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Abstract

The use of anchors often leads to better efficiency
and scalability, making them highly favored. How-
ever, there is a challenge in anchor-based multi-
view subspace learning. A unified anchor graph
overly emphasize the commonality between views,
failing to adequately capture the view-specific in-
dividuality. This has led some models to indepen-
dently explore the individuality of each view be-
fore aligning and integrating them, often achieving
better performance but making the process more
cumbersome. Therefore, this paper proposes a
new model, simultaneously capturing the individu-
ality and commonality between anchor graphs for
multi-view clustering. The model has three no-
table advantages: First, it allows view-specific an-
chor graphs to align in real-time with a common
anchor graph as a reference, eliminating the need
for post-alignment. Second, it enforces a cluster-
wise structure among anchors and balances sam-
ple distribution among them, providing strong dis-
criminative power. Lastly, it maintains linear com-
plexity with respect to the numbers of samples and
anchors, avoiding the significant time costs asso-
ciated with their increase. Comprehensive experi-
ments demonstrate the effectiveness and efficiency
of our method compared to various state-of-the-art
algorithms.

1 Introduction
Clustering has long been a crucial aspect of data analysis,
which groups data according to specific patterns without la-
bel information. The emergence of multi-source data [Bal-
trušaitis et al., 2018] has raised higher demands for cluster-
ing tasks, giving rise to multi-view extension [Li et al., 2018;
Fang et al., 2023]. In this setting, data often comes with mul-
tiple perspectives or representations. The consistent and com-
plementary information among these views is explored to ad-
dress the limitations of single-view information and enhance
performance.

∗Corresponding author

Multi-view clustering can be roughly categorized into
subspace-based [Gao et al., 2020; Huang et al., 2022], kernel-
based [Li et al., 2022a; Liu, 2022], matrix factorization-based
[Wan et al., 2023], and deep learning-based [Xu et al., 2022;
Yan et al., 2023] methods. Subspace clustering is widely rec-
ognized as an effective data analysis technique, as it can di-
rectly learn affinities between samples, revealing the internal
structure of the data. Unfortunately, it often struggles with the
high computational costs associated with large-scale datasets.

On the other hand, the use of anchors has brought about
better efficiency and scalability, making them highly popu-
lar. Naturally, this technology has been integrated into sub-
space learning models. In anchor-based subspace learning,
a point-to-anchor graph is learned instead of a point-to-point
graph. Since the number of anchors is usually much smaller
than that of samples, it is more friendly to both runtime and
memory. Anchors can be pre-selected, resorting to heuris-
tic strategies such as k-means and feature scoring. However,
these pre-selection strategies face the risk of being insuffi-
cient to represent the entire dataset, which leads to dynamic
anchor learning strategies.

However, a challenge arises in anchor-based multi-view
subspace learning. A unified anchor graph tends to overem-
phasize the commonality between views, failing to ade-
quately capture the individuality of each view. This has led
some models to independently explore each view’s individ-
uality before aligning and integrating them, often achieving
better performance but making the process more cumber-
some. Moreover, although existing models maintain linear
complexity with respect to the number of samples, they often
exhibit quadratic or even cubic complexity with respect to the
number of anchors. The growth of anchors inevitably results
in substantial time costs.

To address these issues, this paper proposes a new model,
Capturing Individuality and Commonality between Anchor
Graphs (CICAG) for multi-view clustering. The four contri-
butions are summarized as follows:

• It captures both the individuality and commonality be-
tween anchor graphs, addressing the limitations of pre-
vious approaches that focus solely on either aspect.

• It enables view-specific anchor graphs to align in real-
time with a common anchor graph as a reference, elimi-
nating the need for post-alignment.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

• It enforces a cluster-wise structure among anchors and
balances samples distribution among them, providing
strong discriminative power.

• It achieves linear computational complexity concerning
both the number of samples and anchors, making it effi-
cient and scalable even with a large number of anchors.

2 Related Work
Anchor-based multi-view learning models can be categorized
into two main types: static anchor pre-selection and dynamic
anchor learning. The former determine anchors in advance
using heuristic methods, with no changes during subsequent
anchor graph construction. The latter requires joint optimiza-
tion of anchors and anchor graphs with dynamic updates. Dy-
namic anchor learning includes unified anchor graph strate-
gies, which share a common anchor graph across all views,
and view-specific anchor graph strategies, which learn a sep-
arate anchor graph for each view.

LMVSC [Kang et al., 2020] employs k-means to pre-select
anchors for each view and constructs non-unified anchor
graphs, which are then concatenated across views. SFMC [Li
et al., 2022b] and TBGL [Xia et al., 2022] pre-select aligned
anchors by concatenating all features and using a feature scor-
ing strategy, subsequently merging multiple anchor graphs.
Unlike SFMC, TBGL utilizes tensors to further explore com-
plementary information across views.

FPMVS-CAG [Wang et al., 2022b], OMSC [Chen et al.,
2022], EMVGC-LG [Wen et al., 2023], and CAMVC [Zhang
et al., 2024] are representative models, dynamically exploring
a unified anchor graph. FPMVS-CAG projects all views into
a latent shared space to learn a single anchor graph. OMSC
builds on FPMVS-CAG by jointly learning the mapping from
the anchor graph to the cluster indicator matrix. EMVGC-LG
embeds both local and global structural information into the
anchor graph. CAMVC uses pseudo-labels to enforce cluster
structure distribution among anchors.

FMVACC [Wang et al., 2022a], FDAGF [Zhang et al.,
2023], and AEVC [Liu et al., 2024] are based on anchor-
based subspace learning models, capturing separate anchor
graphs for different views. FMVACC and AEVC both em-
ploy post-alignment strategies, whereas FDAGF directly con-
catenates anchor graphs from each view. Unlike FMVACC,
which averages after alignment, AEVC embeds the learned
anchors and anchor graphs into a new model for secondary
learning, serving as regularization.

3 Methodology
3.1 Formulation
Typically, the framework for single-view subspace learning
takes the following form.

min
A,Z

∥X −AZ∥2F + γ ∥Z∥2F (1)

where X ∈ Rd×n represents the complete single-view
dataset, A ∈ Rd×m is a representative subset of samples,
Z ∈ Rm×n is the weight matrix used to linearly combine
A to reconstruct X , n, m and d are the number of samples,

anchors and features, respectively. More concisely, A and Z
can be referred to as the anchors and anchor graph, respec-
tively. The anchor graph describes an affinity between X and
A. As a multi-view extension strategy, a unified anchor graph
is often required, resulting in the following form.

min
A(i),Z

v∑
i=1

∥∥∥X(i) −A(i)Z
∥∥∥2
F
+ γ ∥Z∥2F (2)

where Z is the anchor graph shared across views, while X(i)

and A(i) denote the samples and anchors of the i-th view, re-
spectively. Regrettably, this form overly emphasizes the com-
monality between views and fails to adequately capture the
individuality of each view, thus giving rise to another form.

min
A(i),Z(i)

v∑
i=1

∥∥∥X(i) −A(i)Z(i)
∥∥∥2
F
+ γ

∥∥∥Z(i)
∥∥∥2
F

(3)

where Z(i) is the anchor graph unique to the i-th view. This
case independently explores the individuality of each view
before aligning and integrating them, often achieving better
performance, but also making the process more cumbersome.
Therefore, we propose a compromise solution.

min
A(i),Z(i),Z

v∑
i=1

∥∥∥X(i) −A(i)
[
αZ(i) + (1− α)Z

]∥∥∥2
F

+ γ

(∥∥∥Z(i)
∥∥∥2
F
+ ∥Z∥2F

) (4)

In this approach, we not only extract a common Z for all
views but also exploit a specific Z(i) for each view. The an-
chor set A(i) are shared between Z(i) and Z, ensuring that
Z(i) and Z are well-aligned. Indirectly, through the assis-
tance of Z, this alignment relationship is shared among Z(i).

Meanwhile, the anchors are desired to be evenly distributed
across the clusters and further aligned. Thus, the following
strategy is adopted.

max
Z(i),Z

v∑
i=1

Tr
(
F TZ(i)ZTF

)
(5)

where F ∈ Rm×c is a predefined anchor-to-cluster assign-
ment matrix, with each cluster containing at least ⌊m/c⌋ and
at most ⌈m/c⌉ anchors. For instance, if there are 4 anchors
and 2 clusters, then F is set as

F =

1 0
1 0
0 1
0 1

 (6)

Next, we further consider the constraints regarding several
variables. If A(i) can effectively represent X(i), the follow-
ing equality holds.

X(i) = A(i)
(
A(i)TA(i)

)−1

A(i)TX(i) (7)

This equation implies a series of simpler non-trivial solutions,
which necessitate the orthogonality of A(i).

ΩA(i) =
{
A(i)|A(i)TA(i) = I

}
(8)
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It is suggested to more freely retain the individuality of Z(i),
only with each row summing to 1.

ΩZ(i) =
{
Z(i)|Z(i) ≥ 0,Z(i)T1 = 1

}
(9)

Meanwhile, Z must ensure a more balanced distribution of
samples among anchors, subject to the following constraint.

ΩZ =
{
Z|Z ≥ 0,ZT1 = 1,Z1 = l, l =

n

m
1
}

(10)

Considering Problems 4-5 and Constraints 8-10, the final ob-
jective function is formulated as follows:

min
A(i),Z(i),Z

v∑
i=1

∥∥∥X(i) −A(i)
[
αZ(i) + (1− α)Z

]∥∥∥2
F

− β Tr
(
F TZ(i)ZTF

)
+ γ

(∥∥∥Z(i)
∥∥∥2
F
+ ∥Z∥2F

)
s.t. A(i) ∈ ΩA(i) ,Z(i) ∈ ΩZ(i) ,Z ∈ ΩZ

(11)
Figure 1 illustrates our proposed CICAG framework. It dy-

namically captures an individual anchor graph Z(i) for each
view’s data X(i) while simultaneously exploring a common
anchor graph Z for all views. Z(i) and Z share a dynamic
anchor set A(i), thus enabling indirect real-time alignment
between individual anchor graphs. Meanwhile, a predefined
anchor-to-cluster assignment matrix F enforces the cluster-
wise structure among anchors and enhances alignment. Addi-
tionally, the common anchor graph requires a more balanced
distribution of samples across the anchors.

3.2 Optimization
To solve our model, the following alternating optimization
strategy is employed.

Update A(i)

If the components unrelated to A(i) are removed and W (i) is
precomputed as

W (i) = X(i)
[
αZ(i)T + (1− α)ZT

]
(12)

the resulting A(i)-subproblem is given.

max
A(i)

Tr
(
A(i)TW (i)

)
s.t. A(i)TA(i) = I (13)

Furthermore, the closed-form solution for Equation (13) can
be revealed by Theorem 1 [Liu et al., 2021].

Theorem 1. Suppose that W (i) = U (i)
c Σ(i)

c V (i)T
c , where

U (i)
c ∈ Rdi×c, Σ(i)

c ∈ Rc×c and V (i)
c ∈ Rm×c. Problem 13

has a closed-form solution A(i) = U (i)
c V (i)T

c .

Update Z(i)

If the components unrelated to Z(i) are removed, and Ẽ
(v)

and E(v) are precomputed as

Ẽ
(i)

= (1− α)Z −A(i)TX(i) (14)

E(i) =

(
2αẼ

(i)
− βFF TZ

)
/
(
α2 + γ

)
(15)

the resulting Z(i)-subproblem is given.

min
Z(i)

Tr
(
Z(i)TZ(i)

)
+Tr

(
Z(i)TE(i)

)
s.t. Z(i) ≥ 0,Z(i)T1 = 1

(16)

Furthermore, the optimal solution for Equation (16) can be
revealed by Theorem 2.

Theorem 2. By introducing the Lagrange multiplier µ(i) and
predefining S(i) and Φ(S(i)) as

S(i) = 1µ(i)T −E(i) (17)

Φ(S(i)) = max
Z(i)≥0

Tr
(
Z(i)TS(i)

)
− Tr

(
Z(i)TZ(i)

)
(18)

the dual problem of Problem 16 is derived as

min
µ(i)

Φ(S(i))− µ(i)T1 (19)

whose exact gradient with respect to µ(i) is given by

∂L

∂µ(i)
=

1

2
[S(i)]T+1− 1 (20)

Once the optimal µ(i) is found, the desired Z(i) can be re-
covered by

Z(i) = [1µ(i)T −E(i)]+/2 (21)

Proof. Similar to the proof of Theorem 3 but simpler.

Update Z

If the components unrelated to Z are removed, and M̃
(i)

and
M are precomputed as

M̃
(i)

= αZ(i) −A(i)TX(i) (22)

M =

∑v
i=1

[
2 (1− α)M̃

(i)
− βFF TZ(i)

]
v
[
(1− α)

2
+ γ

] (23)

the resulting Z-subproblem is given.

min
Z

Tr
(
ZTZ

)
+Tr

(
ZTM

)
s.t. Z ≥ 0,ZT1 = 1,Z1 = l

(24)

Furthermore, the optimal solution for Equation (24) can be
revealed by Theorem 3.
Theorem 3. By introducing the Lagrange multipliers µ and
ν, and predefining S and Φ(S) as

S = (1µT + ν1T −M) (25)

Φ(S) = max
Z≥0

Tr
(
ZTS

)
− Tr

(
ZTZ

)
(26)

the dual problem of Problem 24 is

min
µ,ν

Φ(S)− µT1− νT l (27)
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Figure 1: Illustration of our CICAG framework.

whose exact gradients with respect to µ and ν are given by
∂L

∂µ
=

1

2
[S(i)]T+1− 1 (28)

∂L

∂ν
=

1

2
[S(i)]+1− l (29)

Once the optimal µ and ν are found, the desired Z can be
recovered by

Z = [1µT + ν1T −M ]+/2 (30)

Proof. The following min-max problem is given

min
zj≥0

max
µ,ν

n∑
j=1

zT
j mj +zT

j zj −µT (ZT1−1)−νT (Z1− l)

(31)
which is easily transformed into the max-min form.

max
µ,ν

µT1+νT l+
n∑

j=1

min
zj≥0

zT
j (mj−ν−µj1)+zT

j zj (32)

Further, there are the following max-max problems

max
µ,ν

µT1+νT l−
n∑

j=1

max
zj≥0

zT
j (ν+µj1−mj)−zT

j zj (33)

Obviously, Equation (33) is equivalent to Equation (27). In
addition, split Φ(S) by column as

ϕ(sj) = max
zj≥0

zT
j sj − zT

j zj (34)

it is easy to konw the derivatives as

∇ϕ(sj) = argmax
zj≥0

zT
j sj − zT

j zj

= argmax
zj≥0

∥∥∥zj −
sj
2

∥∥∥2
2
=

[sj ]+
2

(35)

Further, its gradients w.r.t. µ and ν can be computed.

Final Fusion
Once our model converges, the desired anchor graph is ob-
tained by Equation (36). For convenience, our methodologi-
cal procedure is summarized in Algorithm 1.

Z∗ =
α

v

v∑
i=1

Z(i) + (1− α)Z (36)

Algorithm 1 CICAG Solver

Input: Dataset {X(i)}vi=1, anchor number m, cluster number
c, and parameters α, β and γ.
Output: Learned anchor graph Z∗.

1: Initialize Z(i),Z and F .
2: while non-convergence do
3: Update A(i) by Theorem 1.
4: Update Z(i) by Theorem 2.
5: Update Z by Theorem 3.
6: end while
7: Obtain Z∗ by Equation (36).

3.3 Complexity
Time Complexity. In the A(i)-subproblem, computing W (i)

and obtaining its singular value decomposition necessitates
O(nmd+mdc), while updating A(i) only costs O(mdc). In

the Z(i)-subproblem, computing Ẽ
(i)

and E(i) together in-
volves O(nmd + nmc), obtaining the gradient with respect
to µ(i) entails O(nm), and updating µ(i) and Z(i) involves
O(n) and O(nm) respectively. In the Z-subproblem, com-
puting M demands O(nmd+nmcv), obtaining the gradients
with respect to µ and ν both necessitate O(nm), and updat-
ing µ, ν, and Z entails O(n), O(m), and O(nm) respec-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

tively. Thus, in one iteration, our model requires a compu-
tational complexity of only O(nmd+ nmcv +mdc), which
implies that our algorithm is not only linear in the number of
samples n, but also linear in the number of anchors m, data
dimension d, and the number of clusters c. Table 1 lists some
notable algorithms whose complexities often reach quadratic
or even cubic with respect to m, which actually limits their
scalability. Additionally, the complexity of some algorithms
with respect to c is not linear, making them less suitable for
data with a large number of clusters.

Method Computational Complexity

LMVSC O(nmc+ nmd+mdc)
SFMC O(nm2 + nmd+ nmc+m3)
TBGL O(nm2 + nm log n+ nmc+ nmd)

FPMVS O(nm3 + nmd)
OMSC O(nm3 +m2c+mc3 + nmc+ dc3)

FMVACC O(nm2 + nmd+m2d+m3)
FDAGF O(nm2 + nmd+m2d)

EMVGCLG O(nm3 + nmd)
AEVC O(nm3 + nmd)

CAMVC O(nm2c2 + nmdc+m3c3 +m2c2d)
CICAG O(nmd+ nmc+mdc)

Table 1: The computational complexity of state-of-the-art various
advanced algorithms.

Space Complexity. The original data {X(i)} consumes
O(nd) space. The auxiliary variables generated from updat-
ing A(i) necessitate O(md), and A(i) also takes up O(md).
The auxiliary variables generated from updating Z(i) require
O(nmv), and Z(i) also takes up O(nmv). The auxiliary
variables generated from updating Z demand O(nm) space,
and Z itself also uses O(nm). Therefore, our algorithm
needs only O(nd + md + nmv) space complexity, which
is typical for anchor-based methods.

3.4 Convergence
Although the overall objective function, involving multiple
variables, is non-convex, fortunately, each subproblem con-
cerning a single variable is convex. For the A(i)-subproblem,
a closed-form solution exists. For the Z(i)-subproblem and
the Z-subproblem, their equivalent dual problems can be
constructed. Since the exact gradients of the dual problems
can be obtained, any gradient-based method can be used to
find their optimal solutions. Let the objective function value
at the t-th iteration be J ({A(i)

t }, {Z(i)
t },Zt), then the fol-

lowing inequality holds.

J ({A(i)
t }, {Z(i)

t },Zt) ≥ J ({A(i)
t+1}, {Z

(i)
t },Zt)

≥ J ({A(i)
t+1}, {Z

(i)
t+1},Zt) ≥ J ({A(i)

t+1}, {Z
(i)
t+1},Zt+1)

≥ · · · ≥ (2γ/m− β)nv
(37)

Obviously, since the function value monotonically decreases
with each iteration and has a lower bound, this algorithm can
ensure convergence to a local minimum.

4 Experiment
4.1 Experimental Protocols
Datasets. Our experiments employ 9 public datasets for com-
parison, including 3Sources, WebKB, NUS-WIDE, Notting-
Hill, Cifar10, Cifar100, YouTubeFace10, YouTubeFace20
and YouTubeFace50. Specifically, the last five are large-scale
datasets. Their statistics are described in Table 2.

Dataset #Views #Instances #Classes #Features

3Sources 3 169 3 3560, 3631, 3068
WebKB 2 1051 2 2949, 334

NUS-WIDE 5 3000 25 64, 225, 144, 73, 128
Notting-Hill 3 4660 5 6750, 3304, 2000

Cifar10 3 50000 10 512, 2048, 1024
Cifar100 3 50000 100 512, 2048, 1024

YouTubeFace10 4 38654 10 944, 576, 512, 640
YouTubeFace20 4 63896 20 944, 576, 512, 640
YouTubeFace50 4 126054 50 944, 576, 512, 640

Table 2: The statistics for multi-view datasets.

Baselines. Our CICAG is compared with the following 9 al-
gorithms: SFMC [Li et al., 2022b], TBGL [Xia et al., 2022],
FPMVS [Wang et al., 2022b], OMSC [Chen et al., 2022],
FMVACC [Wang et al., 2022a], FDAGF [Zhang et al., 2023],
EMVGC [Wen et al., 2023], CAMVC [Zhang et al., 2024]
and AEVC [Liu et al., 2024]. These classic or state-of-the-art
algorithms are highly correlated with ours and have a near-
linear computational complexity.
Settings. For our model, α is set to 0.1, while the remaining
hyperparameters are tuned by a grid search, whose ranges are
m ∈ {1c, 3c, 5c}, β ∈ {0.001, 0.01, · · · , 100, 1000}, and
γ ∈ {0.001, 0.01, · · · , 100, 1000}. The hyperparameters of
all compared algorithms are set by gird search according to
the recommendations of their original papers. Considering
the initialization sensitivity and randomness during running,
we performed all algorithms 10 times.
Metrics. In our experiments, the performance is evaluated
by Accuracy (ACC), Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI). Their means and standard
deviations are reported in experiments. Besides, their average
runtime is also recorded.

4.2 Experimental Results
Performance. Table 3 shows, CICAG achieves the highest
ACC across all used datasets, with its NMI and ARI being
either the highest or second highest. Other algorithms show
mixed results across different datasets. Additionally, the no-
tably low standard deviation suggests strong algorithmic sta-
bility. Overall, our algorithm CICAG is highly competitive.

Runtime. As observed from Table 1, CICAG exhibits lin-
ear complexity in terms of the number of samples, anchors,
and features. When the number of anchors and features is
large, CICAG is more efficient compared to other algorithms.
However, since the publicly available datasets have gener-
ally undergone preprocessing such as feature extraction or di-
mensionality reduction, making m and d relatively small, CI-
CAG’s efficiency advantage is not as apparent. Nevertheless,
Figure 2 shows that, CICAG’s efficiency consistently ranks in
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Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI

Dataset 3Sources WebKB NUS-WIDE

SFMC 71.6±0.0 59.9±0.0 50.0±0.0 78.2±0.0 28.0±0.0 49.0±0.0 10.7±0.0 08.2±0.0 01.2±0.0
TBGL 72.8±0.0 54.8±0.0 45.0±0.0 84.1±0.0 18.7±0.0 29.2±0.0 07.8±0.0 05.2±0.0 08.2±0.0

FPMVS 32.5±0.0 08.3±0.0 04.0±0.0 86.9±0.0 44.6±0.0 53.0±0.0 19.2±0.0 16.4±0.0 06.3±0.0
OMSC 37.9±0.0 14.2±0.0 08.1±0.0 93.0±0.0 52.6±0.0 70.4±0.0 18.1±0.0 16.1±0.0 05.9±0.0

FMVACC 71.0±0.0 62.9±0.0 58.3±0.0 93.2±0.0 54.3±0.0 71.7±0.0 17.8±0.0 15.1±0.0 05.9±0.0
FDAGF 72.8±0.0 51.8±0.0 51.1±0.0 93.3±0.0 53.7±0.0 71.0±0.0 16.9±0.0 16.3±0.0 04.7±0.0
EMVGC 61.0±0.0 35.6±0.0 33.0±0.0 93.9±0.1 57.8±0.0 73.2±0.1 18.2±0.3 17.1±0.3 05.6±0.1
CAMVC 73.4±2.4 66.8±0.6 66.2±1.9 87.5±0.0 30.9±0.0 44.9±0.0 19.1±0.3 19.7±0.3 06.1±0.1
AEVC 70.4±0.0 64.9±0.0 56.0±0.0 81.5±0.0 31.1±0.0 38.7±0.0 18.9±0.0 18.3±0.0 06.2±0.0
CICAG 75.2±3.8 65.5±3.1 59.9±5.7 95.2±0.0 64.8±0.0 78.6±0.0 20.5±0.4 19.2±0.2 06.3±0.2

Dataset Notting-Hill Cifar10 Cifar100

SFMC 88.9±0.0 84.3±0.0 84.7±0.0 98.9±0.0 96.9±0.0 97.5±0.0 OM OM OM
TBGL 59.9±0.0 54.5±0.0 36.9±0.0 OM OM OM OM OM OM

FPMVS 90.0±0.0 80.0±0.0 79.4±0.0 99.0±0.0 97.3±0.0 97.8±0.0 OM OM OM
OMSC 73.2±0.0 67.7±0.0 62.4±0.0 98.0±0.0 95.3±0.0 95.7±0.0 OM OM OM

FMVACC 78.6±0.0 69.8±0.0 57.0±0.0 99.2±0.0 97.9±0.0 98.3±0.0 91.7±0.0 98.0±0.0 92.1±0.0
FDAGF 84.5±0.0 79.8±0.0 79.2±0.0 98.7±0.0 96.6±0.0 97.2±0.0 85.4±0.0 96.7±0.0 86.6±0.0
EMVGC 84.0±0.1 79.4±0.2 78.7±0.2 99.1±0.0 97.5±0.0 98.0±0.0 94.3±0.8 98.8±0.2 95.1±3.8
CAMVC 95.2±0.0 96.2±0.0 90.5±0.0 99.5±0.0 98.5±0.0 98.9±0.0 91.4±2.1 98.2±0.5 92.8±2.2
AEVC 87.8±0.0 75.0±0.0 75.5±0.0 96.2±0.0 91.5±0.0 91.9±0.0 91.6±0.0 98.1±0.0 92.8±0.0
CICAG 97.6±0.0 94.4±0.1 95.3±0.0 99.5±0.0 98.7±0.0 99.0±0.0 99.9±0.7 99.9±0.1 99.9±0.7
Dataset YouTubeFace10 YouTubeFace20 YouTubeFace50

SFMC 63.4±0.0 64.3±0.0 36.3±0.0 58.0±0.0 62.5±0.0 23.4±0.0 OM OM OM
TBGL OM OM OM OM OM OM OM OM OM

FPMVS 75.0±0.0 78.7±0.0 67.1±0.0 OM OM OM OM OM OM
OMSC 77.7±0.0 81.2±0.0 67.8±0.0 OM OM OM OM OM OM

FMVACC 76.6±0.0 77.1±0.0 69.4±0.0 72.5±0.0 77.7±0.0 52.5±0.0 72.8±0.0 82.8±0.0 62.8±0.0
FDAGF 74.5±0.0 76.3±0.0 63.2±0.0 69.8±0.0 77.4±0.0 57.2±0.0 67.9±0.0 80.6±0.0 56.6±0.0
EMVGC 70.6±0.3 79.2±1.2 67.6±0.6 69.0±1.7 76.2±0.3 59.0±0.1 69.1±2.2 80.2±0.5 61.7±1.1
CAMVC 74.6±0.0 76.2±0.0 65.0±0.0 69.9±1.4 77.6±0.3 60.8±1.0 70.2±1.9 80.8±0.5 59.0±2.4
AEVC 75.6±0.0 78.2±0.0 68.6±0.0 71.9±0.0 75.9±0.0 61.0±0.0 72.3±0.0 82.8±0.0 63.5±0.0
CICAG 81.7±3.1 80.7±1.8 71.4±2.9 73.4±0.8 77.9±0.4 61.8±2.6 76.7±0.2 83.8±0.3 62.3±2.0

Table 3: Accuracy (ACC%±Std%), Normalized Mutual Information (NMI%±Std%) and Adjusted Rand Index (ARI%±Std%) for multi-view
clustering algorithm comparison. Best results are in bold. OM indicates that the method suffers out-of-memory error.

D1 D2 D3 D4 D5 D6 D7 D8 D9

Z 50.9 91.6 18.2 72.4 99.3 94.2 73.3 69.3 72.6
Z

(i)
min 41.4 51.4 12.9 58.9 84.9 91.3 69.6 65.5 66.7

Z(i)
max 57.4 72.5 14.4 87.4 89.2 94.2 75.6 68.9 69.9

Z
(i)
uf 50.3 55.3 14.7 62.9 96.1 94.4 72.2 66.2 72.2

Z
(i)
af 71.0 93.2 17.8 78.6 99.2 91.7 76.6 72.5 72.8

Ours 75.2 95.2 20.5 97.6 99.5 99.9 81.7 73.4 76.7

Table 4: Accuracy (ACC%) for ablation results. D1-D9 mark the datasets used in order. Z and {Z(i)} are learned from Equations (2) and
(3), Z(i)

min and Z
(i)
max are the Z(i) corresponding to the lowest and highest ACC, Z(i)

uf and Z
(i)
af correspond to the unaligned fusion and aligned

fusion from {Z(i)}, respectively.
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(a) Notting-Hill (b) Cifar10 (c) YouTubeFace10

Figure 2: The running time of various algorithms.

(a) Notting-Hill (b) Cifar10 (c) YouTubeFace10

Figure 3: The convergence curves of CICAG.

(a) Notting-Hill (b) Cifar10 (c) YouTubeFace10

Figure 4: The CICAG ACC corresponding to different m and α.

(a) Notting-Hill (b) Cifar10 (c) YouTubeFace10

Figure 5: The CICAG ACC corresponding to different β and γ.
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the top three, with only a small difference from the shortest
runtime. Considering the performance shown in Table 3, CI-
CAG’s efficiency is entirely acceptable. Although CAMVC
requires alternating variable optimization, each variable has
a closed-form solution, significantly reducing its runtime.
However, once m becomes too large, CAMVC’s computa-
tional complexity grows cubically, leading to a significant de-
crease in efficiency.
Convergence. As seen from Figure 3, the training loss of CI-
CAG on all datasets drops rapidly at first and then stabilizes.
This suggests that our algorithm not only converges but also
requires only a few iterations.

4.3 Ablation Study
In Table 4, taking the D8 (YouTubeFace20) as an example:
the ACC of Z, learned via Equation (2), is 69.3; the ACCs
of Z(i), learned via Equation (3), range from 65.5 to 68.9;
direct fusion yields an ACC of 66.2; alignment followed by
fusion achieves 72.5; and CICAG touches 73.4. These results
demonstrate that simultaneously capturing both individuality
and commonality is effective.

4.4 Parameter Sensitivity
m&α. As shown in Figure 4, the trend of ACC with varying
α is similar across different m, with their maximum values
being close. Generally, setting m = 3c is a good choice. As
α increases, the ACC of CICAG on NUS-WIDE, Cifar10, Ci-
far100, YouTubeFace20, and YouTubeFace50 does not show
significant changes, while it exhibits a downward trend on
WebKB, Notting-Hill, and YouTubeFace10, and a decrease
followed by an increase on 3Sources. Overall, α achieves its
maximum value around 0.1. Although the ACC at α = 0.1
is not optimal for WebKB and YouTubeFace, it is still very
close to the maximum value. Therefore, setting α = 0.1 is
generally a good choice.
β&γ. As shown in Figure 5, β should generally not exceed
γ, while γ itself is relatively insensitive. However, in pursuit
of optimal values, neither should be set too high.

5 Conclusion
This paper addresses a challenge in anchor-based multi-view
subspace learning. Although multiple views share the same
anchor graph to capture the commonality across views, this
approach clearly overlooks the individuality of specific views.
As a result, some models independently explore the individ-
uality of each view, leading to issues of alignment and fusion
of anchor graphs across views. Therefore, this paper proposes
a new model, capturing both the individuality and commonal-
ity of anchor graphs for multi-view clustering. The model not
only allows view-specific anchor graphs to be aligned in real-
time based on a common anchor graph, but also generates a
balanced sample distribution and cluster-level anchors to en-
hance discriminative power. Moreover, it is computationally
efficient in terms of sample, anchor, feature and cluster num-
bers. Finally, comprehensive experiments demonstrate that
our model is highly competitive in terms of both effectiveness
and efficiency compared to other state-of-the-art models.
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[Baltrušaitis et al., 2018] Tadas Baltrušaitis, Chaitanya
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