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Abstract
The rapid growth of multimedia content has driven
the development of recommender systems. Most
previous work focuses on uncovering latent rela-
tionships among items to learn better representa-
tions. However, this approach does not sufficiently
account for user affinities, potentially leading to an
imbalance in the structure modeling of users and
items. Moreover, the sparsity and imbalance of
user-item interactions further hinder effective rep-
resentation learning. To address these challenges,
we propose a framework called BLAST, which
BaLances structures and interActions via large lan-
guage modelS and optimal Transport for multi-
modal recommendation. Specifically, we utilize
large language models to summarize side informa-
tion and generate user profiles. Based on these
profiles, we design an intra- and inter-entity struc-
ture balancing module to capture item-item and
user-user relationships, integrating these affinities
into the final representations. Furthermore, we im-
pose constraints on negative sample selection, aug-
ment the training data with false negative items
and the optimal transport algorithm, thereby lead-
ing to smoother interactions. We evaluate BLAST
on three real-world datasets, and the results demon-
strate that our method significantly outperforms
state-of-the-art baselines, which validates the supe-
riority and effectiveness of BLAST.

∗Corresponding author

1 Introduction
In the context of the internet age and the resulting information
overload, the importance of recommendation systems is be-
coming progressively more evident. The emergence of mul-
timodal data (e.g., text, images, audio, video, etc.) provides
new views to understand user preferences and behavior pat-
terns. Multimodal recommendation addresses the limitations
of single-modal information, offering more efficient solutions
for applications such as e-commerce and social media.

Graph-based recommendation methods have shown signif-
icant performance by modeling higher-order relationships be-
tween users and items [Wang et al., 2019; He et al., 2020;
Liu et al., 2022a]. In light of these studies, some methods
attempted to explicitly learn the latent item-item semantic
graphs [Zhang et al., 2021; Zhou and Shen, 2023]. How-
ever, user-side information is difficult to access due to pri-
vacy policies, which makes the modeling of semantic rela-
tionships between users a challenging task, leading to Struc-
ture imbalance, as illustrated in Figure 1 (a). To address
this issue, some studies have introduced Large Language
Models (LLMs) to generate user profiles [Ren et al., 2024;
Ma et al., 2024], while others have integrated social graphs
from content platforms into graph-based recommendation
models to enrich interest patterns [Wu et al., 2022; Wei et
al., 2024]. However, simply incorporating user profiles gen-
erated by LLMs into ID embeddings fails to capture higher-
order user-user relationships. Moreover, inconsistencies be-
tween social and behavioral representations may lead to noise
propagation [Xiao et al., 2023].

Besides structure imbalance, recommendation systems
also suffer from the Interaction imbalance [Liu et al.,
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Figure 1: (a) Visualization of relationship modeling in multimodal
recommendation models. (b) Distribution of user activity and item
popularity in the Clothing dataset across 200 samples. (c) Visualiza-
tion of sampling from interaction data.

2022b; Wahab et al., 2022; Liu et al., 2023c], which refers
to the uneven distribution of user activity and item popularity
within interaction data. Here, activity indicates the number of
items a user interacts with, while popularity denotes the num-
ber of users interacting with an item. As shown in Figure 1
(b), the disparity in user activity and item popularity is so pro-
nounced that many users and items suffer from data sparsity,
hindering the learning of high-quality user and item represen-
tations [Liu et al., 2021; Xu et al., 2024]. To enrich the behav-
ioral history of sparsely-interacted entities (users or items),
more potential items should be uncovered. However, they
are often obscured by false negative noise [Li et al., 2021;
Ren et al., 2024]. Suppose a female user has not been ex-
posed to an item n that she might like, which is similar to a
previously purchased item m, as illustrated in Figure 1 (c).
During training, item n may be treated as a negative sample,
which can lead the recommender to suppress content the user
is actually interested in. This not only wastes potential items
but also misguides the modeling of user preferences.

In light of the above limitations and challenges, we pro-
pose a novel framework called BLAST that BaLances struc-
tures and interActions via large language modelS and op-
timal Transport for multimodal recommendation. To rec-
tify structure imbalance, we first generate user profiles us-
ing large language models. Then, we design an intra- and
inter-entity structure balancing module, which converts mul-

timodal features into user-user and item-item graphs, bridg-
ing the semantic gap between multimodal information and
collaborative signals. Finally, we perform graph convolution
on three graphs (the user-item graph, the user-user graph, and
the item-item graph) and fuse their outputs to derive a com-
prehensive representation.

To mitigate interaction imbalance, we first constrain the se-
lection of negative samples when generating the training set
to avoid interference from false negatives. Furthermore, to
enrich entities with few interactions, we augment the train-
ing data with false negative items, then refine the augmented
dataset by solving an Optimal Transport (OT) problem, thus
providing a solid foundation for efficient representation learn-
ing. Note that our OT Augmentation is model-agnostic,
which means that it can serve as a plug-and-play tool for a
wide range of recommendation models to boost performance.

Our main contributions is summarized as follows:

• We propose a novel framework called BLAST to rec-
tify imbalances in structure and interaction for multime-
dia recommendation, which can effectively fuse multi-
modal information and collaborative signals to improve
item and user representations.

• We highlight the importance of false negative items and
propose an effective data augmentation strategy that can
be seamlessly incorporated into different recommenda-
tion models to enhance their performance.

• Extensive experiments on three real-world datasets
demonstrate the superiority and effectiveness of BLAST
in multimedia recommendation.

To foster reproducible research, our code is made publicly
available at: https://github.com/UPCLHD/BLAST-master.

2 Related Work
2.1 Multimodal Recommendation
Multimodal recommendation leverages multimedia content
to model user preferences and item attributes. Previous
work tends to treat multimedia features as side informa-
tion to enrich item representations [He and McAuley, 2016;
Liu et al., 2017]. However, due to the semantic gap be-
tween multimodal information and collaborative signals, di-
rectly fusing the two may not be optimal. To this end, several
graph-based recommendation methods [Zhang et al., 2021;
Guo et al., 2024] have attempted to model item-item relation-
ships by converting multimodal features into bipartite graphs.
Nevertheless, the user-item interaction graphs in these meth-
ods are susceptible to noise introduced by popularity bias
or accidental clicks. To address this issue, recent research
has explored cropping redundant edges [Rong et al., 2020;
Zhou et al., 2023b; Liu et al., 2023a]. In this work, we ar-
gue that user-user relationships are as important as item-item
ones, and thus we devise a user-item balanced structure.

2.2 Large Language Models for Recommendation
Recently, several studies have attempted to introduce LLMs
into recommendation tasks as inference models [Bao et al.,
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2023]. Leveraging the powerful text comprehension and in-
ference capabilities of LLMs, the cross-domain recommen-
dation task has been extended [Vajjala et al., 2024], where
the behavior history of the same user in one domain can be
applied to other domains to alleviate the cold start problem.
RLMRec [Ren et al., 2024] utilizes LLMs to refine valu-
able text to learn informative representations. XRec [Ma et
al., 2024] builds an explainable recommendation system and
generates data by LLMs for supervised training. To enhance
interactivity, Chat-Rec [Gao et al., 2023] designs a conver-
sational system which generates recommendations by LLMs.
However, there are some disadvantages of using LLMs di-
rectly as recommenders, such as the illusion issue and slow
inference speed. Therefore, in this paper, we only employ
LLMs as a preprocessor to help us refine the textual informa-
tion of items as well as to summarize user preferences.

3 Preliminaries
In our recommendation scenario, we denote the set of users
to be U(|U | = M), the set of items to be I(|I| = N), and
the user-item interaction matrix to be R ∈ RM×N , where
Rui = 1 if user u ∈ U has interacted with item i ∈ I ,
otherwise Rui = 0 . zu, zi ∈ Rd is the ID embedding of
u and i, respectively, where d is the embedding dimension.
Nu indicates the set of items that user u has interacted with
(positive items). We define the triple (u, i, j) for training,
where i ∈ Nu, j ∈ I , but j /∈ Nu. j is selected from negative
items at random. Each element of R with a value of 1 (Rui =
1) corresponds to a triple (u, i, j), all of which make up the
entire training set D. We adopt the BPR loss to train models:

LBPR = −
∑
u∈U

∑
i∈Nu

∑
j /∈Nu

ln(yui − yuj), (1)

where yui denotes the predicted preference score of user u for
item i. The purpose of the recommendation system is to offer
the top-k uninteracted items with the highest score for user u.

In this paper, we set the multimodal features of item i as
xm
i ∈ Rdm , where m ∈ {v, t} is the modality and dm is the

dimension of the features over modality m. v and t denote
the visual and textual modalities, respectively.

4 Method
In this section, we describe the core components of BLAST:
User and Item Profile Generator, Intra- and Inter-entity Struc-
ture Balancing Module, and OT Augmentation. Figure 2
shows the overall architecture.

4.1 User and Item Profile Generator
Following [Ren et al., 2024; Ma et al., 2024], We extracted
user and item profiles by feeding prompts and raw data into
the LLM. Specifically, the item profile Pi generated by LLM
can be described as follows:

Pi =

{
LLM(Mi, li, di), if di exists,
LLM(Mi, li, ci, ru,i), otherwise,

(2)

where Mi denotes the pre-defined item prompt, li, di, and ci
are title, description and categories of item i, respectively, and

ru,i represents the review of user u on item i. To extract deep
contextual insights from LLMs, Mi is designed to illustrate
the data format, task details, and expected output.

Sampled from items that user u has interacted with, the
user profile is generated as follows:

Pu = LLM(Mu, li, Pi, ru,i|i ∈ Nu), (3)

where Mu represents the pre-defined user prompt. Mu elab-
orates the input and output formats for the LLM and asks it
to analyze user preferences. Finally, combining the side in-
formation with collaborative signals, we obtain the brief but
informative item profile Pi and user profile Pu.

To capture the semantic relationships in the text, Pu and Pi

need to be encoded to fixed-length representations:

yu = T (Pu),x
t
i = T (Pi), (4)

where T denotes the text encoder. xt
i ∈ Rd and yu ∈ Rd are

the text-modality (t) feature of item i and user u, respectively.

4.2 Intra- and Inter-entity Structure Balancing
Module

Item-Item and User-User Graph Constructing
Following [Zhou and Shen, 2023], we construct an initial
modality-aware item-item graph Sm by features of each
modality m. Sm

ij is the element of the matrix Sm ∈ RN×N in
row i, column j, which is calculated by the cosine similarity
between the features of item i and item j in modality m:

Sm
ij =

(xm
i )⊤xm

j

∥xm
i ∥

∥∥xm
j

∥∥ , (i, j ∈ I). (5)

Then, kNN sparsification [Chen et al., 2009] is conducted.
For each item i, only the top-k similar edges are retained:

Ŝm
ij =

{
1, Sm

ij ∈ top− k(Sm
i ),

0, otherwise.
(6)

We set k to 10, and Ŝm
ij is normalized to S̃m, following [He

et al., 2020]. Then, information from all modalities are ag-
gregated into the final item-item graph SI =

∑
m∈M αmS̃m.

Beyond the item-item graph SI , the user-user graph SU

is constructed from textual features yu extracted from user
profiles. Similarly, after getting the user similarity matrix, we
perform kNN sparsification:

SU
ij =

(yi)
⊤yj

∥yi∥ ∥yj∥
, (i, j ∈ U), (7)

ŜU
ij =

{
1, SU

ij ∈ top− k(SU
i ),

0, otherwise.
(8)

ŜU
ij is then normalized to SU . Since there is no image for

users, SU is the final user-user graph.

Item and User Representation Constructing
Graph-based recommendation methods usually aggregate and
propagate information between nodes to model higher-order
relationships in user interactions [Zhang et al., 2021; Liu et
al., 2023b; Guo et al., 2024]. Inspired by these studies, we
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Figure 2: The overall framework of our proposed structure and interaction balanced model BLAST.

conduct graph convolutions on the item-item graph SI , the
user-user graph SU , and the user-item graph A, respectively.
User-Item graph convolution. Following [Zhou and Shen,
2023], we conduct the edge pruning and normalization on

A =

(
0 R

R⊤ 0

)
to get A′. Then, we perform the graph

convolution:

H
(l+1)
UI = A′H

(l)
UI , l ∈ [0, LUI ], (9)

where H(l)
UI ∈ R(M+N)×d is the l-th layer embedding matrix,

H
(0)
UI is initialized by ID embedding zu, zi, and LUI is the

number of layers of the user-item graph convolution. The
embedding matrices obtained at each layer are combined to
form the representation:

HUI =
1

LUI + 1

LUI∑
l=0

H l
UI . (10)

Item-Item and User-User graph convolution. In addition to
modeling the relationship between users and items, we also
mine the relevance within items and users. Therefore, we
conduct graph convolution on the item-item graph SI :

H
(l+1)
I = SIH

(l)
I , l ∈ [0, LII ], (11)

where H(l)
I ∈ RN×d is the l-th layer item embedding matrix,

H
(0)
I is initialized by item ID embedding zi(i ∈ I), and LII

is the number of layers of the item-item graph convolution.
Analogously, the user embedding matrix H

(l)
U ∈ RM×d is

obtained by graph convolution on the user-user graph SU :

H
(l+1)
U = SUH

(l)
U , l ∈ [0, LUU ]. (12)

Embedding fusion. To integrate relationships from multi-
ple graph convolutions, we fuse the user-item, item-item, and
user-user embeddings to obtain the final representation:

fi = f I
i + fUI

i , i ∈ [1, N ], (13)

hu = hU
u + hUI

u , u ∈ [1,M ], (14)

where f I
i and hU

u are the embedding in H
(LII+1)
I and

H
(LUU+1)
U , respectively, fUI

i and hUI
u are the embedding in

HUI . Then, the predicted preference scores are obtained by
calculating the inner product of user and item representations:

yui = hT
ufi. (15)

4.3 OT Augmentation
As illustrated in Figure 1 (c), given a user u, the items which
have interacted with u are called positive items (Nu), other-
wise negative items. BPRloss (Eqs. 1) encourages the score
of a positive pair (user u, positive item m) to be higher than a
negative pair (user u, negative item n), where m and n sam-
pled from positive items and negative items, respectively. A
further distinction can be made among negative items: true
negative items Tu, which are those that user u indeed dis-
likes, such as o, and false negative items Fu, which are those
that user u has not seen but is interested in, such as n. In our
study, false negative items are defined based on multimodal
features. Specifically, for a positive item m, items connected
to it in either the visual item-item graph (Ŝv

mn = 1) or the
textual item-item graph (Ŝt

mn = 1) are regarded as its false
negative items.

Negative Pairs Sampling Restriction
If user u has purchased item m, she may also be interested in
item n because of their similar appearance or function. How-
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Method Aug ratio R@10 N@10

Original - 0.0613 0.0332
Add 1x 100% 0.0641 0.0346

Add to 10 62% 0.0640 0.0348
OT Aug. 10% 0.0651 0.0351

Table 1: Performance under different augmentation strategies on the
Clothing dataset. Aug ratio indicates the ratio of increased data to
original data.

ever, if item n is mistakenly included in a negative pair, the
model will be trained to assign it a lower prediction score,
which may lead the model to misrepresent the user’s true
preferences. Therefore, false negative items should be ex-
cluded from negative pairs. To this end, we impose a con-
straint on negative pair sampling in the BPR loss. Specifi-
cally, we restrict negative samples to be drawn only from true
negative items Tu, as shown in Figure 1 (c).

Effect of False Positive Items
Furthermore, we believe that positive samples can also be
taken from false negative items. To verify this, we conduct
an experiment. Specifically, we build positive pairs using
false negative items to augment the Clothing dataset and train
a classical model FREEDOM under different ugmentation
strategies. The results are demonstrated in Table 1 (higher
is better). The experimental settings are as follows: (1) The
original dataset without any augmentation. (2) Augment pos-
itive pairs by sampling from the false negative items until the
number of training data doubles. (3) Augment positive pairs
by sampling from the false negative items until each user in-
teracts with 10 items at least. (4) Augment positive pairs with
guidance of OT. We can clearly observe that false negative
items can be used to supplement samples for items and users
that lack interactions, thus compensating for the imbalance of
interaction data and improving recommendation accuracy.

Data Augmentation via Sinkhorn
In this work, we reformulate the task of sampling positive
pairs from false negative items for data augmentation as an
OT problem. The objective of OT is to find an assignment
matrix P that minimizes the cost T =

∑
i,j CijPij , while

satisfying the constraint
∑

j Pij = ai and
∑

i Pij = bj . C is
the cost matrix. By converting C into −C, the cost becomes
T = −

∑
i,j(−Cij)Pij . The new objective is to maximize∑

i,j(−Cij)Pij , which is equivalent to finding a P that max-
imizes the inner product with −C. As illustrated in Figure 2,
we set ai, bj as the average user activity and item popular-
ity of the dataset, respectively, and fill C with the user-item
interaction matrix R and the item-item graph Ŝ

m

ij :

Cij =

{
1, if Rij = 1,
−1, if j ∈ Gi,
0, otherwise,

(16)

where Gi denotes the set of items that item i has interacted
with in graph Ŝm

ij (m ∈ {v, t}), which includes items most
visually or textually similar to item i. To maximize the inner
product, the elements of P and −C tend to align. Therefore,

at positions where Rij = 1 (−Cij = −1), Pij is encour-
aged to take a negative value, thereby reducing redundancy
between the augmented and original data. In contrast, when j
is a false negative item (−Cij = 1), Pij tends to be assigned
a positive value, thus increasing its likelihood of being se-
lected as part of a positive pair. Furthermore, the row sum (ai)
and column sum (bj) of P are restricted to match the average
user activity and item popularity of the dataset, respectively.
This ensures that users and items with fewer interactions are
provided with more augmented data.

Following [Sarlin et al., 2020; Izquierdo and Civera, 2024],
we use the Sinkhorn algorithm to get P . Finally, we con-
struct a set H = {(u, i)|Pui ∈ top − q(P )} by collecting
the indices of the top q largest elements in the assignment
matrix P , where q = r × |D|. r is the augmentation ratio,
and |D| is the size of the original training set. We add H
to the original dataset to obtain the augmented training set
DH = {(u, i, j)|(u, i) ∈ H or Rui = 1, j ∈ Tu}, which is
used to train recommendation models later.

The computational complexity of OT Augmentation is
O(MN). Both OT Augmentation and LLM-based profile
generation are conducted as preprocessing steps before train-
ing, and thus only need to be executed once per dataset, with
the results reused throughout the training process. More-
over, BLAST performs LightGCN-style graph convolutions
on three graphs using PyTorch’s sparse matrix operations for
efficiency. Its computational complexity is O(d · (∥R∥0 +
M + N)), where ∥R∥0 denotes the number of non-zero en-
tries in the user-item interaction matrix R.

5 Experiment
To validate the effectiveness of our proposed method, we con-
duct experiments on three widely used datasets to answer the
following research questions:

• RQ1: How does BLAST perform compared with state-
of-the-art multimodal recommendation models?

• RQ2: How does OT Augmentation perform when ap-
plied to other models?

• RQ3: How do different components of BLAST con-
tribute to the overall performance?

• RQ4: How sensitive is BLAST to perturbations in hy-
perparameters?

5.1 Experiments Settings
Datasets. Following [Zhang et al., 2021; Zhou and Shen,
2023], we conduct experiments on three subsets of the Ama-
zon dataset [McAuley et al., 2015]: (1) Baby, (2) Sports
and Outdoors, (3) Clothing, Shoes and Jewelry. We refer to
them simply as Baby, Sports and Clothing. Each dataset pro-
vides both visual and textual information. The visual infor-
mation consists of 4096-dimensional features extracted from
item images. The textual information includes the title, de-
scription, categories, and brand of the items. Following [Ren
et al., 2024; Zhang et al., 2023], we encode all textual data
(including user and item profiles) by a pre-trained text en-
coder [Izacard et al., 2022].
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model Baby Sport Clothing

R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

BPR 0.0379 0.0607 0.0202 0.0261 0.0452 0.069 0.0252 0.0314 0.0211 0.0315 0.0118 0.0144
LightGCN 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0311 0.0387 0.0361 0.0544 0.0197 0.0243

BM3 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0422 0.0621 0.0231 0.0281
LATTICE 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 0.0492 0.0733 0.0268 0.0330

FREEDOM 0.0627 0.0992 0.0330 0.0424 0.0717 0.1089 0.0385 0.0481 0.0629 0.0941 0.0341 0.0420
MGCN 0.0620 0.0964 0.0339 0.0427 0.0729 0.1106 0.0397 0.0496 0.0641 0.0945 0.0347 0.0428

LGMRec 0.0644 0.1002 0.0349 0.0440 0.0720 0.1068 0.0390 0.0480 0.0555 0.0828 0.0302 0.0371

BLAST 0.0767 0.1171 0.0426 0.0529 0.0781 0.1186 0.0422 0.0526 0.0681 0.1004 0.0372 0.0453
Improv. 19.10% 16.87% 22.06% 20.23% 7.13% 7.23% 6.30% 6.05% 6.24% 6.24% 7.20% 5.84%

Table 2: Overall performances of BLAST and baselines on three datasets. The best results are bolded and the second best results are
underlined. Improv. indicates the improvement of BLAST on second best results. R@K and N@K denote Recall@K and NDCG@K.

Model Metric LayerGCN VBPR SLMRec BM3 FREEDOM MGCN

Base OT Aug. Imprv. Base OT Aug. Imprv. Base OT Aug. Imprv. Base OT Aug. Imprv. Base OT Aug Imprv. Base OT Aug. Imprv.

Baby R@20 0.0829 0.0900 8.56% 0.0664 0.0830 25.00% 0.0806 0.0895 11.04% 0.0865 0.0945 9.25% 0.0986 0.1013 2.74% 0.0938 0.0991 5.65%
N@20 0.0359 0.0391 8.91% 0.0285 0.0350 22.81% 0.0356 0.0391 9.83% 0.0372 0.0402 8.06% 0.0421 0.0445 5.70% 0.0412 0.0430 4.37%

Sport R@20 0.0940 0.1043 10.96% 0.0830 0.0980 18.07% 0.1005 0.1084 7.86% 0.0973 0.1030 5.86% 0.1078 0.1104 2.41% 0.1135 0.1145 0.88%
N@20 0.0415 0.0464 11.81% 0.0367 0.0419 14.17% 0.0450 0.0483 7.33% 0.0433 0.0461 6.47% 0.0478 0.0489 2.30% 0.0509 0.0516 1.38%

Clothing R@20 0.0557 0.0770 38.24% 0.0411 0.0792 92.70% 0.0692 0.0856 23.70% 0.0626 0.0785 25.40% 0.0926 0.0965 4.21% 0.0963 0.0998 3.63%
N@20 0.0249 0.0341 36.95% 0.0190 0.0352 85.26% 0.0310 0.0380 22.58% 0.0283 0.0352 24.38% 0.0411 0.0431 4.87% 0.0436 0.0450 3.21%

Table 3: Recommendation performance improvement of several backbone methods on three datasets with OT augmentation.

Baselines. We compare BLAST with representative state-
of-the-art models, including collaborative filters (BPR [Ren-
dle et al., 2009], LightGCN [He et al., 2020], and Lay-
erGCN [Zhou et al., 2023b]) and multimodal recommenders
(VBPR [He and McAuley, 2016], LATTICE [Zhang et al.,
2021], SLMRec [Tao et al., 2023], BM3 [Zhou et al., 2023c],
FREEDOM [Zhou and Shen, 2023], MGCN [Yu et al., 2023],
and LGMRec [Guo et al., 2024]).
Evaluation Protocols. To ensure fair comparisons, we adopt
the same evaluation settings as those used in [Zhang et al.,
2021; Zhou and Shen, 2023]. Specifically, we randomly split
all user-item interactions into training, validation and testing
sets with a ratio of 8:1:1, and evaluate model performance on
the testing set using two widely used metrics: Recall@K and
NDCG@K (K = 10 or 20).
Implementation details. We adopt Llama 3.11 to gen-
erate item and user profiles. The profiles are encoded
into 768-dimensional textual features xt

i and yu using Con-
triever [Izacard et al., 2022]. We train BLAST using the
Adam optimizer [Kingma and Ba, 2015], with a batch size of
2048 and a learning rate of 1e-3. Following [Zhou and Shen,
2023], we perform edge pruning on the user-item graph with
pruning ratios of 0.8 or 0.9. The optimal hyperparameters,
such as LUI , LUU , and LUU , are selected via grid search.
The embedding parameters are initialized using the Xavier
method [Glorot and Bengio, 2010]. Early stopping is applied
when no improvement is observed on the validation set for 20
consecutive epochs. Visual feature ratio αv is set to 0.1.

5.2 Performance Comparison
Performance of BLAST (RQ1). To demonstrate the effec-
tiveness of our proposed method, we compare BLAST with
several state-of-the-art models. The results are presented in

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Table 2. All baseline results are directly cited from their orig-
inal papers. We make the following key observations:

(1) BLAST significantly outperforms other models, includ-
ing both traditional collaborative filtering and graph-based
approaches, demonstrating the effectiveness of our method.
Specifically, compared with the strongest baseline, BLAST
achieves improvements of 22.06%, 6.30%, and 7.20% on
NDCG@10 for the Baby, Sport, and Clothing datasets, re-
spectively. These results suggest that complementing the
graph structure with user affinities and balancing interactions
through data augmentation are beneficial for enhancing rec-
ommendation performance.

(2) BLAST achieves the largest improvement on the Baby
dataset, outperforming LGMRec by 19.10% and 22.06% in
Recall@10 and NDCG@10, respectively. This may be at-
tributed to the Baby dataset containing more comprehensive
attributes and richer item descriptions, resulting in higher-
quality item profiles. In BLAST, the item-item graph SI is
constructed from the item profiles Pi. Hence, the item text
not only directly affects the graph convolution operation but
also indirectly influences OT Augmentation through the se-
lection of false negative items.
Performance of OT Augmentation (RQ2). To demonstrate
the effectiveness of OT Augmentation, we integrate it into
several recommendation models. Table 3 shows the consis-
tent performance gains achieved by augmented interaction
data. Note that all results reported in Table 3 are obtained
from MMRec [Zhou et al., 2023a], and may differ from those
in Table 2. To ensure a fair comparison, we keep the basic hy-
perparameter settings consistent for both baselines and their
augmented variants. We can observed that OT Augmentation,
as a model-agnostic method, significantly enhances the per-
formance of baselines. This highlight both the potential of
false negative items and the effectiveness of complementing
entities with fewer interactions.
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Model Baby Sport Clothing

R@20 N@20 R@20 N@20 R@20 N@20

FREEDOM 0.0992 0.0424 0.1089 0.0481 0.0941 0.0420
BLASTLLM 0.1009 0.0432 0.1097 0.0487 0.0914 0.0407
BLASTFN 0.1013 0.0445 0.1104 0.0489 0.0965 0.0431

BLASTUSER 0.1120 0.0512 0.1155 0.0517 0.0973 0.0444

BLAST 0.1171 0.0529 0.1186 0.0526 0.1004 0.0453

Table 4: Comparing performance of BLAST and its variants.

5.3 Ablation Studies (RQ3)
In this section, we evaluate the contribution of each com-
ponent in BLAST to the overall effectiveness. We choose
FREEDOM as the baseline and design several variants:

• BLASTLLM: The LLM summarizes item texts to gen-
erate item profiles and learn item-item relationships.

• BLASTFN: Negative sample selection is restricted, and
false negative items are utilized to augment the data.

• BLASTUSER: User-user relationships are modeled with
user profiles to enhance user representations.

The results are shown in Table 4, from which we have the
following observations:

(1) Each component of BLAST has a positive impact on
the improvement of performance. The most significant gain
in performance comes from BLASTUSER, highlighting the
effectiveness of incorporating user-user relationships to bal-
ance the user and item structure. Notably, these relationships
are derived from the LLM, demonstrating its strong contex-
tual understanding and reasoning abilities.

(2) On the Clothing dataset, item profiles generated by the
LLM result in decreased performance. We attribute this to
the limited availability of item descriptions in the dataset. An
observation of the profiles suggests that the lack of sufficient
information may lead the LLM to make inaccurate inferences.

(3) BLASTFN gains consistent improvements over base-
line on three datasets, which validates the effectiveness of re-
strictions and augmentations for false negative items. Con-
straining negative sampling helps prevent false negatives
from disrupting the modeling of user interests. Mining po-
tential interactions balances the training data and supports the
representation learning of low-interaction entities.

5.4 Sensitivity Analysis (RQ4)
Augmentation Ratio. To explore the optimal augmentation
ratio r, We conduct experiments on three datasets, As illus-
trated in Figure 3 (a). We observe that BLAST generally
achieves optimal performance when r is small (0.1-0.3), and
its performance declines as r increases. We infer that with
the continuous expansion of the training data, some true neg-
ative items are introduced, which encourages BLAST to in-
crease the prediction scores on items that users dislikes, thus
decreasing the recommendation accuracy.
Visual Feature Ratio & Edge Pruning Ratio. As illustrated
in Figure 3 (b), we evaluate the performance of BLAST un-
der different modality ratios and pruning rates. We observe
that BLAST achieves the best performance when the visual
feature ratio is low and the edge pruning ratio is high. We
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Figure 3: Performance of BLAST under different hyperparameters.

speculate that, compared to visual features, textual features
are more informative and thus more effective in capturing la-
tent item-item relationships.
Assignment Matrix Constraints. Figure 3 (c) illustrates
the performance of BLAST under different OT constraints
(ai, bj) on the Sports dataset. We observe that BLAST ben-
efits from appropriate constraint values, particularly when ai
and bj are close to the average user activity and item popu-
larity (Sports: 6.14, 11.90). By taking average activity as the
objective, OT Augmentation encourages low-interaction en-
tities to engage with more entities, thereby facilitating better
representation learning.
Number of Graph Convolutional Layers. As illustrated in
Figure 3 (d), we evaluate the performance of BLAST under
different combinations of LUI , LUU , and LII on the Baby
dataset. We observe that BLAST achieves optimal perfor-
mance with the following number of layers: LUI = 5, LUU =
2, and LII = 2. This indicates that graph structures built on
semantic similarity can effectively model high-order relation-
ships, highlighting the strength of BLAST.

6 Conclusion

In this paper, we propose a model called BLAST that bal-
ance user-item structure and interaction for multimedia rec-
ommendation. Specifically, we utilize LLMs to generate user
profiles, and devise an intra- and inter-entity structure balanc-
ing module that model the item-item and user-user relation-
ship simultaneously, integrating their affinities into final rep-
resentations. Afterwards, to compensate for the user or item
with few interactions, we augment the training data guided
by the optimal transport and restrict negative sampling to ex-
clude the interference of false negative items. Finally, exten-
sive experiments are conducted on three real-world datasets
to demonstrate the effectiveness of our proposed method.
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