Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

A Neuro-Symbolic Framework for Sequence Classification
with Relational and Temporal Knowledge

Luca Salvatore Lorello!>*

, Marco Lippi®, Stefano Melacci*

'University of Pisa,
2University of Modena and Reggio Emilia,
3University of Florence,

“University of Siena
luca.lorello@phd.unipi.it, marco.lippi @unifi.it, stefano.melacci @unisi.it

Abstract

One of the goals of neuro-symbolic artificial intel-
ligence is to exploit background knowledge to im-
prove the performance of learning tasks. However,
most of the existing frameworks focus on the sim-
plified scenario where knowledge does not change
over time and does not cover the temporal dimen-
sion. In this work we consider the much more chal-
lenging problem of knowledge-driven sequence
classification where different portions of knowl-
edge must be employed at different timesteps, and
temporal relations are available. Our experimental
evaluation compares multi-stage neuro-symbolic
and neural-only architectures, and it is conducted
on a newly-introduced benchmarking framework.
Results demonstrate the challenging nature of this
novel setting, and also highlight under-explored
shortcomings of neuro-symbolic methods, repre-
senting a precious reference for future research.

1 Introduction

Sequence classification is a very well-known task in machine
learning which can become very challenging when decisions
must be made on top of complex features or without suitable
priors, especially when safety, reliability and accountabil-
ity are of paramount importance (autonomous driving [Roe-
sener et al., 2016], industrial control systems [Chakraborty
et al., 2022], medicine [Ivaturi et al, 2021], and oth-
ers). The task can be also approached by symbolic meth-
ods exploiting grounded frameworks, such as regular ex-
pressions [Galassi and Giordana, 2005] and automata induc-
tion [Angluin, 1982], or temporal logics satisfiability [Rozier
and Vardi, 2007]. However, they tend to struggle in the pres-
ence of noise [Umili and Capobianco, 2024], and may be
unsuitable for open-world settings where background knowl-
edge or inductive priors are not available at all. Neuro-
symbolic artificial intelligence [Besold er al., 2021] aims to
get the best of both worlds, by merging neural and sym-
bolic methods, as in DeepProbLog [Manhaeve et al., 2018],
or Logic Tensor Networks [Badreddine et al., 2022]. Little

*Part of the work was done while LSL was visiting KU Leuven.
Supplementary material at: https://arxiv.org/abs/2505.05106

has been done for sequence classification in presence of (7)
“relational” and (¢7) “temporal” knowledge. The former de-
scribes features within each single time-step while the latter
models information along the temporal dimension. For ex-
ample, consider a safety-critical system where several cam-
eras monitor an environment, controlling the movements of
automated guided vehicles. At each timestep, every vehicle
has to satisfy some safety properties regarding its movements,
for example to avoid collisions; in addition, at some check-
points it is necessary to assess that some tasks have been ex-
ecuted in a specific order throughout the temporal sequence.
Motivated by this challenging and still under-explored set-
ting, this paper collects several contributions. (a) We pro-
pose a new benchmarking framework for sequence classifica-
tion (and similar tasks) in the presence of domain knowledge
that extends also over the temporal dimension. Our frame-
work is capable of generating datasets with multi-channel se-
quences of arbitrary length, by sampling given image classi-
fication datasets according to user-defined temporal and rela-
tional specifications. (b) We share with the scientific commu-
nity ready-to-use datasets for six challenging tasks, as well
as baseline performances for neural-only and modular neuro-
symbolic architectures. Building on top of a neural net pro-
cessing the raw data, our neuro-symbolic architecture con-
sists of an automata-based temporal reasoner stacked on top
of a relational symbolic module, both representatives of state
of the art approaches in their respective categories. (c) Our
detailed experimental study highlights two under-investigated
problems: specific methods for temporal reasoning, highly-
effective with propositional inputs, struggle when extended to
a relational setting, even when the interface is “proposition-
alized” by an upstream reasoner, and, conversely, relational
neuro-symbolic methods present training instabilities when
coupled with downstream (temporal) reasoning components.

2 Background

Linear temporal logic over finite traces. A dynamic dis-
crete system is a triple (S, R, sg), where S is a set of (possi-
bly infinite) states, R is a transition relation between states,
often non-deterministic, and sy € S is the initial state. An
execution trace is a (possibly infinite) sequence of states
(80,51, 82, ...), such that R(s;_1,s;),Vi > 0. Linear Tem-
poral Logic (LTL) [Pnueli, 1977] is a formalism for tempo-

https://arxiv.org/abs/2505.05106

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

ral reasoning over infinite execution traces of dynamic dis-
crete systems, capable of expressing properties related to state
reachability. Given a sub-formula or an atomic proposition,
indicated with ¢ or ¢ in the following, the next operator ()
models immediate future reachability, i.e., ()¢ means that ¢
has to hold at the next state. Other operators model even-
tual reachability (finally/eventually operator, ¢, i.e., ¢ has
to hold at least once in the future), invariance (globally op-
erator, Lo, i.e., ¢ has to hold on the entire subsequent path)
and conditional reachability (such as the binary operators un-
til, U, and releases, ¢pR1p). The original formulation of
LTL can modified in multiple ways: LTL over finite traces
(LTLy) [De Giacomo and Vardi, 2013] is a restriction which
preserves the same syntax of LTL' but redefines its seman-
tics, in order to be applied to execution traces of finite length.
This restriction also has practical repercussions: while LTL
can express w-languages recognized by Biichi automata, rea-
soning over LTL; can be reduced to regular languages, ac-
cepted by deterministic finite state automata (DFA). In this
work we convert LTL ; formulas to DFAs, using flloat?.

Neuro-symbolic integration of logic formulas. The main
challenge of neuro-symbolic integration [Besold er al., 2021]
consists in providing an interface between two components:
learning by means of neural networks, which requires repre-
sentations in a continuous space, and reasoning, which often
benefits from discrete representations of symbols. A popu-
lar approach for the integration of logic knowledge, known as
the model-theoretic approach [Marra et al., 20241, is to relax
truth assignments, in a way which extends Boolean algebra in
a continuous and differentiable space. Fuzzy logic [Badred-
dine et al., 2022] extends interpretations in the continu-
ous range [0, 1] and replaces Boolean conjunction with a t-
norm.? The obtained expressions are equivalent to the origi-
nal Boolean formula at boundary values, but allow differen-
tiability by means of a progressive transition between truth
values, which can constrain the learning procedure [Gnecco
et al., 2015]. Different choices of t-norms are possible, each
characterized by different advantages and drawbacks. An al-
ternative framework for model-theoretic neuro-symbolic in-
tegration, overcoming some issues with differentiable fuzzy
logics [van Krieken et al., 2022], is based on probabilistic
inference. In this framework, with strong theoretical and
computational foundations in statistical and relational artifi-
cial intelligence [De Raedt et al., 2016], Boolean propositions
are seen as Bernoulli random variables and logic connectives
are interpreted as set operators. Weighted model counting
(WMC) is a general framework for probabilistic inference.
Algebraic model counting (AMC) [Kimmig et al., 2017] ex-
tends WMC by replacing Boolean operators with elements of
an algebraic semiring, allowing to solve a plethora of prob-
abilistic tasks within a single framework. WMC and AMC
are in general #P-COMPLETE [Chavira and Darwiche, 2008],
however they become tractable when logic formulas possess

'"LTL;, introduces an additional operator, weak next, W¢, to
deal with last state semantics in finite traces.

Zhttps://github.com/whitemech/flloat

3In propositional logic, every other operator is constructed by
exploiting the definition —-p = 1 — p and equivalence axioms.

a specific structure. Knowledge compilation [Darwiche and
Marquis, 2002] amortizes execution time by converting in-
put formulas into equivalent target normal forms, on top of
which clausal inference (and possibly other classes of tasks)
can be executed in polynomial time. In this context, we men-
tion sd-DNNF, the smooth and decomposable deterministic
negated normal form, a popular knowledge compilation target
language, which guarantees correct model counting in poly-
nomial time, also in the presence of neutral and disjoint sums.

3 Related Works

Neuro-symbolic temporal reasoning. Neuro-symbolic
temporal reasoning has been employed for temporal formula
induction, approximate satisfiability and sequence classi-
fication driven by background knowledge. [Camacho and
Mcllraith, 2019] address formula induction in a symbolic
fashion, by building a vocabulary of subformulas which are
converted to alternating finite automata, and then composed
to discover the target formula from positive and negative
examples, while [Walke et al., 2021] propose the use of
specialized recurrent layers for sequence classification,
which can collectively be interpreted as an LTL; for-
mula, by extracting a truth table from discretized weights.
Finally, [Umili and Capobianco, 2024] attempt to learn
DFA transition matrices from examples, by discretizing
a recurrent neural network, regularized during training to
produce discrete activations. Exact LTL satisfiability is
PSPACE-COMPLETE. However, recently, several approaches
based on neural networks have been proposed to approximate
satisfiability in polynomial time: [Xie et al., 2021] employ
message passing graph neural networks to learn embeddings
for a DFA equivalent to the target LTL ; formula; [Mukher-
jee et al., 2022] exploit graph isomorphism networks to
perform approximate model checking; [Luo et al., 2022;
Luo et al., 2024] use recursive neural networks to generate
explanations as traces satisfying the given formulas.

Neuro-symbolic finite state automata. There is a strong
link between inference in DFA and recurrent neural networks,
as the former performs trace acceptance using a state transi-
tion matrix and the latter updates an internal state according
to a deterministic function. On the other hand, the discrete
nature of DFAs is particularly amenable to be encoded by
(sets of) Boolean formulas, which, in turn, can be subject
to neuro-symbolic integration. Starting from this consider-
ation, [Umili ez al., 2023] exploit background knowledge in
the form of LTL ; formulas to learn symbolic labels from se-
quence labels, by performing distant supervision [Manhaeve
et al., 2018]. The transition matrix is converted into a disjunc-
tion of Horn clauses and the entire logic program is finally en-
coded into a Logic Tensor Network [Badreddine et al., 2022]
that can be trained end-to-end on sequence labels, by means
of binary cross-entropy or a proposed semantic loss penaliz-
ing discordance between ground truth labels and the observed
final state. [Manginas et al., 2024] highlight the shortcom-
ings of this method, by identifying a general failure on more
complex datasets, consisting of larger DFAs, longer temporal
horizons or more complex transition guards, and pinpointing
the cause on the fuzzy encoding. In their extension, each tran-

https://github.com/whitemech/flloat

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

sition guard is compiled into an sd-DNNF, and the automaton
is given probabilistic semantics, by means of AMC on the
probability semiring, largely improving scalability.

Relationships to this paper. We take inspiration both from
[Umili er al., 2023] and [Manginas et al., 2024], however
we allow transition labels to contain constraints (i.e., first or-
der predicates of known semantics, applied to terms which
represent objects in finite domains). This distinction places
our work closer to symbolic automata [Veanes er al., 2010;
Veanes, 2013; D’ Antoni and Veanes, 2017], and it is charac-
terized by additional challenges. We address these challenges
in a straight-forward manner, by decoupling reasoning in two
components: relational and temporal inference. In this way,
temporal inference is reduced to the propositional case, de-
coupling the additional challenges provided by a first order
setting, from those posed by more complex temporal behav-
iors. From a neuro-symbolic perspective, our decoupling ap-
proach also provides benefits in terms of knowledge injec-
tion: as the semantics of states is defined over constraint sat-
isfaction problems, background knowledge is richer and more
structured (i.e., constraints act as relations between concepts,
while propositional formalisms are limited to assignments).

4 Sequence Classification with Relational and
Temporal Knowledge

Problem definition. Let S = ([zf,...,2% ,])l-, be a
sequence of length 7' that consists, for each time step ¢, of
N perceptual stimuli belonging to as many perceptual do-
mains Xj: x} € X;. Bach 2} is associated to a symbol y*
that belongs to a symbolic domain y§ € Y;. As an exam-

ple, Xy and X could be the domain of MNIST digits [Le-
Cun, 1998] and Fashion-MNIST articles [Xiao et al., 2017],
respectively, whereas),y and)); the corresponding sets of
(symbolic) classes. To avoid confusing the stimulus/domain
index with the time index, we will sometimes use letter sub-
scripts in place of numbers (e.g., A, B in place of 0, 1) to
refer to different stimuli, symbols, and domains (e.g., ;ﬂ;‘,
zh, yh, v, Xa, X, Va, Vg, etc.). We consider the prob-
lem of learning a binary classifier f: S — {0,1} which
maps the input sequence to the positive class if and only if
S = T, where T is a temporal specification that consists in
an LTL; formula whose atomic symbols are first order rela-
tions grounded over symbolic domains Y;. Intuitively, this
means that the sequence classification task consists in as-
sessing whether two sets of properties jointly hold or not:
(7) instantaneous relations among the N symbolic domains
which may or may not hold for any ¢ (“relational”), and (¢%)
meta-relations about the validity of each instantaneous prop-
erty over time (“temporal”). The reasoning process in such
setting can be reduced to querying the validity of each in-
stantaneous property to build a trace of truth values, and then
checking whether the trace satisfies the temporal specifica-
tion. In order to preserve LTL; conciseness and readability,
we encode “relational” (i.e., instantaneous) properties as con-
straints over finite domains [Nethercote et al., 2007], which
allow to express arithmetic, identity-based, ordering-based,
lexicographic, etc., relations with well-codified, compact, and

efficient to compute constructs, known as global constraints.
To further aid readability, we collect (z) relational properties
into a set of constraints C, separately from the (i7) “tempo-
ral” formula in F. It is important to note that, in our set-
ting, it is the joint effect of the LTL ; formula and the prop-
erties with which its symbols are grounded (i.e., the com-
plete background knowledge is 7 = C U F), which acts
as decision rule. As an example, let us consider two popu-
lar digit classification datasets, MNIST and SVHN [Netzer
et al., 2011], where class names can be also interpreted as
class indices. Suppose that we have a sequence S where, at
each time instant, we are given N = 3 stimuli (2, 2%, z),
zly € Xa, 2ty € Xp, with X4 = Xp = MNIST digits,
while 2}, € Xz = SVHN digits. Let us consider the case
in which the IV perceptual stimuli are mapped to N symbols
(v, vk, yL), belonging to domains Y4 = Vg = [0,9], and
Yo = [2, 8] (integer). As “relational” knowledge we assume
that two properties can potentially hold: y4 + yp = yc and
ya # Y ANys # Yo A yc # ya,* where we compactly in-
dicate the latter with a11 different(ya,ys,yc). We then
introduce some “temporal” knowledge: in even timesteps the
sum constraint is expected to hold, while a11_different is
expected to hold for odd steps. The goal is to learn a binary
classifier, distinguishing knowledge-coherent sequences from
incoherent ones. The properties of our problem can more for-
mally and concisely be defined as the quadruple (X,), C, F)
where X’ and) are the unions of all the perceptive and sym-
bolic domains, respectively; C is the set encoding the rela-
tional knowledge; F is the temporal formula. We have:

X XA,XB:{E,“,...,}; XC:{,E_,...,S}

Vi Ya,YVp=10,9]; Yo =12,8]

C: p:ya+tys=1yc
q:alldifferent(ya,yn,yc)

F: pAOp <+ Og).

Therefore, a sequence of triples such as
(8| 8], 0,E23, 88 H . B M s8], corespond-
ing to the trace ([p,—ql,[—p,q],[p,q],[-p,q]), will be
accepted by a knowledge-driven sequence classifier, while
([Eﬂ 4, 8]’ [“7 ’&]7 [7 “v m}v [7 ad, 8])’ Corresponding
to the trace ([p, —q|, [-p, 4], [P, ¢], [P, q]) will not, as —p
(bold) violates the temporal property.

The LTLZinc Framework. LTLZinc® is a benchmarking
framework for temporal reasoning tasks, capable of gener-
ating sequences from user-defined constraint specifications,
involving relational and temporal knowledge. LTLZinc re-
ceives as input the quadruple (X,), C, F), as well as addi-
tional options, and produces an output depending on either
of two modes: (i) sequential and (¢¢) incremental. In () se-
quential (which could informally be categorized as “learn-
ing about time”), the output will be a dataset of densely an-
notated sequences, which can be used for binary classifica-
tion, and other temporal-related tasks. In (i¢) incremental
mode (which could informally be classified as “learning over

“In MiniZinc [Nethercote ef al., 2007] enumerations are integers,
allowing arithmetic expressions also for categorical symbols.
Shttps://github.com/continual-nesy/LTLZinc

https://github.com/continual-nesy/LTLZinc

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Valid / Not Valid

‘ Sequence Classification (SC)

‘ Sum (Accepting States) |

I

* Next State Prediction (NSP)

{ Scallop | | MLP-S/ |]

Temporal
Knowledge

o

CNNs
(MNIST) (SVHN)

t t
I [

| | |
I, HE ., 8 1

[] Neural

‘ Image Classification (IC)

Relational
Knowledge

l:l Symbolic \:l Generic (No Learning)

Figure 1: Stages of our architecture. CC and NSP are instantiated in
multiple ways, shown as green (symbolic) and red (neural) blocks.

time”), LTLZinc outputs a single sequence of datasets, to be
used in incremental/continual [Wang et al., 2024] and cur-
riculum learning settings. As LTL is strictly more expres-
sive than current definitions of incremental learning in the
literature, it is straight-forward to encode class-incremental,
task-incremental and domain adaptation settings with LTLZ-
inc. Internally, LTLZinc converts the temporal specification
JF into a DFA annotated with constraints, and solves a col-
lection of MiniZinc programs, corresponding to the subset
of C satisfying each of the transition guards, caching every
solution found. Then, (positive/negative) sequences of user-
specified length are generated by random walks along the au-
tomaton, where at each transition one solution of the corre-
sponding problem is randomly sampled. Annotations contain
the background knowledge, consisting of the user specifica-
tion (the quadruple (X,Y,C, F)) and the generated automa-
ton, sequence-level binary labels, the trace of traversed states
during generation, the trace of constraint truth values, and the
trace of image labels for each stimulus of the N-uple).

S Methodology

We model the whole sequence classification task by a multi-
stage pipeline composed of the following sub-tasks, also
sketched in Fig. 1: (1c) image classification, mapping data
from each A& to the corresponding);; (cC) constraint classi-
fication, leveraging “relational” knowledge; (NSP) next state
prediction, leveraging “temporal” knowledge; (sC) sequence
classification, i.e., the binary classification problem. LTLZ-
inc provides annotations for each of these sub-tasks, so that
we can evaluate performance both in isolation for each com-
ponent, and jointly in an end-to-end fashion, while also being
able to define multiple training objectives, applied at different
stages. We address the following research questions.

Q1: Can neural-only methods solve the proposed tasks?
Given enough training capacity, can a neural network successfully
perform sequence classification, without background knowledge?
Q2: How do neural-only and neuro-symbolic methods com-
pare? Can background knowledge mitigate error amplification
issues along multiple stages? Are neuro-symbolic methods more
prone to training instability than neural-only approaches?

Q3: What is the effect of upstream noise on exact symbolic
methods? Do wrong, but confident, predictions of symbols y;’s
affect downstream accuracy more than correct predictions associ-
ated with lower confidence? How is noise propagated?

(1c) Image classification. The first stage corresponds to
a traditional neural-based image classification task, estimat-
ing the probability of the class assignment [yf, ..., v% 1],
e, Pe([ybs- - yly_q] | [2h, ..., 2% _4]). Our implementa-
tion is based on a convolutional architecture (details in Ap-
pendix B.1), for each perceptual domain (e.g., for the exam-
ple of Section 4, we have two instances of the same architec-
ture: one to predict symbols y 4, yp (MNIST categories) and
another one for symbols yo (SVHN categories), see Fig. 1).

(cc) Constraint classification. The set of all the image
classes predicted by the IC module, is mapped to |C| valid-
ity values, each of them indicated with 3;, one for each of the
constraints defined in the relational knowledge C. This stage
estimates Pe.([8f,. .. 7ﬂ‘tc‘_1] | [gs - - yl_1]). Our exper-
iments focus on tasks characterized by constraints which can
be expressed in Datalog. Hence, we chose Scallop [Li et
al., 2023], a neuro-symbolic engine capable of probabilistic
reasoning over Datalog programs, supporting inference over
multiple provenance semirings [Green et al., 20071.% Scallop
programs are differentiable end-to-end, however they do not
possess trainable parameters. To increase module flexibility,
we augment our architecture with an optional set of additional
learnable calibration parameters (enabled by a “calibrate”
hyper-parameter in the experiments of Section 6), which in-
dependently apply temperature rescaling to both input and
output probabilities. Learning takes place jointly with the 1C
module, and it allows us to control both the entropy of the dis-
tributions and the confidence of prediction, while preserving
the argmax. We compare Scallop with two fully-learning-
based approaches: a small multi-layer perceptron with lim-
ited capacity (8 hidden neurons, MLP-S) and a larger one (64
hidden neurons, MLP-L), see Appendix B.2.

(NSP) Next state prediction. The temporal reasoning com-
ponent is rooted on the definition of a discrete space of M
elements, each consisting of a state of the DFA equivalent to
F, based on the observed validity values of relational con-
straints, 3!’s. In this way, temporal reasoning is reduced to to
a next-state prediction problem, i.e., a recurrent classification
problem where o € [0, M — 1] is the predicted class/next-
state, with probability P (af | [88,..., 8% 1], a'71).” We
compare four learning-based approaches (two MLP’s, namely
MLP-S and MLP-L, and two gated recurrent units, GRU-S,
GRU-L, with 8 and 64 hidden/state neurons, respectively),

®In initial explorations, the default top-k proofs provenance (k =
1) resulted in the best trade-off between inference time and accuracy.

"Here and in the following, t = —1 is the initial instant, where
the automaton of the NSP module is initialized to state “0”.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.

Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Task | Config. CC-NSP Best Model cC NSP (epoch) | Avg Ace. 1 | IC acc. 1 cCAcc. T NSPAcc.t SCAcc. T
Task 1 | Neural-Neural MLP-L MLP-L (24) 0.84 0.88 0.85+0.01 0.72 0.90
Task 1 | Neural-Symbolic MLP-L sd-DNNF-LP (24)* | 0.85 0.86 0.85 0.81 0.90
Task 1 | Symbolic-Neural Scallop MLP-L (16)f 0.82+0.07 | 0.88 0.91 0.59+0.26 0.90
Task 1 | Symbolic-Symbolic Scallop Fuzzy-P (24)f* 0.88 0.87 0.91+0.01 0.84+0.01 091+0.01
Task 2 | Neural-Neural MLP-S GRU-L (23)f 0.69+0.03 | 0.88+0.01 0.87+0.01 0.50+0.13 0.50
Task 2 | Neural-Symbolic MLP-S Fuzzy-LP (24) 0.71 0.81+0.03 0.82+0.02 0.56+0.02 0.67=+0.03
Task 2 | Symbolic-Neural Scallop GRU-L (22)* 0.72£0.03 | 0.90 0.93 0.56 £0.12 0.50
Task 2 | Symbolic-Symbolic Scallop Fuzzy-P (16)t* 0.79£0.01 | 0.89+0.01 0.91 0.70 £ 0.01 0.67 £ 0.04
Task 3 | Neural-Neural MLP-L GRU-L (24) 0.68 0.96 0.82+0.01 0.44 0.50
Task 3 | Neural-Symbolic MLP-L sd-DNNF-P (24)* 0.66 +0.01 | 0.93 0.714+0.02 0.51+0.03 0.49+0.01
Task 3 | Symbolic-Neural Scallop GRU-L (19) 0.73 £0.01 | 0.98 098 +£0.01 0.45+0.03 0.50
Task 3 | Symbolic-Symbolic Scallop sd-DNNF-LP (20)* | 0.55+£0.36 | 0.43+0.47 0.64+0.28 0.49+0.46 0.63+0.28
Task 3 | (Symbolic-Symbolic) ~ Scallop sd-DNNF-LP (20)* | 0.93 0.96 0.96 0.90 0.91
Task 4 | Neural-Neural MLP-L GRU-S (21)f* 0.62+0.06 | 0.89+0.01 0.80+0.01 0.30+0.26 0.50
Task 4 | Neural-Symbolic MLP-S sd-DNNF-P (19)f 0.60 £ 0.06 | 0.80 0.62+0.04 049+0.11 0.48+0.12
Task 4 | Symbolic-Neural Scallop GRU-L (20)"* 0.68+0.01 | 0.88+0.01 0.86+0.02 0.46+£0.02 0.50
Task 4 | Symbolic-Symbolic Scallop sd-DNNFE-P (16)1* | 0.74 +0.05 | 0.83+0.01 0.79+0.01 0.69+0.08 0.67 & 0.09
Task 5 | Neural-Neural MLP-L MLP-L (24)* 0.61+0.01 | 0.954+0.01 0.57+0.04 0.424+0.03 0.50
Task 5 | Neural-Symbolic MLP-L sd-DNNF-P (4) 0.544+0.01 | 0.94+0.01 0.50+0.05 0.23 0.50
Task 5 | Symbolic-Neural Scallop MLP-L (24)"* 0.88 +£0.06 | 0.98 0.96 0.78 £0.02 0.80 +0.26
Task 5 | Symbolic-Symbolic Scallop Fuzzy-P (23) 0.8540.01 | 0.98 0.96 0.744+0.02 0.71+0.05
Task 6 | Neural-Neural MLP-L MLP-L (22) 0.67+£0.01 | 0.96 0.74+£0.01 0.484+0.10 0.48+0.06
Task 6 | Neural-Symbolic MLP-S Fuzzy-P (22) 0.56+£0.09 | 0.81+£0.15 0.53+0.12 0.39+£0.06 0.52+0.03
Task 6 | Symbolic-Neural Scallop GRU-L (16)f 0.80 £0.07 | 0.98 098 £0.01 0.63+£0.18 0.62+0.11
Task 6 | Symbolic-Symbolic Scallop sd-DNNF-P (21)t* | 0.85+0.05 | 0.97 0.97 0.70 £ 0.08 0.76 + 0.10

Table 1: Q2. Test set accuracies (mean =+ std—if non-zero—, 3 runs), for different configurations (“Neural-Symbolic” = Neural cc, Symbolic
NSP). Best model (named “cc model NSP model”) and epoch selected by Avg Acc. on validation set. * = semantic loss; T = calibrated.

and four symbolic approaches. GRUs are augmented with
a simple encoder-decoder, to convert the continuous hidden
state into M discrete classes. For the symbolic approaches,
we encode the ground truth DFA, following [Umili ef al.,
2023] and [Manginas et al., 2024]. Such automaton is a set
of propositional formulas as PREV_STATE A TRANS_LABEL —>
NEXT_STATE, encoded by logic tensor networks [Badreddine
et al., 2022] (here named Fuzzy) and sd-DNNF [Darwiche
and Marquis, 2002], respectively. To assess the effect of nu-
merical stability, we performed computations both in prob-
ability space and log-probability space (suffixes -P and -LP,
respectively). As in the CC module, automata-based NSP’s
predictions are optionally temperature-calibrated.

(sC) Sequence classification. The final output o’ ! of

NSP directly encodes the final state of the automaton. Hence,

we can perform sequence classification in closed form:

Po(f(§)=1]aT)= ¥ Pl l=s).
SEACCEPTING

Training the pipeline. The four stages are combined into:

PW&—H—(ﬁ%&H@&ﬁ@—lMT%

t=0
where P! is the shorthand notation for the already introduced
probabilities with arguments at time ¢. We train our multi-
stage architectures with four loss functions, each weighted
by a A. hyper-parameter. IC and NSP (the latter conditioned
on the previous state) exploit a categorical cross-entropy loss,
while CcC and SC a binary cross-entropy loss. For SC, we
also evaluate the semantic loss proposed by [Umili et al.,
2023]. Preliminary experiments demonstrated that training
diverges due to extremely low initial confidence in image
classification,making the optimizer unable to converge, ex-
cept in very simple tasks. This behavior is well known in the
literature [Manhaeve et al., 2021; van Krieken et al., 2024;
Maene et al., 2024], and, in this paper, it only affects exper-

iments aimed at investigating Q2, where we bootstrap the IC
module with a 5 epochs pre-training phase, using the 1C-loss
only, to ensure a good starting image classification.

6 Experiments

We hereby present an experimental evaluation conducted on
six LTLZinc tasks.® Each consists in a binary classifica-
tion problem on 400 image sequences of variable length (be-
tween 10 and 20), with images sampled from MNIST [Le-
Cun, 1998] and Fashion MNIST [Xiao et al., 2017]. Tasks
are annotated with relational and temporal knowledge (see
Appendix A for all the details). We address research ques-
tions of Section 5 with three distinct experimental activities,
aimed to study the effect of different architectures and avail-
able knowledge. Notice that our goal is not to simply find the
best performing model, but to explore different scenarios and
gain insights on our challenging setting. Appendices B.4, B.5
and B.6 report values of every hyper-parameter.

Q1. To explore neural-only methods, our modular archi-
tecture is instantiated with neural components only (i.e., the
convolutional backbone (1C), MLP-S/L for constraint predic-
tion (cc), and MLP-S/L or GRU-S/L for next-state prediction
(NSP), Fig. 1). Supervision is provided at every level, weight-
ing each loss by the same positive coefficient (A\. = 1.0).
Our expectations were that the neural-only pipeline would
have been good in managing the IC stage, but it was not clear
how it would have performed in the other ones. Results (de-
tailed in Appendix C) confirmed that, despite their perceptual
simplicity, no task can be effectively learned with sequence-
level labels alone. We experienced slow convergence and
sub-optimal performance at the end of training. In fact, in

8LTLZinc generator, our dataset, and code for full reproducibil-
ity: https://github.com/continual-nesy/LTLZinc.

https://github.com/continual-nesy/LTLZinc

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Task 1 Task 2 Task 3

0.90 1.00 z
= 2080 = 4
@9 0.85 7l @ 0 4
£ e £ r £.0.80
z 25 e z L z
Sos0| & £060| os g Category (Color)

x2

$ o 8 oo .;;h‘;; W Soeo; Neural-MLP
= = % x = b /
R 0.75 . * & 0.40 Y o i ,}%ﬁéﬁ%;&‘,, ,,,,,mf% Neural-GRU

07) 0.40 Neural-Symbolic

’ 8.80 0.90 1.00 0.80 0.90 1.00 0.60 0.80 1.00 .
Test Accuracy (CC) Test Accuracy (CC) Test Accuracy (CC) Sym bolic-MLP
Task 4 0.80 Task 5 Task 6 Symbolic-GRU
. ¥ p

E\O-SO :’.:. T g EO 80 g Symbolic-Symbolic
[%2] wv | [92] .
2070 i 207 2070 5 Calibrate (Marker)
g o g g T
£0.60 o x * £ 0.60 £ 0.60 & rue
3 ° e g g ’ False
<050 x 8. w2 <050 ®
o % o %% G| 8 0.50 7 ®
[he ey, . x® o@F e x | |— [£

0.401 9« g A 0.40F . ®

040 3 aias .57
0.60 0.80 0.60 0.80 1.00 0.60 0.80 1.00

Test Accuracy (CC) Test Accuracy (CC)

Test Accuracy (CC)

Figure 2: Q2. CC-NSP accuracy trade-off for different families of architectures (i.e., Neural/Symbolic cc, MLP/GRU/Symbolic NsP). The
dashed line indicates the baseline performance of a deterministic NSP always selecting the state most represented in the training set.

spite of good overall image classification, the optimizer is
often stuck in local equilibrium points, causing performance
for other training objectives to plateau multiple times during
training. Harder reasoning tasks exacerbate this effect.

Q2. This second experimental batch aims to compare neu-
ral vs. neuro-symbolic methods, thus the effect of back-
ground knowledge over multiple reasoning steps, as well as
the interaction between components. We fix a neural percep-
tual backbone (1C), and then build four categories by com-
bining either Neural (red, Fig. 1) or Symbolic (green, Fig. 1)
modules for constraint prediction (CC) and temporal reason-
ing (NSP). We will indicate each configuration with a short-
hand notation, e.g., Symbolic-Neural means Symbolic CcC
and Neural NSP modules. The use of the semantic loss and/or
of calibration (Section 5), are treated as additional hyper-
parameters. Training is performed in two steps: 5 pre-training
epochs for the IC module, and then 20 epochs of training for
the entire architecture. Overall, these experiments confront
96 combinations, across 6 tasks, each seeded 3 times.

Q3. The third batch of experiments focuses on symbolic-
only methods, thus on the Symbolic-Symbolic (green, Fig. 1)
architectures. We exploit probability calibration (Section 5)
as the only form of learning, to minimize noise and precisely
pinpoint the effect of variables such as upstream label uncer-
tainty, and supervision “distance” from the reasoning com-
ponent. We also consider replacing IC and CC modules with
specific “oracles” returning the ground truth labels, possibly
with some level of corruption. In particular, we either replace
only IC or both IC and CC. An oracle is characterized by two
hyper-parameters: how ground truth is corrupted before feed-
ing the next module, and the amount of corruption in terms of
noise probability p. “Flip oracles” return correct labels with
probability 1 — p, and random labels with probability p, both
with confidence 1.0. “Confidence oracles”, on the other hand,

always return correct labels with random confidence between
1 — p and 1.0, redistributing the remaining mass to other la-
bels. When p = 0.0, both oracles yield ground truth labels
with maximum confidence, referred to as “perfect oracle”.

6.1 The Impact of Neuro-Symbolic Approaches

Fig. 2 highlights the trade-offs between CC and NSP, as a
function of the different Neural/Symbolic implementations.
Exploiting a symbolic component both for cC and NSP
(Symbolic-Symbolic, brown points) allows to achieve the
best trade-off for every task considered. Unlike other combi-
nations, these approaches consistently outperform naive base-
lines which always return the most probable class observed
in the training set, both for NSP (dashed horizontal line), and
CC (not shown, outside the left boundary of plots). The ad-
ditional learning capacity provided by temperature calibra-
tion (dots vs. crosses) has an overall limited effect. With
the exception of tasks 1, 2 and 4, neural modules for NSP
(clusters Symbolic-MLP/GRU and Neural-MLP/GRU, blue,
orange, red and purple) achieve unsatisfactory performance,
even when fed from highly-accurate symbolic CC predictions.
These architectures, at times, perform on par with the most
probable guessing baseline, and often below it. Symbolic
modules for NSP are characterized by a large dispersion, due
to optimization challenges: this is especially true when ex-
ploiting neural cC modules (Neural-Symbolic, green), but it
can also be observed in combination with symbolic CC mod-
ules (Symbolic-Symbolic, brown). Conversely, neural NSP,
even though often showing unsatisfactory performance, is
characterized by a much smaller inter-experiment variance.
Table 1 summarizes performance for each task. Overall, the
Symbolic-Symbolic category dominates over other groups,
with the exception of task 5, where it performs slightly worse
than the Symbolic-Neural family. When observing constraint
accuracy alone, a downstream Symbolic NSP module of-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

— ~1.0
= S 1.00 =
> 0
< S5 =

>
g 8 g
5 3 0.90 5 0.8
3 o 3
< < <
+ i +
= a 0.80 liuj 0.6

0 5 10 15 19 0 5 10 15 19
Epoch Epoch
Oracle (color) —— Flip (0.2) Architecture (line style) IC/CC Oracle + Fuzzy

—— Perfect Confidence (0.05) —e— |C Oracle + Scallop + Fuzzy ~+--|C/CC Oracle + sd-DNNF
—— Flip (0.05) Confidence (0.1) —x—|C Oracle + Scallop + sd-DNNF
—— Flip (0.1) —— Confidence (0.2)

Figure 3: Q3. Accuracies for Task 4 with oracular predictors. Oracle types (perfect, flip, confidence) are described in Section 6.

ten negatively affects performance, with task 4 presenting
the highest delta between Symbolic-Symbolic and Symbolic-
Neural. Conversely, when focusing on next state prediction,
an upstream Symbolic CC module is beneficial to a down-
stream Symbolic temporal reasoning module, however this
clear-cut performance improvement is flipped when the NSP
module is Neural. This behavior hints at complex inter-
actions between CC and NSP modules, where architectural
choices bi-directionally affect both components. Other hyper-
parameters have negligible effect. Early stopping is almost
always triggered near the end of training, hinting at a possi-
bly incomplete convergence. Temperature calibration is of-
ten selected, but performance improvements are minor (cfr.
with Fig. 2), and the semantic loss proposed by [Umili et
al., 2023] is not significantly different than traditional binary
cross-entropy in our setting. Variances across three runs for
each set of hyper-parameters are low. Comparing this obser-
vation to Fig. 2 (which, instead, highlights hyper-parameter-
based variance), it can be observed that convergence in multi-
stage neuro-symbolic sequence classification is heavily de-
pendent on architectural choices, but relatively unaffected by
parameter initialization. Task 3 is an exception and it presents
a failure case of the Symbolic-Symbolic family, due to train-
ing instability. When able to converge, however, it is the only
approach capable of improving over random guessing for se-
quence classification for this task (we reported this sample
result surrounding the model name with brackets).

6.2 The Impact of Oracular Predictors

Fig. 3 shows the effect on an exemplar task (Task 4) of oracu-
lar predictors on symbolic temporal reasoning modules. Fig-
ures 2, 3 and 4, in the supplementary materials, show the
same plots for every task. In general, the trainable tempera-
ture parameters are quickly optimized, with curves following
a mostly horizontal trend. However, flip oracles (blue, green
and purple lines) are characterized both by larger variance
and inter-epoch oscillations, compared to confidence oracles
(orange, pink and brown), which present a remarkably sta-
ble behavior. This effect is present in every task, regardless
of reasoning difficulty. Noise injection, however, affects the
two oracles differently: performance for flip oracles degrades
linearly when increasing noise, while confidence oracles are
characterized by non-linear behavior. Small amounts of noise
do not affect confidence oracles appreciably, while larger

amounts tend to harm performance more than the flip oracle.
This effect is more evident for harder reasoning tasks: for in-
stance, in task 4, a noise of p = 0.1 is enough to cause random
guessing performance (Fig. 5 in the Appendix). With oracles,
the effect of different automata encodings is virtually non-
existent (fuzzy and sd-DNNF markers overlap almost every-
where). IC oracles are consistently more affected by noise,
compared to IC/CC ones. This behavior seems counterintu-
itive, as the Scallop module performs near-exact inference;
however, it is in line with the hypothesis of uncertainty accu-
mulation over multiple steps of reasoning. When focusing on
constraint performance (Fig. 3 in the supplementary materi-
als), flip oracles tend to have stable performance, while con-
fidence oracles can exploit temperature parameters to achieve
a small learning capacity (slight upward trend across epochs).
In general, flip oracles are more robust to noise, with confi-
dence oracles achieving unsatisfactory performance (outside
plot boundaries, see Fig. 5 in the Appendix) for harder tasks
or higher (p > 0.05) degrees of uncertainty. This behavior
clashes with the desirable property of predictive confidence
correlating with uncertainty, which is one of the advantages
of neuro-symbolic Al, compared to (uncalibrated) neural net-
works. Flip oracles achieving better performance than confi-
dence oracles, for similar levels of noise, hint at the fact that
an overconfidently-wrong classifier can be more successful
than a reluctantly-correct one, in temporal reasoning settings.

7 Conclusions

We extended knowledge-driven sequence classification to a
relational setting, introducing a novel benchmarking frame-
work and baselines for neural-only and multi-stage neuro-
symbolic methods in a knowledge-driven, and long-temporal-
horizon regime. Experiments outline a challenging setting,
where neural networks struggle to generalize and state-of-
the-art neuro-symbolic methods fall short when stacked: tem-
poral reasoners extended to a relational domain can fail
even with full background knowledge available, and general-
purpose first-order reasoners suffer from training instabilities
in recurrent settings. We argue that the proposed benchmark-
ing framework can benefit the neuro-symbolic and temporal
reasoning communities, further pushing research boundaries
towards more expressive frameworks, tighter neuro-symbolic
integration, and more robust time-driven approaches.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

M.L. was supported by CAI4DSA actions (Collaborative Ex-
plainable neuro-symbolic Al for Decision Support Assistant),
PARTENARIATO ESTESO “Future Artificial Intelligence
Research - FAIR”, SPOKE 1 “Human-Centered AI” Univer-
sitd di Pisa, CUP B13C23005640006. The scholarship by
L.S.L. was funded by the Italian Ministry of University and
Research (DM 351/2022, PNRR). S.M. was supported by the
University of Siena (Piano per lo Sviluppo della Ricerca -
PSR 2024, F-NEW FRONTIERS 2024), under the project
“TIme-driveN StatEful Lifelong Learning” (TINSELL) and
also by the project “CONSTR: a COllectionless-based Neuro-
Symbolic Theory for learning and Reasoning”, PARTENAR-
IATO ESTESO “Future Artificial Intelligence Research -
FAIR”, SPOKE 1 “Human-Centered AI” Universita di Pisa,
“NextGenerationEU”, CUP I53C22001380006. L.S.L. schol-
arship was funded by the Italian Ministry of University and
Research (DM 351/2022, PNRR). We kindly thank Luc De
Raedt and Nikolaos Manginas for their insightful comments.

References

[Angluin, 1982] Dana Angluin. Inference of reversible lan-
guages. Journal of the ACM (JACM), 29(3):741-765,
1982.

[Badreddine ef al., 2022] Samy Badreddine, Artur d’Avila
Garcez, Luciano Serafini, and Michael Spranger. Logic
tensor networks. Artificial Intelligence, 303:103649, 2022.

[Besold et al., 2021] Tarek R Besold, Artur d’Avila Garcez,
Sebastian Bader, Howard Bowman, Pedro Domingos, Pas-
cal Hitzler, Kai-Uwe Kiihnberger, Luis C Lamb, Priscila
Machado Vieira Lima, Leo de Penning, et al. Neural-
symbolic learning and reasoning: A survey and interpre-
tation 1. In Neuro-Symbolic Artificial Intelligence: The
State of the Art, pages 1-51. 10S press, 2021.

[Camacho and Mcllraith, 2019] Alberto Camacho and
Sheila A Mcllraith. Learning interpretable models
expressed in linear temporal logic. In Proceedings of the
International Conference on Automated Planning and
Scheduling, volume 29, pages 621-630, 2019.

[Chakraborty ef al., 2022] Indrasis Chakraborty, Brian M
Kelley, and Brian Gallagher. Device classification for in-
dustrial control systems using predicted traffic features.
Frontiers in Computer Science, 4:777089, 2022.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772-799, 2008.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. Journal of Arti-
ficial Intelligence Research, 17:229-264, 2002.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In Ijcai, volume 13, pages 854-860,
2013.

[De Raedt er al., 2016] Luc De Raedt, Kristian Kersting, Sri-
raam Natarajan, and David Poole. Statistical relational ar-
tificial intelligence: Logic, probability, and computation.

Synthesis lectures on artificial intelligence and machine
learning, 10(2):1-189, 2016.

[D’ Antoni and Veanes, 2017] Loris D’Antoni and Margus
Veanes. The power of symbolic automata and transduc-
ers. In Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-
28, 2017, Proceedings, Part I 30, pages 47-67. Springer,
2017.

[Galassi and Giordana, 2005] Ugo Galassi and Attilio Gior-
dana. Learning regular expressions from noisy sequences.
In International Symposium on Abstraction, Reformula-
tion, and Approximation, pages 92—106. Springer, 2005.

[Gnecco et al., 2015] Giorgio Gnecco, Marco Gori, Stefano
Melacci, and Marcello Sanguineti. Foundations of support
constraint machines. Neural computation, 27(2):388-480,
2015.

[Green et al., 2007] Todd J Green, Grigoris Karvounarakis,
and Val Tannen. Provenance semirings. In Proceedings
of the twenty-sixth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 3140,
2007.

[Ivaturi et al., 2021] Praharsh Ivaturi, Matteo Gadaleta,
Amitabh C Pandey, Michael Pazzani, Steven R Steinhubl,
and Giorgio Quer. A comprehensive explanation frame-
work for biomedical time series classification. IEEE jour-
nal of biomedical and health informatics, 25(7):2398—
2408, 2021.

[Kimmig er al., 2017] Angelika Kimmig, Guy Van den
Broeck, and Luc De Raedt. Algebraic model counting.
Journal of Applied Logic, 22:46-62, 2017.

[LeCun, 1998] Yann LeCun. The mnist database of hand-
written digits. http://yann. lecun. com/exdb/mnist/, 1998.

[Li et al., 2023] Ziyang Li, Jiani Huang, and Mayur Naik.
Scallop: A language for neurosymbolic programming.
Proceedings of the ACM on Programming Languages,
7(PLDI):1463-1487, 2023.

[Luo et al., 2022] Weilin Luo, Hai Wan, Delong Zhang,
Jianfeng Du, and Hengdi Su. Checking Itl satisfiabil-
ity via end-to-end learning. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 1-13, 2022.

[Luo ef al., 2024] Weilin Luo, Pingjia Liang, Junming Qiu,
Polong Chen, Hai Wan, Jianfeng Du, and Weiyuan Fang.
Learning to check Itl satisfiability and to generate traces
via differentiable trace checking. In Proceedings of the
33rd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 996—1008, 2024.

[Maene et al., 2024] Jaron Maene, Vincent Derkinderen, and
Luc De Raedt. On the hardness of probabilistic neurosym-
bolic learning. arXiv preprint arXiv:2406.04472, 2024.

[Manginas et al., 2024] Nikolaos =~ Manginas, George
Paliouras, and Luc De Raedt. Nesya: Neurosymbolic
automata. arXiv preprint arXiv:2412.07331, 2024.

[Manhaeve ef al., 2018] Robin Manhaeve, Sebastijan Du-
mancic, Angelika Kimmig, Thomas Demeester, and Luc

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

De Raedt. Deepproblog: Neural probabilistic logic pro-
gramming. Advances in neural information processing
systems, 31, 2018.

[Manhaeve er al., 2021] Robin Manhaeve, Giuseppe Marra,
and Luc De Raedt. Approximate inference for neural prob-
abilistic logic programming. In KR, pages 475-486, 2021.

[Marra et al., 2024] Giuseppe Marra, Sebastijan Dumancié,
Robin Manhaeve, and Luc De Raedt. From statistical re-
lational to neurosymbolic artificial intelligence: A survey.
Artificial Intelligence, page 104062, 2024.

[Mukherjee ef al., 2022] Prasita Mukherjee, Haoteng Yin,
Susheel Suresh, and Tiark Rompf. Octal: Graph repre-
sentation learning for 1tl model checking. arXiv preprint
arXiv:2207.11649, 2022.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J
Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. Minizinc: Towards a standard
cp modelling language. In Infernational Conference
on Principles and Practice of Constraint Programming,

pages 529-543. Springer, 2007.

[Netzer er al., 2011] Yuval Netzer, Tao Wang, Adam Coates,
Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature
learning. In NIPS workshop on deep learning and unsu-
pervised feature learning, volume 2011, page 4. Granada,
2011.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In 18th annual symposium on foundations of computer sci-
ence (sfcs 1977), pages 46-57. ieee, 1977.

[Roesener et al., 2016] Christian Roesener, Felix
Fahrenkrog, Axel Uhlig, and Lutz Eckstein. A scenario-
based assessment approach for automated driving by using
time series classification of human-driving behaviour. In
2016 IEEE 19th international conference on intelligent
transportation systems (ITSC), pages 1360-1365. IEEE,
2016.

[Rozier and Vardi, 2007] Kristin Y Rozier and Moshe Y
Vardi. Ltl satisfiability checking. In International SPIN
Workshop on Model Checking of Software, pages 149-167.
Springer, 2007.

[Umili and Capobianco, 2024] Elena Umili and Roberto
Capobianco. Deepdfa: Automata learning through neural
probabilistic relaxations. In ECAI 2024, pages 1051-1058.
Tos Press, 2024.

[Umili et al., 2023] Elena Umili, Roberto Capobianco, and
Giuseppe De Giacomo. Grounding ItlIf specifications in
image sequences. In Proceedings of the International Con-
ference on Principles of Knowledge Representation and
Reasoning, volume 19, pages 668-678, 2023.

[van Krieken et al., 2022] Emile van Krieken, Erman Acar,
and Frank van Harmelen. Analyzing differentiable fuzzy
logic operators. Artificial Intelligence, 302:103602, 2022.

[van Krieken erf al., 2024] Emile van Krieken, Pasquale Min-
ervini, Edoardo M Ponti, and Antonio Vergari. On the in-

dependence assumption in neurosymbolic learning. arXiv
preprint arXiv:2404.08458, 2024.

[Veanes er al., 2010] Margus Veanes, Nikolaj Bjgrner, and
Leonardo De Moura. Symbolic automata constraint solv-
ing. In Logic for Programming, Artificial Intelligence, and
Reasoning: 17th International Conference, LPAR-17, Yo-
gyakarta, Indonesia, October 10-15, 2010. Proceedings
17, pages 640-654. Springer, 2010.

[Veanes, 2013] Margus Veanes. Applications of symbolic fi-
nite automata. In Implementation and Application of Au-
tomata: 18th International Conference, CIAA 2013, Hali-
fax, NS, Canada, July 16-19, 2013. Proceedings 18, pages
16-23. Springer, 2013.

[Walke et al., 2021] Homer Walke, Daniel Ritter, Carl Trim-
bach, and Michael Littman. Learning finite linear tempo-
ral logic specifications with a specialized neural operator.
arXiv preprint arXiv:2111.04147, 2021.

[Wang et al., 2024] Liyuan Wang, Xingxing Zhang, Hang
Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2024.

[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland
Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms, 2017.

[Xie et al., 2021] Yaqgi Xie, Fan Zhou, and Harold Soh. Em-
bedding symbolic temporal knowledge into deep sequen-
tial models. 1In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 4267-4273.
IEEE, 2021.

