 Introduction
Graph data finds widespread applications in various domains,
such as social networks [Quan et al., 2023], financial trans-
actions [Pareja et al., 2020], and recommendation systems
[Yu et al., 2022]. Representing data as graphs, with entities
as nodes and relationships as edges, better reflects real-world

∗Corresponding author

scenarios [Zhang et al., 2024a]. Analyzing these graphs al-
lows leveraging node relationships to generate accurate repre-
sentations, which can significantly enhance subsequent node
classification tasks [Khoshraftar and An, 2024]. However, in
real-world applications, high-quality data is typically owned
by governments, enterprises, or other organizations. Due to
privacy concerns, regulatory restrictions, and conflicting in-
terests, data sharing is typically restricted [Wang et al., 2020],
thereby limiting the effectiveness of graph-based node classi-
fication models.

Federated Graph Neural Network (FGNN) enable the train-
ing of effective models using multi-party graph data while
keeping data localized [Fu et al., 2022; Li et al., 2024b].
Due to the attribute shifts in data across clients, FGNN face
the challenge of Non-IID data [Wan et al., 2024], which
disrupts the performance of federated learning. To address
this, personalized federated learning approaches allow clients
to adopt differentiated aggregation strategies [Dhillon et al.,
2020; Long et al., 2023a; Zhang et al., 2024b], primarily
through techniques such as gradient weighting [He et al.,
2021b; Zhang et al., 2023], regularization [Li et al., 2020;
Li et al., 2021b], and client sampling [Fraboni et al., 2021;
Long et al., 2023b]. In FGNN, each client holds knowl-
edge. During federated training, this knowledge is encoded
into the model parameters, comprising global knowledge ap-
plicable across clients and client-specific local knowledge rel-
evant only to the individual client. Existing methods typi-
cally couple global knowledge-related parameters with local
knowledge-related parameters, which can lead to interference
from local knowledge on global knowledge-related parame-
ters during the federated learning process.

For graph data, the Non-IID nature introduces structural
shift issues. Some approaches mitigate these shifts by shar-
ing graph data information [Zhang et al., 2021a; Huang et al.,
2023]. However, graph node neighbors may carry global or
local knowledge, and directly incorporating them into feder-
ated training without distinguishing their suitability for train-
ing global or local knowledge-related parameters can intro-
duce noise, ultimately interfering with the training process
and degrading the performance of FGNN [Tang et al., 2021;
Li et al., 2021a]. Determining which neighbors should con-
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tribute to training parameters related to global or local knowl-
edge is crucial. Nevertheless, there is a lack of studies that ef-
fectively address how to select and assign neighbors to these
roles in FGNN.

Based on the above, we identify two key challenges for
PFGNN:

• Challenge 1: How to decouple global knowledge from
client-specific local knowledge parameters during the
training process, ensuring that only parameters related
to global knowledge are included in federated aggrega-
tion, while effectively handling attribute shifts in feature
distributions across clients.

• Challenge 2: How to effectively select neighbors that
contribute to the training of either global or local
knowledge-related parameters, filtering out irrelevant
nodes that do not contribute to model performance, es-
pecially under structural shifts where neighbor relation-
ships vary across clients.

To address these two challenges, we propose Adaptive
Decoupling Personalized Federated Graph Neural Network
(ADPFedGNN), which leverages multi-party graph data to
train models capable of classifying nodes in each client’s
graph data. For Challenge 1, we propose federated mask-
based parameter decoupling method to separate local and
global knowledge-related parameters, and personalized fed-
erated masked parameter aggregation method to prevent in-
terference between these parameters during federated aggre-
gation. For Challenge 2, we propose reinforcement federated
adaptive neighbor selection strategy, which adaptively selects
node neighbors for federated training. ADPFedGNN effec-
tively prevents interference from local knowledge-related pa-
rameters on other clients’ models, while efficiently leveraging
multi-party data to train personalized federated Graph Neural
Network. Extensive experiments conducted on three public
datasets validate the effectiveness of the proposed method.

Our main contributions include:

• We propose a federated mask based parameter decou-
pling method that utilizes an automatically updated
mask mechanism and mutual information minimization
to decouple model parameters into global and local com-
ponents. The mask is updated based on the client’s lo-
cal training gradients and their similarity to the global
model, ensuring effective decoupling.

• We propose a personalized federated masked param-
eter aggregation method that aggregates the masked
model parameters from each client to form the global
model. The global parameters are then updated using
the inverted local masks, preventing the global model
from disrupting the local models’ adaptability to client-
specific data.

• We propose a reinforcement federated adaptive neighbor
selection strategy that uses reinforcement learning to se-
lect suitable node neighbors for training global or local
knowledge related parameters while filtering out irrele-
vant nodes. This approach enhances the performance of
PFGNN.

2 Related Work
2.1 Federated Learning
Federated learning is a distributed paradigm that addresses
data silos [Liu et al., 2024; Li et al., 2024a]. For graph
data, FedGraphNN [He et al., 2021a] is a federated learn-
ing benchmark system for GNN, supporting multi-domain
datasets. SpreadGNN [He et al., 2021b] enables federated
multi-task learning, and FGGP [Wan et al., 2024] enhances
generalization and classification by introducing cluster proto-
types and global knowledge contrast.

However, data across clients often exhibits non-IID char-
acteristics, making it difficult to train a single global model.
Personalized federated learning methods, such as FedProx
[Dhillon et al., 2020], introduce regularization to address
data heterogeneity, while FedSEM [Long et al., 2023b] clus-
ters clients based on model parameters to improve person-
alization. MOON [Li et al., 2021b] improves performance
through model-level contrastive learning. FedSage+[Zhang
et al., 2021a] improves federated node classification perfor-
mance by generating missing neighbors. FedALA [Zhang et
al., 2023] adapts the aggregation process to local data. De-
spite these advancements, existing methods still couple global
and local knowledge parameters, limiting their effectiveness
in preventing interference from local knowledge.

2.2 Graph Sampling
As graph data scales, training on the entire graph becomes
computationally and memory-intensive, making minibatch
mechanisms essential for large datasets [Hamilton et al.,
2017]. Traditional methods, such as random sampling, ignore
noisy or irrelevant links between nodes [Zhao et al., 2023;
Wang et al., 2021]. Recent work has focused on optimiz-
ing neighbor sampling. BanditSampler [Liu et al., 2020]
and Thanos [Zhang et al., 2021b] reduce sampling variance
through multi-armed bandit formulations and novel reward
functions. However, these approaches require per-node up-
dates, making them difficult to adapt to federated learning
due to the lack of shared strategies across devices.

Parameterized neighbor selection strategies have recently
gained attention. Bayesian GNN [Hasanzadeh et al., 2020],
DSKReG [Wang et al., 2021], and Learnable Sampling [Zhao
et al., 2023] dynamically adjust sampling probabilities, but
they rely on complete computation flows, limiting their appli-
cability in federated learning where global gradient computa-
tion is infeasible. Reinforcement learning offers a promis-
ing solution by learning parameterized strategies without re-
lying on a complete computation flow [Lai et al., 2020;
Sun et al., 2021; Yang et al., 2020], making it ideal for feder-
ated settings.

3 Methodology
We propose ADPFedGNN to address challenges in adaptive
neighbor selection and parameter coupling for personalized
federated graph node classification. ADPFedGNN enables
collaborative training on multi-party graph data to classify
nodes in each client’s local graph while ensuring data privacy.
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Figure 1: Overview of adaptive decoupling personalized federated graph neural network.

The method consists of three components: (1) Reinforce-
ment federated adaptive neighbor selection strategy using re-
inforcement learning to select suitable neighbors for training
global or local knowledge-related parameters, while filtering
irrelevant nodes; (2) Federated mask-based parameter decou-
pling method that uses trainable masks and mutual informa-
tion minimization to decouple global and local knowledge-
related parameters; and (3) Personalized federated masked
parameter aggregation method that shares only global param-
eters, preserving local model personalization. An overview
of the method is shown in Figure 1.

3.1 Problem Definition
In federated graph node classification, each client Cm holds
private graph data Gm = (Vm, Em, Xm) and node labels Ym,
where Vm, Em, and Xm denote the node set, edge set, and
node feature matrix. Due to privacy constraints and non-IID
characteristics, clients cannot share raw data, leading to at-
tribute and structural shifts that complicate federated learning
[Wan et al., 2024]. Attribute shift arises when the distribution
of node features conditioned on labels varies across clients,
i.e., Pm(h | y) ̸= Pn(h | y), even if the marginal label dis-
tribution P (y) remains similar. Structural shift occurs when
the relationship between edge and label distributions differs
across clients, i.e., Pm(E, Y ) ̸= Pn(E, Y ), despite consis-
tent label distributions Pm(y) = Pn(y). These shifts hinder
the training of a globally generalized model by introducing
inconsistencies across clients, which degrade model perfor-
mance. To address these challenges, we propose a personal-
ized federated learning approach that effectively handles data
heterogeneity and distribution shifts to achieve accurate node

classification while preserving data privacy.

3.2 Reinforcement Federated Adaptive Neighbor
Selection Strategy

We propose a reinforcement Federated Adaptive Neighbor
Selection Strategy, which formulates the neighbor sampling
as a Markov Decision Process (MDP) and uses a Deep Q-
Network (DQN) to learn an adaptive policy.

At each training round, we adopt a minibatch mechanism
to sample a two-layer block of neighbors. For each node in
the batch, k neighbors are selected in each layer, forming
an initial two-layer neighbor set. The DQN then estimates
the expected reward for each neighbor, refining the selection
by identifying suitable neighbors for updating global or local
knowledge-related parameters and filtering out irrelevant or
redundant ones.

State Design: The state sijb is formed by concatenating
the feature vector hi of the target node vi, the feature vec-
tor hj of the candidate neighbor vj , and a binary indicator b.
The binary indicator b = 0 denotes the selection for updat-
ing global parameters, while b = 1 denotes the selection for
updating local parameters. The state representation enables
the agent to distinguish between tasks for global and local
parameter updates. The state is represented as:

sijb = [hi;hj ; b] (1)

Action Design: The action aijb ∈ {0, 1} determines
whether the candidate neighbor vj is selected for the target
node vi. Actions are generated by the DQN network, which
outputs the state-action value Q(sijb, aijb; θq). Action selec-
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tion is based on the Q-value distribution:

P (aijb = a | sijb) =
exp(Q(sijb, a; θq))∑
a′ exp(Q(sijb, a′; θq))

(2)

By selecting actions with higher Q-values, the DQN network
identifies suitable node neighbors for the task while filtering
out irrelevant nodes.

The reward r(sijb, aijb) is defined as the difference be-
tween the federated task loss Lr

task at round r and the average
task loss from previous rounds:

r(sijb, aijb) = λrl

(
Lr

task −mean
(
{Lr′

task}r′∈R

))
(3)

Experience Replay Mechanism: To stabilize training, we
use an experience replay mechanism, storing state-action-
reward-next state tuples in a buffer D. Minibatches are ran-
domly sampled fromD to update the DQN, helping the agent
learn adaptive neighbor selection for better federated graph
node classification.

3.3 Federated Mask-Based Parameter Decoupling
Method

We propose a federated mask-based parameter decoupling
method. This approach uses a GNN with automatic update
masks to construct a global model suitable for federated ag-
gregation and a local model retained only on the client side.

Global and local features are extracted using GNN with
separate masks to ensure feature-level decoupling. The masks
are updated after each federated training round, with global
masks, Mfeat

global and Mcls
global, preserve global knowledge-

related parameters, applicable across clients, while the local
masks, Mfeat

local and Mcls
local, retain local knowledge-related pa-

rameters. The global mask assigns a value of 1 to the top q%
of parameters most similar to the local training gradients and
global non-zero gradients. Similarly, the local mask assigns a
value of 1 to the top q% of parameters with the highest non-
zero gradients from local training. This mechanism ensures
that during the update, both the global and local masks focus
on the most influential parameters for each respective task.

The global feature extraction is defined as:

hglobal
i = GNN(xi, N(i, ai,t,0); θgnn ⊙Mfeat

global) (4)

where N(i, ai,t,0) denotes the set of neighbors selected for
global parameter updates when b = 0. When b = 1, the set of
selected local neighbors for updating local parameters is used
for local feature extraction, defined as:

hlocal
i = GNN(xi, N(i, ai,t,1); θgnn ⊙Mfeat

local) (5)

where N(i, ai,t,1) refers to the set of neighbors selected for
local parameter updates.

To decouple global and local features, we minimize their
mutual information using the Contrastive Log-ratio Upper
Bound (CLUB) [Cheng et al., 2020], which estimates the up-
per bound of mutual informationLmi and reduces it to achieve
feature independence:

Lmi =
∑
i

− (µi − hlocal
i )2

exp(log σ2
i )

−
∑
j ̸=i

(
−
(µi − hlocal

j )2

exp(log σ2
i )

) (6)

where µi and log σ2
i are the mean and log-variance estimated

from global features hglobal
i using neural networks:

µi = fµ(h
global
i ; θµ), log σ2

i = flog σ2(hglobal
i ; θlog σ2) (7)

where θµ and θlog σ2 represent the network parameters. These
parameters are optimized through maximum likelihood esti-
mation with the log-likelihood loss:

Llld = −
∑
i

(
(µi − hlocal

i )2

exp(log σ2
i )

)
(8)

To classify nodes, the global and local features are passed
through masked classifiers, focusing on their respective infor-
mation types. The global classifier output is defined as:

zglobal
i = fcls(h

global
i ; θcls ⊙Mcls

global) (9)

where zglobal
i is the global classifier output for node i, fcls rep-

resents the classifier function, θcls denotes the classifier pa-
rameters, and Mcls

global is the global classifier mask. Similarly,
the local classifier output is defined as:

zlocal
i = fcls(h

local
i ; θcls ⊙Mcls

local) (10)

where zlocal
i is the local classifier output for node i.

The final classifier output is obtained by fusing the global
and local logits:

zi = βzglobal
i + (1− β)zlocal

i (11)

where zi is the final output for node i, and β ∈ [0, 1] bal-
ances the contributions of global and local classifiers. This
weighted fusion ensures that the model can effectively lever-
age both globally shared knowledge and locally specialized
patterns, enabling accurate node classification across diverse
client data distributions.

The task is graph node classification, and the task loss is
computed using cross-entropy:

Ltask = −
∑
i∈V

C∑
c=1

yi,c log ŷi,c, ŷi,c = softmax(zi) (12)

where ŷi,c denotes the predicted probability of node i belong-
ing to class c, yi,c is the one-hot encoded ground truth label,
and V represents the set of nodes.

The total loss integrates the classification loss, mutual in-
formation loss, and an L2 regularization loss on the model
parameters to prevent overfitting:

L = Ltask + λmiLmi + λreg
(
∥θgnn∥22 + ∥θcls∥22

)
(13)

where λmi and λreg are hyperparameters balancing the classi-
fication, mutual information, and regularization terms.

3.4 Personalized Federated Masked Parameter
Aggregation Method

To achieve efficient aggregation of the global model while
preserving the personalization of local models, we pro-
pose a personalized federated masked parameter aggregation
method. In each federated training round, clients use two
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automatically updated masks, global masks Mglobal and lo-
cal masks Mlocal, to decouple their model parameters into
global and local components. These masks are applied uni-
formly to both the feature extraction layers and the classifier
parameters, ensuring that the global model focuses on gen-
eralizable knowledge while the local model preserves client-
specific characteristics.

The aggregation goal is to compute a weighted average of
global model parameters based on local data sizes and the
global masks from selected clients S . Let θi denote the local
model parameters of client i, and Mglobal

i represent its global
mask. The server updates the global model parameters θglobal

using:

θglobal =
1∑

i∈S ni

∑
i∈S

ni · (θi ⊙Mglobal
i ) (14)

After aggregation, the global model is distributed to clients
for local updates. For client i, the local model parameters θi
are updated using:

θi[p] = θglobal[p]·(1−Mlocal
i [p])+θi[p]·Mlocal

i [p], ∀p (15)

where θglobal[p] is the global model parameter at position p,
θi[p] is the local model parameter of client i at position p, and
Mlocal

i [p] is the local mask value. The complementary mask
1−Mlocal

i [p] ensures that global parameters are applied only
at positions where the local mask value is zero. The training
process is detailed in Algorithm 1.

Algorithm 1 Training process of ADPFedGNN for a single
epoch

1: Input: Local data G, batch size B.
2: Output: θµ, θlog σ2 , θgnn, θcls, θq .
3: Initialize parameters θgnn, θcls, θµ, θlog σ2 , Mglobal, Mlocal.
4: Client-Side Training:
5: for batch b← 0 to B − 1 do
6: Compute actions with Equation (2) to filter random

neighbors and obtain N(i, ai,t,0) and N(i, ai,t,1);
7: Extract global and local features using Equations (4)

and (5);
8: Estimate µ and log σ2 using Equation (7);
9: Compute classification task loss using Equation (12);

10: Update parameters θgnn, θcls;
11: Update parameters θµ, θlog σ2 using the log-likelihood

loss in Equation (8);
12: Calculate reward using Equation (3);
13: Save experience (st, at, s

′
t, a

′
t, R(st, at)) in replay

buffer;
14: Train Q-network θq on sampled mini-batches from the

replay buffer;
15: end for
16: Server-Side Aggregation:
17: Perform federated aggregation for θµ, θlog σ2 , θgnn,

θcls, θq through Equations (14) and (15).

4 Experimental Analysis
4.1 Datasets
We conduct experiments on three public graph datasets: Cora
[Sen et al., 2008], CiteSeer [Sen et al., 2008], and PubMed
[Namata et al., 2012]. To simulate federated learning with
varying levels of data heterogeneity, we partition the datasets
using two methods: Louvain community partitioning [Peng
et al., 2022], which assigns nodes to clients based on com-
munity structures, and Dirichlet label partitioning [Zhang et
al., 2021a], which simulates non-IID client distributions us-
ing the Dirichlet distribution, where the parameter α controls
the heterogeneity—smaller values result in more imbalanced
client data distributions.

4.2 Baseline Methods
We compare ADPFedGNN with the following baselines: Fe-
dAvg [McMahan et al., 2017], Clustered Sampling [Fraboni
et al., 2021], FedProx [Dhillon et al., 2020], MOON [Li et
al., 2021b], FedALA [Zhang et al., 2023], FedSEM [Long et
al., 2023a], FGGP [Wan et al., 2024], and FedSage+ [Zhang
et al., 2021a].

4.3 Experimental Setup
We use GraphSage [Hamilton et al., 2017] and GAT
[Veličković et al., 2017] as the backbone networks. GAT
experiments are limited to ADPFedGNN, FedAvg, and Fed-
Prox, as GraphSage delivers the best overall performance,
while GAT’s sensitivity to neighbor information makes it
more suitable for evaluating neighbor selection effective-
ness. The DQN component for reinforcement learning is
implemented with two hidden layers, each of size 128. A
fixed client selection ratio of 0.25 is applied throughout the
experiments. Model performance is evaluated using accu-
racy (ACC), macro-F1 score (F1), and macro-recall (Recall).
These metrics offer a comprehensive evaluation of both over-
all and per-class performance in node classification. The re-
ported results for ACC, F1, and Recall are presented as per-
centages, i.e., all values are multiplied by 100 for clarity
and better comparability. For detailed experimental settings,
please refer to the Appendix.

4.4 Comparative Experiment Analysis
We conduct extensive experiments on the Cora, CiteSeer,
and PubMed datasets, partitioning clients into 5 groups using
the Louvain community method. The results, shown in Ta-
ble 1, indicate that ADPFedGNN surpasses the second-best
method, FedALA, with average improvements of 5.66 per-
cent, 5.83 percent, and 12.45 percent in ACC, F1, and Re-
call, respectively, for the GraphSage backbone. Significant
improvements are also observed with the GAT backbone.

These experimental results demonstrate the effective-
ness of ADPFedGNN. The reinforcement federated adaptive
neighbor selection strategy enhances robustness and stability
by adaptively selecting relevant neighbors for training global
or local knowledge-related parameters, addressing Challenge
1. The federated mask-based parameter decoupling method
effectively separates global and local parameters, and the per-
sonalized federated masked parameter aggregation ensures
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the efficient use of global knowledge while minimizing local
interference, addressing Challenge 2. Together, these innova-
tions enable ADPFedGNN to consistently outperform base-
line methods across diverse datasets and configurations.

4.5 Ablation Study
We evaluate the contributions of key components in
ADPFedGNN through ablation studies on the Cora dataset
with 5 clients, using GraphSage as backbone models. The
results, shown in Figure 2, compare the full ADPFedGNN
model with three ablated variants: ADPFedGNN-d, which in-
tegrates the federated mask-based parameter decoupling and
personalized federated masked parameter aggregation meth-
ods—designed to function together as the latter depends on
the former; ADPFedGNN-r, which includes the reinforce-
ment federated adaptive neighbor selection strategy; and
ADPFedGNN-n, a baseline without these components.

The results demonstrate that the full ADPFedGNN model
achieves the best performance across all metrics, confirm-
ing the necessity of integrating all proposed components.
Specifically, ADPFedGNN-r enhances performance by adap-
tively selecting neighbors for training relevant parameters,
while ADPFedGNN-d effectively decouples global and local
parameters through adaptive masking and mutual informa-
tion minimization, ensuring the efficient utilization of global
knowledge and the preservation of client-specific characteris-
tics.

ADPFedGNN-n ADPFedGNN-r ADPFedGNN-d ADPFedGNN
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Figure 2: Ablation study results of ADPFedGNN.
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Figure 3: The impact of data non-IID characteristics with varying α.

4.6 The Impact of α on Model Performance
We evaluate the impact of data non-IID characteristics on the
Cora dataset with 5 clients using Dirichlet label partitioning,
varying the α parameter from 0.1 to 0.9 to simulate different
levels of data heterogeneity. As shown in Figure 3, as α in-
creases, the data distribution shifts from highly imbalanced
to more balanced, leading to improved performance across

most methods. ADPFedGNN consistently achieves superior
results under all α settings and demonstrates remarkable ef-
fectiveness in scenarios with extreme imbalance at low α val-
ues, highlighting its robustness and adaptability to non-IID
data.

4.7 Effect of Client Select Rate on Model
Effectiveness

We evaluate the impact of client participation rates on the
Cora dataset with 5 clients using Louvain community par-
titioning under select rates of 0.2, 0.5, 0.7, and 0.9. As
shown in Table 2, ADPFedGNN consistently outperforms all
baseline methods across select rates. With the GAT back-
bone, ADPFedGNN demonstrates significant improvements
at lower select rates, highlighting the effectiveness of its re-
inforcement adaptive neighbor selection strategy. Similarly,
with the GraphSage backbone, it achieves superior accuracy,
macro-F1, and recall, demonstrating that the federated mask-
based parameter decoupling method ensures effective utiliza-
tion of global knowledge even with limited client participa-
tion. These results confirm the adaptability and robustness of
ADPFedGNN across varying participation levels.

4.8 Impact of Neighbor Sampling Size on Model
Performance

We evaluate the effect of neighbor sampling size k on model
performance using the Cora dataset with 5 clients. As shown
in Figure 4, increasing k enhances accuracy, macro-F1, and
recall by providing richer contextual information. However,
performance improvements slow when k exceeds 10, sug-
gesting that a moderate sampling size is sufficient for effec-
tive learning. Larger k also increases memory consumption,
posing challenges in resource-constrained environments. No-
tably, GAT benefits more from larger k values, as the ex-
panded neighbor set allows for better attention mechanism
learning, leading to faster performance gains compared to
GraphSage. The reinforcement adaptive neighbor selection
strategy effectively identifies suitable neighbors for updating
global or local knowledge-related parameters while filtering
out noisy neighbors.
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Figure 4: Effect of neighbor sampling size k.

4.9 Effect of β on Model Performance
We assess the impact of the hyperparameter β on model per-
formance using the Cora dataset with 5 clients. As shown
in Figure 5, performance peaks around β = 0.5, indicat-
ing that a balanced integration of global and local features
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Dataset Cora CiteSeer PubMed

Metrics ACC F1 Recall ACC F1 Recall ACC F1 Recall

FedAvg(GAT) 66.27±2.27 49.77±3.87 50.88±3.90 66.61±2.03 56.94±2.43 57.47±2.05 81.03±0.59 64.17±1.36 60.81±1.91
FedProx(GAT) 65.29±2.26 44.91±2.51 46.56±1.79 63.15±1.65 51.31±1.34 53.16±1.60 76.52±4.63 62.11±5.39 60.08±5.42

FedAvg(GraphSage) 68.97±1.76 52.56±4.90 53.67±5.27 68.48±1.63 57.72±1.38 59.74±1.64 87.49±0.40 82.18±0.73 82.71±1.25
Clustered Sampling(GraphSage) 73.71±0.95 50.13±1.23 52.08±1.26 67.71±3.32 57.71±3.28 60.30±2.89 87.06±2.43 82.01±3.68 82.06±3.03

FedProx(GraphSage) 71.53±1.66 51.68±3.82 53.24±3.46 69.98±1.14 59.23±2.36 59.85±2.54 87.69±0.14 81.80±0.69 81.65±1.06
FedSage+(GraphSage) 71.04±3.72 53.01±4.33 53.97±4.35 69.96±3.38 58.01±3.74 59.03±3.01 87.51±1.88 82.99±2.15 82.23±2.11
MOON(GraphSage) 72.46±1.85 52.64±2.98 52.71±2.61 67.51±2.02 59.19±3.00 60.01±2.29 86.95±2.64 81.17±4.08 81.98±2.93

FedALA(GraphSage) 73.13±2.41 53.96±4.83 55.13±4.52 70.51±1.50 59.88±2.03 61.87±1.90 86.88±0.53 82.36±0.69 68.24±1.02
FGGP(GraphSage) 64.84±2.94 48.96±4.19 49.08±3.31 69.33±1.48 60.40±1.47 60.96±1.58 87.49±1.66 81.02±4.32 81.66±3.63

FedSEM(GraphSage) 72.69±1.92 53.87±4.13 54.81±5.07 67.96±1.70 59.36±2.95 62.06±2.79 87.56±0.46 82.29±0.53 82.46±0.33

ADPFedGNN(GAT) 79.24±4.26 54.76±4.89 56.25±5.08 70.38±3.24 61.04±2.41 61.21±2.55 86.97±2.13 71.65±2.44 71.93±2.52
ADPFedGNN(GraphSage) 80.64±4.24 56.68±4.92 58.19±5.01 73.54±3.95 64.92±3.18 64.99±3.09 89.83±2.12 85.67±2.46 86.46±2.51

Table 1: Performance comparison on three datasets.

Select Rate 0.5 0.7 0.9

Metrics ACC F1 Recall ACC F1 Recall ACC F1 Recall

FedAvg(GAT) 66.26±1.83 51.08±2.38 52.77±2.74 59.63±2.81 43.63±3.31 47.47±3.54 60.72±1.36 46.77±4.28 52.66±4.63
FedProx(GAT) 65.21±0.95 46.15±2.55 48.22±2.74 64.31±2.16 47.88±4.44 50.77±3.68 66.20±2.52 52.31±3.42 52.08±3.67

FedAvg(GraphSage) 68.14±2.45 53.33±4.02 53.97±3.46 68.69±1.72 45.87±2.23 49.92±1.04 69.42±1.34 53.65±2.55 53.74±2.66
Clustered Sampling(GraphSage) 74.33±2.20 50.91±2.29 52.76±2.22 75.36±1.18 49.48±4.52 51.43±5.03 74.09±3.09 53.33±3.99 54.09±4.25

FedProx(GraphSage) 72.75±1.95 50.16±3.39 51.19±3.71 71.20±1.67 59.72±2.40 53.83±2.64 71.98±1.70 54.99±3.09 53.89±3.57
FedSage+(GraphSage) 68.82±3.36 53.86±4.99 54.11±5.09 70.53±3.07 48.14±4.71 50.84±4.92 70.83±3.55 54.01±3.62 52.74±3.53
MOON(GraphSage) 73.45±1.16 53.41±3.69 54.46±3.93 72.75±2.51 51.16±2.60 52.45±2.19 72.28±1.23 55.01±3.15 51.52±1.99

FedALA(GraphSage) 73.94±1.54 52.52±2.11 53.49±2.53 71.38±1.15 48.91±2.45 51.42±2.26 72.01±1.63 53.29±5.33 52.83±5.43
FGGP(GraphSage) 65.95±0.72 51.56±2.35 52.51±2.06 66.32±0.66 47.26±3.01 50.61±2.38 68.31±2.63 50.23±3.20 52.15±2.93

FedSEM(GraphSage) 73.71±0.85 54.22±4.79 54.78±4.92 68.95±1.97 53.11±4.88 52.14±4.10 70.52±1.34 54.99±4.59 52.31±4.45

ADPFedGNN(GAT) 79.72±4.31 56.26±4.02 56.26±4.19 79.19±4.78 53.39±4.65 54.77±5.82 80.83±4.02 56.84±4.63 54.47±4.46
ADPFedGNN(GraphSage) 81.39±4.53 58.41±4.17 59.31±3.94 80.71±4.94 56.32±3.65 57.04±4.74 81.06±3.26 60.21±4.59 59.53±3.97

Table 2: Impact of client selection rate on model performance for the Cora dataset.
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Figure 5: Effect of the parameter β.

effectively leverages both knowledge sources. Performance
declines when β approaches extremes; an overemphasis on
global features (β ≈ 0.9) limits local knowledge utilization,
while excessive focus on local features (β ≈ 0.1) hinders
federated knowledge sharing. However, within a reasonable
range, performance remains stable, demonstrating the robust-
ness of ADPFedGNN across various settings.

4.10 Sensitivity Analysis of λmi and λreg

We conduct sensitivity analysis experiments on the Cora
dataset with 5 clients to evaluate the impact of the mutual in-
formation loss weight λmi and the regularization loss weight
λreg. The experiments are performed with λmi values ranging
from 0.1 to 0.9 and λreg values from 0.001 to 0.009. The re-
sults indicate that the optimal performance is achieved when
λmi = 0.3 and λreg = 0.003. Figure 6 presents the results of
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Figure 6: Sensitivity analysis of λmi and λreg.

the sensitivity analysis. The analysis shows that λmi results in
some fluctuations across the three evaluation metrics; how-
ever, the median results remain competitive and within an ac-
ceptable range, demonstrating the effectiveness of the model.
In contrast, λreg exhibits relatively smaller fluctuations across
the three metrics, indicating that the model remains stable un-
der different values of this parameter.

5 Conclusion
In this paper, we propose Adaptive Decoupling Personal-
ized Federated Graph Neural Networks (ADPFedGNN) to
enhance personalized federated graph node classification.
ADPFedGNN effectively addresses the challenges of the
neighbor selection and parameter coupling in non-IID feder-
ated environments. By employing a reinforcement adaptive
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neighbor selection strategy, it selects suitable node neigh-
bors for training global or local knowledge-related parame-
ters while filtering out irrelevant nodes, thereby enhancing
model performance. Additionally, the federated mask-based
parameter decoupling method separates global and local pa-
rameters, while the personalized federated masked parame-
ter aggregation method enables effective parameter sharing
without interfering with local feature learning. Experimen-
tal results on public datasets demonstrate that ADPFedGNN
surpasses existing methods, achieving average improvements
of 5.66 percent, 5.83 percent, and 12.45 percent in ACC, F1,
and Recall, respectively.

Acknowledgements
This work was supported by the 8th Young Elite Scientists
Sponsorship Program by CAST (2022QNRC001), National
Natural Science Foundation of China (62172056, 62192784,
U22B2038, U23A20319).

References
[Cheng et al., 2020] Pengyu Cheng, Weituo Hao, Shuyang

Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
contrastive log-ratio upper bound of mutual information.
In International conference on machine learning, pages
1779–1788. PMLR, 2020.

[Dhillon et al., 2020] Inderjit S Dhillon, Dimitris S Papail-
iopoulos, and Vivienne Sze. Federated optimization in het-
erogeneous networks. In Proceedings of Machine Learn-
ing and Systems 2020, MLSys 2020, Austin, TX, USA.
2020.

[Fraboni et al., 2021] Yann Fraboni, Richard Vidal, Laetitia
Kameni, and Marco Lorenzi. Clustered sampling: Low-
variance and improved representativity for clients selec-
tion in federated learning. In International Conference on
Machine Learning, pages 3407–3416. PMLR, 2021.

[Fu et al., 2022] Xingbo Fu, Binchi Zhang, Yushun Dong,
Chen Chen, and Jundong Li. Federated graph machine
learning: A survey of concepts, techniques, and applica-
tions. ACM SIGKDD Explorations Newsletter, 24(2):32–
47, 2022.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing sys-
tems, 30, 2017.

[Hasanzadeh et al., 2020] Arman Hasanzadeh, Ehsan Ha-
jiramezanali, Shahin Boluki, Mingyuan Zhou, Nick
Duffield, Krishna Narayanan, and Xiaoning Qian.
Bayesian graph neural networks with adaptive connection
sampling. In International conference on machine learn-
ing, pages 4094–4104. PMLR, 2020.

[He et al., 2021a] Chaoyang He, Keshav Balasubramanian,
Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He,
Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn:
A federated learning system and benchmark for graph neu-
ral networks. arXiv preprint arXiv:2104.07145, 2021.

[He et al., 2021b] Chaoyang He, Emir Ceyani, Keshav Bala-
subramanian, Murali Annavaram, and Salman Avestimehr.
Spreadgnn: Serverless multi-task federated learning for
graph neural networks. arXiv preprint arXiv:2106.02743,
2021.

[Huang et al., 2023] Wenke Huang, Guancheng Wan, Mang
Ye, and Bo Du. Federated graph semantic and structural
learning. pages 3830–3838, 2023.

[Khoshraftar and An, 2024] Shima Khoshraftar and Aijun
An. A survey on graph representation learning methods.
ACM Transactions on Intelligent Systems and Technology,
15(1):1–55, 2024.

[Lai et al., 2020] Kwei-Herng Lai, Daochen Zha, Kaixiong
Zhou, and Xia Hu. Policy-gnn: Aggregation optimiza-
tion for graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 461–471, 2020.

[Li et al., 2020] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Pro-
ceedings of Machine learning and systems, 2:429–450,
2020.

[Li et al., 2021a] Anran Li, Lan Zhang, Juntao Tan, Yaxuan
Qin, Junhao Wang, and Xiang-Yang Li. Sample-level data
selection for federated learning. In IEEE INFOCOM 2021-
IEEE Conference on Computer Communications, pages 1–
10. IEEE, 2021.

[Li et al., 2021b] Qinbin Li, Bingsheng He, and Dawn Song.
Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10713–10722, 2021.

[Li et al., 2024a] Kai Li, Xin Yuan, Jingjing Zheng, Wei Ni,
Falko Dressler, and Abbas Jamalipour. Leverage varia-
tional graph representation for model poisoning on feder-
ated learning. IEEE Transactions on Neural Networks and
Learning Systems, 2024.

[Li et al., 2024b] Xunkai Li, Zhengyu Wu, Wentao Zhang,
Henan Sun, Rong-Hua Li, and Guoren Wang. Adafgl: A
new paradigm for federated node classification with topol-
ogy heterogeneity. In 2024 IEEE 40th International Con-
ference on Data Engineering (ICDE), pages 2517–2530,
2024.

[Liu et al., 2020] Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang,
Jun Zhou, Shuang Yang, Le Song, and Yuan Qi. Ban-
dit samplers for training graph neural networks. Advances
in Neural Information Processing Systems, 33:6878–6888,
2020.

[Liu et al., 2024] Rui Liu, Pengwei Xing, Zichao Deng, An-
ran Li, Cuntai Guan, and Han Yu. Federated graph neural
networks: Overview, techniques, and challenges. IEEE
Transactions on Neural Networks and Learning Systems,
2024.

[Long et al., 2023a] Guodong Long, Ming Xie, Tao Shen,
Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
federated learning: clients clustering for better personal-
ization. World Wide Web, 26(1):481–500, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Long et al., 2023b] Guodong Long, Ming Xie, Tao Shen,
Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
federated learning: clients clustering for better personal-
ization. World Wide Web, 26(1):481–500, 2023.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[Namata et al., 2012] Galileo Namata, Ben London, Lise
Getoor, Bert Huang, and U Edu. Query-driven active sur-
veying for collective classification. In 10th international
workshop on mining and learning with graphs, volume 8,
page 1, 2012.

[Pareja et al., 2020] Aldo Pareja, Giacomo Domeniconi, Jie
Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson.
Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 5363–5370, 2020.

[Peng et al., 2022] Hao Peng, Ruitong Zhang, Shaoning Li,
Yuwei Cao, Shirui Pan, and S Yu Philip. Reinforced, incre-
mental and cross-lingual event detection from social mes-
sages. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(1):980–998, 2022.

[Quan et al., 2023] Yuhan Quan, Jingtao Ding, Chen Gao,
Lingling Yi, Depeng Jin, and Yong Li. Robust preference-
guided denoising for graph based social recommendation.
In Proceedings of the ACM Web Conference 2023, pages
1097–1108, 2023.

[Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa
Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine,
29(3):93–93, 2008.

[Sun et al., 2021] Qingyun Sun, Jianxin Li, Hao Peng, Jia
Wu, Yuanxing Ning, Philip S Yu, and Lifang He. Sugar:
Subgraph neural network with reinforcement pooling and
self-supervised mutual information mechanism. In Pro-
ceedings of the web conference 2021, pages 2081–2091,
2021.

[Tang et al., 2021] Zhenheng Tang, Zhikai Hu, Shaohuai
Shi, Yiu-ming Cheung, Yilun Jin, Zhenghang Ren, and Xi-
aowen Chu. Data resampling for federated learning with
non-iid labels. In Proceedings of the International Work-
shop on Federated and Transfer Learning for Data Spar-
sity and Confidentiality in Conjunction with IJCAI, Mon-
treal, Canada, pages 21–22. FTLIJCAI, 2021.
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