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Abstract
Large Language Models (LLMs) have demon-
strated remarkable capabilities in language under-
standing and commonsense reasoning, yet they of-
ten struggle with constraint satisfaction in planning
problems. Previous studies relying on test-time im-
provement with self-evaluation fail to address this
limitation effectively. In this work, we identify this
critical gap and propose a novel neuro-symbolic
framework, Reinforced Neuro-Symbolic Planning
(RNSP), that enhances LLM-powered planning by
incorporating a symbolic verifier. The verifier pro-
vides explicit feedback on constraint satisfaction,
enabling iterative refinement of the state evalua-
tion. Specifically, we utilize the outcome feedback
from each logical goal to update the process value
along planning paths through a reinforcement value
function maximization objective. We further em-
ploy T-norms to aggregate the satisfaction levels
of multiple constraints, which provided more effec-
tive guidance for the test-time search. Our frame-
work bridges the strengths of neural and symbolic
methods, leveraging the generative power of LLMs
while ensuring rigorous adherence to constraints
through symbolic verification. Extensive experi-
ments demonstrate that our approach significantly
improves planning accuracy and constraint satisfac-
tion across various domains, outperforming tradi-
tional self-evaluation methods. It highlights the po-
tential of hybrid neuro-symbolic systems to address
complex constrained planning tasks.

1 Introduction
Large Language Models (LLMs) have made a profound im-
pact on the AI community [OpenAI, 2022; Bubeck et al.,
2023; Chang et al., 2024]. Through pre-training on web-
scale corpora, they have demonstrated impressive natural lan-
guage understanding and reasoning capabilities, driving ad-
vancements across various domains, including machine trans-
lation [Vilar et al., 2023; Min et al., 2024], code gener-
ation [Liu et al., 2024b; Liang et al., 2024], and content

Figure 1: Performance of LLM planning with self-evaluation in the
Game of 24, Game of 28, and Game of 30. These results underscore
the fragility of LLM self-evaluation, as a simple change in the target
(goal: 24 → 28, 30) leads to a significant decline in performance.

generation [Li et al., 2024; Keskar et al., 2019], among
others. Despite their impressive performance, these mod-
els often struggle with planning tasks that require specific
goal understanding and process constraints [Xie et al., 2024;
Kambhampati et al., 2024]. To address this issue, test-time
search methods have been proposed and attracted much atten-
tion [Yao et al., 2023a; Chen et al., 2024; Snell et al., 2024].

Previous test-time search methods guide the problem-
solving process of planning through a search mechanism.
They typically utilize the self-evaluation mechanisms to pri-
oritize partial solutions during the search process, aiming to
enhance search efficiency. For example, Xie et al. [2023] in-
tegrate self-evaluation guidance with stochastic beam search
to enhance the reasoning capabilities on arithmetic reasoning
and commonsense reasoning. Hao et al. [2023] repurpose the
LLM as a world model, leveraging self-evaluation to evaluate
the quality of each Monte Carlo Tree Search reasoning step.
It allows the model to iteratively refine its reasoning paths
and ultimately find high-reward solutions efficiently. Yao et
al. [2023a] present the Tree of Thought (ToT), which refor-
mulates the general problem-solving as the search process
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and utilizes self-evaluation to guide the large language mod-
els exploring multiple reasoning paths. Shao et al. [2024b]
present a domain-specific language to define travel require-
ment constraints, using it to control backtracking in the search
process for travel plans.

Despite the positive results demonstrated by these stud-
ies in mathematical reasoning and commonsense reasoning,
there are some research [Kambhampati et al., 2024; Huang
et al., 2024] have indicated that self-evaluation is unreliable
for planning tasks that require domain-specific knowledge. A
classic example used to discuss the self-evaluation capability
of large language models in long-term foresight assessment
for planning tasks is the Game of 24 [Yao et al., 2023a]. We
extend this task to verify the self-evaluation abilities of LLMs
in both the Game of 28 and the Game of 30. The results are
shown in Figure 1. The results have shown that for the Game
of 24, both GPT-4o and Deepseek-v3 achieved over an 80%
success rate with ToT self-evaluation [Yao et al., 2023a], in-
dicating their capability to find computational paths to derive
the number 24 from the given numbers. This success aligns
with previous self-evaluation efforts on this task, demonstrat-
ing the effectiveness of self-evaluation in computation-based
planning tasks. However, when we introduced a simple vari-
ation in the task objective, requiring the goal of the num-
ber 28 or 30, the planning performance of LLMs signifi-
cantly deteriorated. Both GPT-4o and Deepseek-v3 dropped
to around 60% success rate, while GPT-4o-mini and GPT-3.5-
turbo performed even a 0% success rate. This stark decline
clearly highlights the fragility of LLM’s self-evaluation abil-
ities. One plausible reason for this phenomenon is that the
abundant internet data regarding the Game of 24 has enabled
LLMs to develop self-evaluation capabilities specifically tai-
lored to this task, rather than providing assessments through
foresight in planning. Consequently, this limits the LLM’s
self-evaluation abilities, leading to a notable decline in per-
formance on the Game of 28/30.

To address these limitations, we propose a novel neuro-
symbolic framework, Reinforced Neuro-Symbolic Planning
(RNSP), that integrates the generative strengths of LLMs with
a symbolic verifier. This verifier provides explicit feedback
on constraint satisfaction, enabling iterative refinement of the
state evaluation. Specifically, we utilize the outcome feed-
back from each logical goal to update the process value along
planning paths through a reinforcement value function max-
imization objective. We further employ T-norms to aggre-
gate the satisfaction levels of multiple constraints, which pro-
vided more effective guidance for the test-time search. Our
approach bridges the gap between neural flexibility and sym-
bolic rigor, ensuring robust adherence to logical and proce-
dural constraints. Extensive experiments on various domains
demonstrate the effectiveness of our method, significantly im-
proving planning accuracy and constraint satisfaction com-
pared to traditional self-evaluation techniques. Overall, our
framework highlights the potential of hybrid neuro-symbolic
systems for complex planning tasks. By leveraging symbolic
verification to enhance the foresight planning capabilities of
LLMs, our approach not only achieves state-of-the-art results
but also establishes a promising paradigm for addressing con-
straint satisfaction in LLM planning.

2 Related Work
LLM Planning. Large Language Models (LLMs) have re-
cently shown remarkable capabilities in natural language un-
derstanding and reasoning [Brown et al., 2020; Wei et al.,
2022; Yao et al., 2023b]. Based on these advancements, ex-
ploring LLMs for planning tasks has gained widespread at-
tention. For example, Huang et al. [2022] investigate the po-
tential of large language models to generate executable ac-
tion plans for embodied agents without any additional train-
ing. Ichter et al. [2022] ground language models in robotic
affordances by combining the semantic commonsense from
pre-trained models with value functions that assess the feasi-
bility of actions in the real world, enabling robots to execute
complex tasks more effectively. Compared to the direct plan-
ning generation, Wei et al. [2022] find encouraging LLMs to
perform step-by-step reasoning could improve the planning
capabilities, and present the chain-of-thought (CoT) prompt-
ing appends reasoning steps before the answer for complex
problems. Zhao et al. [2023] evaluate the role of LLMs as a
commonsense world model in the Monte Carlo Tree Search
(MCTS) process for large-scale task planning. By integrat-
ing an LLM’s world model, which provides a commonsense
prior belief, MCTS can perform more effective reasoning.
This integration allows the system to navigate complex de-
cision spaces more efficiently, as the LLM’s heuristic policy
guides the search process, significantly improving search effi-
ciency. Yao et al. [2023a] presents a novel framework called
Tree of Thoughts (ToT) that enables large language models
(LLMs) to perform deliberate problem-solving by exploring
multiple reasoning paths. ToT introduces pre-defined sym-
bolic workflows and guides the search process with the LLM
self-evaluation.

Neuro-Symbolic Planning. Pure-learning-based methods,
like those using deep neural networks, often excel at rec-
ognizing complex patterns from data but struggle with sat-
isfying strict logical or procedural constraints in planning
tasks. In contrast, symbolic planners are highly effective at
long-horizon planning, adeptly managing sequences of ac-
tions to meet specific goals while strictly adhering to logical
and procedural constraints. Neuro-symbolic planning offers
a compelling integration of these approaches, combining the
pattern recognition and adaptability of data-driven learning
with the rigorous constraint satisfaction of symbolic reason-
ing [Yang et al., 2024; Jia et al., 2025] to facilitate effective
long-horizon planning [Xu et al., 2019; Silver et al., 2022;
Shao et al., 2024a]. In the era of LLMs, Pan et al. [2023]
presents the LogicLM integrates LLMs with separate sym-
bolic solvers for various logical reasoning tasks. They first
utilize LLMs to translate a natural language problem into a
symbolic formulation. Afterward, a deterministic symbolic
solver performs inference on the formulated problem to en-
sure the correctness of the results. Wang et al. [2023] utilizes
LLMs to decompose the desired goal and generate symbolic
workflow to help imitation learning for robotic manipulation.

LLM Self-Evaluation. Recent studies have explored the
potential and limitations of LLM self-evaluation, aiming to
enhance the models’ ability to assess and refine their own out-
puts. For instance, Xie et al. [2023] integrate self-evaluation
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Notation Meaning

S State space
A Action space

T : S ×A → S Transition function
S0 The distribution of initial states
P Task-related predicates

C = {pc} ∼ P Progress constraints of planning
G = {pg} ∼ P Final goals of planning

g(a|s, ϕ) Action generator with LLM ϕ
fs(·|p) Symbolic verifier function
v(s|p) Value estimation of predicate p
fv(s|G) Aggregated value estimation for goal G

Table 1: Summary of Notations

guidance with stochastic beam search to enhance the reason-
ing capabilities on arithmetic reasoning and commonsense
reasoning. Hao et al. [2023] repurpose the LLM as a world
model, leveraging self-evaluation to evaluate the quality of
each Monte Carlo Tree Search reasoning step. It allows the
model to iteratively refine its reasoning paths and ultimately
find high-reward solutions efficiently. Huang et al. [2023]
show that self-evaluation can improve selective generation
in LLMs by reformulating open-ended tasks into token-level
prediction tasks, thereby enhancing accuracy and content
quality Yao et al. [2023a] reformulate the general problem-
solving as the search process and utilizes self-evaluation to
guide the large language models exploring multiple reason-
ing paths. Huang et al. [2024] demonstrate that LLMs of-
ten struggle to self-correct their responses without external
feedback, and in some cases, their performance may even
degrade after attempting self-correction. Kambhampati et
al.[2024] identify that the inadequate self-evaluation capa-
bility of LLMs for domain-specific tasks is a crucial factor
limiting their effectiveness in planning tasks.

3 The Proposed RNSP Method
3.1 Problem Formulation
In this paper, we focus on the constrained planning, which
could be formally defined as < S,A, T ,S0,P, C,G >. Here,
S represents the state space, and A represents the action
space. The transition between states and actions is governed
by a deterministic workflow function T : S × A → S . S0
denotes the distribution of initial states. Additionally, P is a
finite set of task-related predicate symbols. A ground atom
p is a predicate given the state information s ∼ S . If a
state s satisfies s |= p, it indicates that s semantically entails
the interpretation of p. The C = {pc} represents the con-
straints in the planning process. The set G = {pg} consists
of ground atoms representing the final task’s target. The task
is to find an action sequence that generates a planning trajec-
tory {s0, a0, s1, a1,. . . , aT , sT } satisfying (st, at) |= p̄, ∀t ∈
[T ], p̄ ∈ C and final state sT satisfying sT |= p̄, ∀p̄ ∈ G ∼ G.

Consider the game of 24, where the objective is to manipu-
late a given set of numbers to achieve the target number 24 us-
ing basic arithmetic operations (addition, subtraction, multi-
plication, or division). At each step, the current state consists

of the remaining numbers available for manipulation. An ac-
tion represents a transformation, which involves selecting two
numbers and applying one of the four arithmetic operators to
produce a new number. The goal is to explore a sequence
of actions that transforms the initial set of numbers to de-
rive the number 24. The progress constraints C stipulate that
the numbers selected for each action must exist within the
current state and conform to the established arithmetic syn-
tax. This means that only valid numeric combinations and
operator applications are permissible, ensuring that all trans-
formations are mathematically sound. For example, given
the initial state s0 = (4, 9, 10, 13), LLMs provide a trans-
formation action a0 : 13 − 9 = 4, which consists of three
numbers c10 = 13, c20 = 9, c30 = 4, op0 = −. The process
constraints require that c10 and c20 must be selected from the
current state s0 and that op0 belongs to the predefined set of
arithmetic operators. Furthermore, the resulting calculation
(c10, op0, c

2
0, c

3
0) must adhere to mathematical principles, en-

suring that the operation is valid. The transition T (s0, a0)
modifies the state to s1 = (4, 4, 10) where the returned state
s1 includes the remaining 4, 10 and the newly derived 4.

3.2 Planning Workflow with Symbolic Verifier
The search paradigm addresses limitations in current large
language models by enabling the exploration of multiple
planning paths. Nevertheless, they typically rely on the
pre-trained process reward models [Lightman et al., 2024;
Snell et al., 2024] or self-evaluation [Yao et al., 2023a]. In
this work, we introduce the symbolic verifiers to provide the
process supervision and guide the search with constraints.
Figure 2 provides an illustration of overall framework.

Beam Search. Beam search serves as a foundational mech-
anism for navigating the planning space. By utilizing a pre-
defined LLM workflow, i.e., scheduling the LLMs to gener-
ate action with the transition function, we guide the explo-
ration of multiple paths concurrently, maintaining a balance
between exploration and exploitation. This approach allows
the process to consider a breadth of states, retaining only the
most promising candidates for further planning. We set a
beam width B to control the complexity of the search. This
structured search ensures that computational resources are ef-
ficiently used to explore feasible solutions.

Action Proposal. Given a state st in the current candidates,
the LLMs ϕ are employed to generate K action candidates
[a1t , a

2
t , · · · , aKt ] ∼ g(at|st, ϕ). This set serves to expand

the state nodes within a tree-searching process. Each ac-
tion candidate at represents a potential planning path forward
(st, at, T (st+1|st, at)), branching the search tree and allow-
ing for a diverse exploration of possible solutions. The action
proposal stage leverages the generative capabilities of LLMs
to produce a wide array of viable next steps, which are essen-
tial for navigating complex problem spaces.

Progress Symbolic Verification Subsequently, a symbolic
verifier fv(s, a,P) is applied to the state-action pairs to en-
sure adherence to process constraints C. We extract concepts
from the generated text using regular expression matching
to compute the value of the predicates pc within the con-
straints C, thereby facilitating constraint verification. This
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Figure 2: The illustration of proposed RNSP framework.

verifier acts as a gatekeeper, filtering out actions that do not
conform to the defined logical or procedural requirements,
thereby guaranteeing the legality of the resultant solutions.
The integration of symbolic verification adds a layer of rigor
to the planning process, enhancing reliability by ensuring that
only valid paths are explored further. This synergy between
the generative strengths of LLMs and the stringent checks of
symbolic verification significantly bolsters the overall robust-
ness and effectiveness of the planning workflow.

3.3 Reinforced Evaluation Improvement
As we discussed above, LLMs are weak at handling the
domain-specific knowledge required for planning tasks. A
promising solution is learning from the goal feedback of the
planning task. In this section, we incorporate reinforced eval-
uation mechanisms that utilize principles of reinforcement
learning to update process-wise evaluations along the search
paths. Specifically, for each feedback predictive signal p in
the terminal states, we employ a value function v(s, a|p) to
update the process value, ensuring that the evaluation adapts
and improves over time. Feedback is quantified using fuzzy
logic, which allows for a nuanced assessment of the partial
solutions. We first define the path (s′0, s

′
1, s

′
2, . . . , s

′
L) as the

sequence from the root node to the terminal node s′L in the
search tree. For the terminal state s′L, we perform a sym-
bolic evaluation of the target predicates in G to obtain the
signal feedback for each pg ∈ G. This feedback is then prop-
agated back to the preceding parent nodes s′L−1, s

′
L−2, . . . in

the planning trajectory:

v(s′l|p) = max(v(s′l|p), fs(s′L, p)), ∀l ∈ [0, L] (1)

Algorithm 1 The proposed RNSP
Require: The LLM ϕ, n initial states S0, constraints verifier
VC(·|P), progress evaluator fv(·|G), beam width B, proposal
width K, planning length L

1: for i = 1, 2, . . . , n do
2: Sample problem s0 ∼ S0

3: for l = 1, 2, . . . , L do
4: C = {s0}.
5: for each s in Sl−1 do
6: for k = 1, 2, . . . ,K do
7: at ∼ g(·|st, ϕ)
8: if (sl, al) |= p̄, ∀p̄ ∈ C then
9: C = C ∪ T (·|sl, al).

10: end if
11: end for
12: end for
13: Sl+1 ← prune(C,B) with estimation Eq. 2.
14: end for
15: Update value estimation v(s|p)∀p ∈ G via Eq. 1.
16: end for
17: return SL

This is equivalent to the value update in reinforcement learn-
ing, where dynamic programming is used to transition state
values under different actions.

V (s) = max
a∈A,s′∼T (s,a)

V (s′)

To aggregate the multiple constraint assessments for G, we
incorporate the T-norms to the process value estimation. By
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Game of 24/28/30 Constrained Knapsack Travel Planning

Input 4 numbers (4 9 10 13) Blocks: (pink, 14),(blue, 5)...
Required colors: pink, red

Query: Please help me plan a trip from St. Petersburg
to Rockford spanning 3 days with a budget of $1700.
Information: Flight from ..., Restaurants ...

State 13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)

Selected blocks’id: 30, 35,
22, 9, 16, 18, 51

Day: 1, Current city: from St. Petersburg to Rockford,
Transportation: Flight Number: F3573659,
Breakfast: Dunkin’ Donuts, Rockford,
Attraction: Anderson Japanese Gardens, Rockford,

Action 4 * 6 = 24 (left: 24) Select block with id 37 Lunch: Moets Arabica, Rockford.

Steps 3 10 21-49

Table 2: Task overview.

applying the T-norm operations, we evaluate the conjunction
of constraints as follows:

fv(s|G) = min
p∈G

v(s|p) (2)

This formula calculates the minimum satisfaction level across
all constraints, ensuring that the lowest level of satisfaction
dictates the overall assessment of a state-action pair’s viabil-
ity. This approach aligns with the physical interpretation of
value estimation, which reflects foresight regarding the prob-
ability of successfully achieving the goal G. It helps maintain
a conservative and realistic appraisal of the planning paths.

Integrating these reinforcement objectives enhances the
search by ensuring that the consideration of actions not only
respects constraints but also continuously improves through
learning from past evaluations. This makes the planning pro-
cess more robust and adaptable, capable of responding to
dynamic constraints and feedback efficiently. The overall
method is summarized in the Algorithm 1.

4 Empirical Study
4.1 Experimental Setup
We evaluate our proposal on diverse tasks, including Game
of 24, Game of 28, Game of 30, Constrained Knapsack, and
Travel Planning. We benchmark a series of well-validated
or cutting-edge methods as baselines. (1) Standard Input-
Output prompting (IO): it generates a direct answer without
additional reasoning steps, (2) Chain-of-Thought prompting
(CoT) [Wei et al., 2022]: it encourages the model to break
down complex problems into simpler, step-by-step reasoning
processes. (3) Tree-of-Thoughts (ToT) [Yao et al., 2023a]:
it explores multiple reasoning paths with symbolic workflow
and performs self-evaluation to find optimal solutions. We
compare these methods with our proposed approach, based on
advanced LLMs, including DeepSeek-V3 [Liu et al., 2024a],
GPT-4o [OpenAI, 2024b], GPT-4o-mini [OpenAI, 2024a],
and GPT-3.5-turbo [OpenAI, 2022].

4.2 Game of 24, 28 and 30
The Game of 24 is a well-known benchmark that tests the
mathematical reasoning of large language models through the
use of basic arithmetic operations, includes addition, subtrac-
tion, multiplication, and division. The premise of the Game

of 24 is straightforward: given four numbers and these funda-
mental operations, the objective is to derive the target number
24. This game serves as an exemplary scenario for assess-
ing the self-evaluation capabilities of LLMs, as it requires not
only computational competence but also logical reasoning to
identify valid sequences of operations.

To extend this concept, we generalize the framework to in-
clude different target numbers, resulting in variations such as
the Game of 28, and the Game of 30. Each of these games
presents unique challenges while maintaining the fundamen-
tal mechanics of the original Game of 24. By varying the
target numbers, we can observe how effectively LLMs adapt
their strategies and reasoning processes, providing insights
into their planning and problem-solving abilities.

For the game of 24, we follow the [Yao et al., 2023a] and
collect the data from 4nums.com, a website hosting mathe-
matical games, specifically selecting 1,362 games sorted by
human solving time from easy to hard. The samples indexed
800-900 are utilized to train, and the samples indexed 901-
1000 are utilized to test. For the Game of 28 and Game of 30,
we randomly generate problems and use a ground-truth sym-
bolic solver to identify and retain only those problems that
have solutions. The scale of the training and testing data is
the same as that for the Game of 24, with each consisting of
100 problems. We evaluate the success rates using the top
1 candidate and the top 5 candidates, denoted as Success@1
and Success@5, respectively.

The overall results are provided in the Table 3. From the
results, we could find that the direct planning methods, i.e.,
IO and CoT methods generally demonstrate lower success
rates compared to our proposed method and other compara-
ble methods like ToT. Their significantly lower Success@1
rates across all games reflect LLMs’ struggle to identify valid
action sequences for the desired goals. It also underscores
the value of search strategies guided by pre-defined symbolic
workflows in addressing such complex tasks, where struc-
tured symbolic guidance helps navigate through the chal-
lenges of constraint satisfaction and goal attainment. By
leveraging these more structured approaches, notably our hy-
brid model, improvements are evident across various game
scenarios, showcasing its ability to enhance planning ac-
curacy and success rates effectively. This emphasizes the
potential for integration of symbolic reasoning to comple-
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Game of 24 Game of 28 Game of 30
Method LLM Success@1 Success@5 Success@1 Success@5 Success@1 Success@5

IO

GPT-3.5-turbo 14.54 - 6.990 - 5.340 -
GPT-4o 12.47 - 4.260 - 5.840 -
GPT-4o-mini 13.78 - 7.010 - 5.210 -
DeepSeek-v3 15.90 - 6.050 - 9.800 -

CoT

GPT-3.5-turbo 5.420 - 8.430 - 5.300 -
GPT-4o 9.440 - 4.260 - 13.39 -
GPT-4o-mini 6.060 - 7.010 - 4.570 -
DeepSeek-v3 12.34 - 6.050 - 12.89 -

ToT

GPT-3.5-turbo 30.00 46.00 0.000 0.000 0.000 0.000
GPT-4o 81.00 85.00 47.00 51.00 67.00 67.00
GPT-4o-mini 28.00 42.00 0.000 0.000 26.00 36.00
DeepSeek-v3 86.00 87.00 36.00 39.00 66.00 68.00

RNSP

GPT-3.5-turbo 57.00 57.00 44.00 44.00 50.00 50.00
GPT-4o 77.00 77.00 43.00 43.00 56.00 56.00
GPT-4o-mini 56.00 56.00 49.00 49.00 55.00 55.00
DeepSeek-v3 93.00 93.00 56.00 56.00 70.00 70.00

Table 3: Experimental results on Game of 24, Game of 28, and Game of 30.

ment LLMs, bridging gaps in tasks requiring intricate plan-
ning and reasoning capabilities. In contrast, our proposed
method RNSP demonstrates robust performance across all
Games of 16, 24, and 30. For instance, RNSP with Deepseek-
v3 achieves a success rate of 93% for the Game of 24,
which is substantially higher than the ToT’s 86% and CoT’s
12%. Moreover, the performance gap exhibited by ToT in
the Games of 28 and 30 compared to the Game of 24 high-
lights the fragility of self-evaluation. In contrast, our ap-
proach demonstrates greater stability, achieving success rates
of 93%, 56%, and 70% for the Games of 24, 28, and 30, re-
spectively. This indicates that relying solely on pre-trained
LLMs for general planning is unreliable. It is necessary to
incorporate symbolic verifiers to aid LLMs in understanding
the requirements of downstream planning tasks.

4.3 Constrained Knapsack
This is a classic knapsack problem aimed at maximizing the
value of selected blocks under specific constraints. Each
query presents blocks with different colors and scores, and the
planning objective is to select a specified number of unique
blocks with particular required colors while maximizing the
total score. In this scenario, we consider five available block
colors: red, yellow, black, pink, and blue. Each block is as-
signed a random score ranging from 1 to 20, along with a
random color from the available options. The total number
of blocks is randomly determined, ranging from 50 to 200.
For the task query, we randomly select 1 to 3 colors as the
required colors and specify that 10 blocks must be chosen. In
this task, the method must consider the number of remaining
blocks available for selection at each step, as well as the im-
pact of the required colors on the final scores. This involves
evaluating the current state to effectively guide the search.

We consider two metrics for evaluation: the success rate of
samples achieving the maximum possible score, abbreviated

Method LLM SR@1 (%) RP (%)

IO
GPT-3.5-turbo 0.000 0.829
GPT-4o-mini 0.000 0.818
DeepSeek-v3 0.560 2.572

CoT
GPT-3.5-turbo 0.000 0.663
GPT-4o-mini 0.000 0.853
DeepSeek-v3 0.000 0.000

ToT
GPT-3.5-turbo 0.000 7.351
GPT-4o-mini 0.000 14.15
DeepSeek-v3 8.000 70.10

RNSP
GPT-3.5-turbo 16.00 90.16
GPT-4o-mini 28.00 94.41
DeepSeek-v3 72.00 95.65

Table 4: Experimental Results on Constrained Knapsack problem.

as SR, and the relative percentage of the score obtained by the
method compared to the optimal score, abbreviated as RP. It is
important to note that any solution failing to meet the color re-
quirements will have its score disregarded and replaced with
zero. This process prevents the model from converging on a
greedy selection of high scores without adhering to the con-
straints, thereby ensuring a fair evaluation. The results of this
experiment are provided in Table 4.

From the results, we could find that the IO method exhibits
weak performance across both metrics. The SR@1 of GPT-
3.5-turbo and GPT-4o-mini is consistently zero, indicating it
fails to achieve the maximum possible score on any query
sample. Additionally, the relative percentage (RP) is notably
low, with values like 0.829% and 0.818%, demonstrating its
general ineffectiveness in this constrained planning context.
The Chain-of-Thought (CoT) method, typically regarded as
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effective for long-chain reasoning tasks, also shows poor per-
formance in this scenario. It results in zero success rates
across all tested LLMs. Notably, CoT even leads to a de-
crease in the RP score. This also suggests that solely relying
on a training-free LLM for constraint-based planning tasks is
highly limited. The ToT method has achieved notable gains in
RP, particularly when combined with DeepSeek-v3, where it
reached an RP of 70.10%. However, it remains weak in terms
of SR, with a success rate of only 8% for DeepSeek-v3 and
0% for the other two LLMs. This indicates that while ToT
improves the value estimation aspect of planning, it struggles
to satisfy constraint requirements effectively during its self-
evaluation process. Our method, RNSP, not only achieved
over 90% RP across all three LLMs but also demonstrated
significant improvements in SR. Notably, with DeepSeek-v3,
it reached an SR of 72%. This performance highlights how
reinforced optimization, guided by symbolic feedback, en-
hances the value estimation. As a result, planning becomes
more effective in taking the goal constraints into considera-
tion and overcoming the limitations of self-evaluation.

4.4 Travel Planning
We further conduct the experiments on a real-world planning
benchmark TravelPlanner [Xie et al., 2024]. TravelPlanner
is a novel benchmark dataset designed to evaluate the plan-
ning capabilities of language agents in real-world scenarios,
specifically focusing on travel planning. This dataset pro-
vides a comprehensive testbed to assess how well language
agents can make a travel plan and satisfy multiple constraints
while generating feasible plans. Each query involves plan-
ning a travel itinerary, including transportation, meals, attrac-
tions, and accommodations while adhering to various con-
straints. As pointed out by [Shao et al., 2024b], in travel
planning, unrealistic or incorrect information might lead to
shortcutting logical constraints, such as misreporting costs to
fit budget requirements. To evaluate different methods, we
utilize the Conditional Logical Pass Rate (C-LPR) and Fi-
nal Pass Rate (FPR). The C-LPR represents the pass rate of
meeting hard logical constraints under the conditions of envi-
ronmental constraint validity. Meanwhile, the FPR indicates
the proportion of itineraries that satisfy both environmental
constraints and user-specific logical requirements.

C-LPR=

∑
q∈Q I[Rq |= Cq]·

∑
p∈Gq

I[Rq |= p)]∑
q∈Q |Gq|

Q is the set of querying samples, Gq is the set of goal con-
straints for query q, Cq is the progress constraints, and Rp is
the resulted plan for query q.

The results are provided in the Table 5. From the results,
we could find that the IO method demonstrates relatively
weak performance. Specifically, GPT-4o-mini yields a C-
LPR of 3.809% and an FPR of 0.000%, while DeepSeek-v3
fares slightly better with a C-LPR of 10.47% and an FPR of
4.444%. These low values indicate that the IO method strug-
gles to effectively meet both environmental and user-specific
constraints in travel planning tasks. The Chain-of-Thought
(CoT) method also underperforms in this scenario. These re-
sults suggest that CoT, while useful for long-chain reasoning

Method LLM C-LPR FPR

IO
GPT-4o-mini 3.809 0.000
DeepSeek-v3 10.47 4.444

CoT GPT-4o-mini 2.857 2.222
DeepSeek-v3 8.571 2.222

ToT GPT-4o-mini 18.09 11.11
DeepSeek-v3 19.04 11.11

Ours GPT-4o-mini 28.57 22.22
DeepSeek-v3 25.71 15.55

Table 5: Experimental Results on Travel Planning.

in other contexts, is less capable of handling complex logi-
cal constraints in travel planning, which needs more than 20
reasoning steps. Thanks to the symbolic workflow, the ToT
method more easily satisfies the requirements of process con-
straints, showing better results compared to the IO and CoT
methods. Despite this improvement, the ToT method strug-
gles with long-chain goal constraints in travel planning, such
as considering the total itinerary cost and the variety of cui-
sine types. The self-evaluation capability of the LLMs under-
lying the ToT method is insufficient for these complex tasks.
Our method, RNSP, addresses this limitation by utilizing re-
inforced value estimation. This approach feeds the impact
of long-chain constraints back into intermediate nodes within
the search tree, thereby providing a foresightful state eval-
uation function during subsequent searches. As a result, it
enhances the planning capacity by improving the ability to
anticipate and meet the intricate requirements of long-chain
constraints.

5 Conclusion and Discussion
In this work, we addressed the limitations of Large Language
Models (LLMs) in constrained planning tasks by proposing
Reinforced Neuro-Symbolic Planning (RNSP), a framework
that combines the generative power of LLMs with symbolic
verification. The symbolic verifier ensures strict adherence
to constraints, while reinforcement learning principles enable
iterative refinement of state evaluations. By using T-norms to
aggregate constraint satisfaction levels, our framework pro-
vides effective guidance for test-time search, bridging the gap
between neural flexibility and symbolic rigor.

While RNSP has significantly improved constraint satis-
faction, its computational efficiency can be enhanced for real-
time applications. The current method uses the concise beam
search to verify the effectiveness of the RNSP idea. Future
work could explore advanced exploitation-exploration tech-
niques to explore more informative states in the value opti-
mization phase and reduce the overhead during the test-time
search, which may make the framework more practical for
deployment in time-sensitive environments. Another inter-
esting direction is to convert the learned value estimation into
a token-level reward model, which could be used to assist in
the post-training of the LLMs. It may provide a novel learn-
ing paradigm for enhancing the LLM’s intrinsic ability to per-
form constrained planning.
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