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Abstract

In many real-world scenarios, the goal is to identify
variables whose causal mechanisms change across
related datasets. For example, detecting abnor-
mal root nodes in manufacturing, and identifying
key genes that influence cancer by analyzing dif-
ferences in gene regulatory mechanisms between
healthy individuals and cancer patients. This can
be done by recovering the causal structure for each
dataset independently and then comparing them
to identify differences, but the performance is of-
ten suboptimal. Typically, existing methods di-
rectly identify causal mechanism shifts based on
linear additive noise models (ANMSs) or by impos-
ing restrictive assumptions on the noise distribu-
tion. In this paper, we introduce CMSI, a novel and
more general algorithm based on nonlinear ANMs
that identifies variables with shifting causal mech-
anisms under arbitrary noise distributions. Evalu-
ated on various synthetic datasets, CMSI consis-
tently outperforms existing baselines in terms of F1
score. Additionally, we demonstrate CMSI’s appli-
cability on gene expression datasets of ovarian can-
cer patients at different disease stages.

1 Introduction

Causal discovery aims to uncover underlying causal re-
lationships between variables of interest in observational
data [Chen et al., 2024a; Zhang et al., 2024], which play
a significant role in multiple disciplines such as genomic
analysis [Xu et al., 2024] and epidemiology [Robins et al.,
2000]. Numerous causal discovery algorithms have been pro-
posed, including prominent methods such as PC [Spirtes ef
al., 2000] and GES [Meek, 1997]. More recently, methods
based on properly defined Structural Causal Models (SCMs)
have been proposed to distinguish the correct graph under-
lying the observational data, by adding additional assump-
tions on the functional class of the SCM [Hoyer et al., 2008;
Zhang et al., 2021; Zhang et al., 2022].

In practice, the ultimate goal in many applications is not
to recover the entire underlying DAG, but rather to detect the
changes in the causal mechanisms among multiple related do-
mains. For example, one application involves identifying the
root causes of faults in large-scale manufacturing and indus-
trial control systems [Bogatinovski er al., 2021]. Another im-
portant application lies in identifying differences in gene reg-
ulatory networks between healthy individuals and cancer pa-
tients. The key genes that explain these differences may pro-
vide valuable information on potential therapeutic targets for
specific types of cancer [Hudson et al., 2009]. In these appli-
cations, compared with the size of the whole causal graph, the
number of variables whose causal mechanisms change among
domains tends to be relatively sparse. As a result, estimating
causal graphs for each individual domain and subsequently
detecting changes is inefficient and redundant. Therefore, it
is of significant importance to develop a practical method for
directly detecting changes in causal mechanisms across dif-
ferent environments.

Most existing methods for identifying causal mechanism
shifts rely on restrictive assumptions within the functional
class of the SCM, which can limit their applicability in real-
world scenarios. For instance, both DCI [Wang er al., 2018]
and the method proposed by [Varici er al., 2021] assume that
the underlying SCM adheres to a linear ANM with Gaussian
noise. To relax the linearity constraint, UT-IGSP [Squires
et al., 2020] introduces a nonparametric approach for iden-
tifying intervention targets. However, this method depends
on nonparametric conditional independence (CI) tests, which
are computationally expensive and inefficient. More recently,
iSCAN [Chen et al., 2024b] leverages the Jacobian of the
score function of the mixture distribution to detect mech-
anism shifts. Despite its advancements, this approach im-
poses strict assumptions on the noise distribution in the ANM,
which further restricts its applicability in practical scenarios.

Building on recent advancements in identifying causal re-
lationships within multivariate ANMs with arbitrary noise
distributions [Montagna et al., 2023], we propose a novel
method for detecting shifts in causal mechanisms that is ap-
plicable to arbitrary noise distributions. Specifically, we es-
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tablish a connection between the score function of the mix-
ture distribution across environments and the identification
of variables whose causal mechanisms shift under arbitrary
noise distributions. Based on this theoretical insight, we de-
velop a practical algorithm that iteratively detects common
leaf variables across all environments and evaluates whether
their causal mechanisms have shifted by leveraging the score
function. In summary, our main contributions are as follows:

* We prove that the score function of the mixture distri-
bution unveils information to detect mechanism shifts
for the common leaf nodes, which does not rely on any
structural assumptions on the individual DAGs or para-
metric assumptions on noise distributions.

* We propose an algorithm that iteratively selects a com-
mon leaf variable among the DAGs in different environ-
ments and evaluates whether such variable is shifted.

* We evaluate the performance and applicability of our
method by extensive experiments on both synthetic and
ovarian cancer datasets. The results demonstrate the su-
periority of our method.

The remainder of this paper is organized as follows: In Sec-
tion 2, we list the previous works in related topics. In Section
3, we introduce the fundamental notions and background. In
Section 4, we present our method for detecting shifted vari-
ables. In Section 5, we evaluate the performance of our algo-
rithm on both synthetic and ovarian cancer datasets. In Sec-
tion 6, we summarize the content of this paper.

2 Related Work

Mechanism Shifts Identification. In the past decade, var-
ious approaches have been proposed to identify mechanism
changes across environments. [Zhao et al., 2014; Yuan er al.,
2017; Liu et al., 2017] propose algorithms for directly de-
tecting the changes by estimating the difference between two
precision matrices. However, these methods are only suit-
able for undirected graphs. For directed graphs that provide
more essential information, [Li et al., 2023] offers a poten-
tial approach to detect heterogeneous functional relationships
between a variable X; and its parents. However, the appli-
cability of their method is limited, as it relies on the assump-
tion of a common distribution for covariates across different
environments. This assumption is potentially violated if the
mechanism shifts have affected the ancestors of X;. Addi-
tionally, DCI [Wang et al., 2018] estimates changes by test-
ing the invariance of regression coefficients and noise vari-
ances, while [Varici er al., 2021] repeatedly identifies inter-
vention sites in subsets of variables by comparing precision
matrices, both of which are restricted to linear additive noise
models (ANMs) with Gaussian noise. To address the linearity
constraint, UT-IGSP [Squires et al., 2020] introduces a non-
parametric method for identifying intervention targets. How-
ever, this approach relies on nonparametric conditional inde-
pendence (CI) tests, which can be computationally expensive
and inefficient. iSCAN [Chen et al., 2024b] detects shifts by
leveraging the Jacobian of the score function of the mixture
distribution. Nonetheless, this method assumes that the noise
distribution in the ANM satisfies specific conditions.

Application. Identification of causal mechanism shifts has
wide-ranging applications across numerous domains. In bi-
ology, understanding differences in gene regulatory networks
across different populations in biological systems can provide
crucial insights into disease mechanisms and potential thera-
peutic targets [Hudson et al., 2009; Pimanda et al., 2007].
Specially, in the analysis of EEG signals it is of interest to de-
tect neurons or different brain regions that interact differently
when the subject is performing different activities [Sanei and
Chambers, 2013]. In economics, [Shi er al., 2020] apply a
new method to detect shifts in Granger causality, uncover-
ing structural breaks in the US money-income relationship.
Another application area lies in fault detection in large-scale
Internet of things and cloud applications [Bogatinovski et al.,
2021]. Other examples include epidemiology [Robins et al.,
2000], medicine [Plis et al., 20101, etc. These diverse ap-
plications highlight the importance of developing robust and
efficient methods for causal mechanism shift detection.

Score Matching. Score matching, a recently developed pa-
rameter learning method, is particularly effective for high-
dimensional density models with intractable partition func-
tions [Lyu, 2012; Ren et al., 2025]. Recent advancements
have extended score matching to generative modeling, re-
sulting in score-based generative models that achieve re-
markable performance in image generation and other do-
mains [Song and Ermon, 2019; Song er al., 2020]. This
method has also been explored in causal discovery. For
instance, SCORE [Rolland et al., 2022] leverages the Ja-
cobian of the score function to identify the topological or-
der in additive noise models (ANMSs) with Gaussian noise.
NoGAM [Montagna et al., 2023] builds on this by learning
causal relations through regression on the score function, re-
laxing the noise distribution constraints of iSCAN. Addition-
ally, score matching’s ability to capture subtle distribution
changes makes it valuable for detecting distribution shifts.
For example, iSCAN [Chen er al., 2024b] uses the diago-
nal of the Jacobian of the score function to identify shifts in
causal mechanisms.

3 Preliminaries and Background

In this section, we first introduce the notation and assump-
tions that will be used throughout the paper. We then con-
clude by formalizing the problem setting.

Definition 1 (Structural Causal Model (SCM)). Let V =
{1,...,d} be the vertices of a directed acyclic graph G,
and X = {Xy,..., X4} be a d-dim vector of random vari-
ables, in one-to-one correspondence with V. An SCM M =
(X, f,PN) over d variables is a set of d structural equations
with the same form:

VieV,X; = fi(Xpa,, Ni), (D

where PA; C V \ {i} are the direct parents of vertex i in
the underlying DAG of the SCM. P is the joint distribution
of noise terms N = {Ny, ..., Nqg} which are assumed to be
jointly independent'.

"Note that we assume there is no latent confounders.
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Definition 2 (Causal Mechanism). Every SCM induces a
Jjoint distribution P(X) of X and admits the following fac-

torization:
d

P(X) = [[ P(Xi|Xpa,). @
i=1
where P(X;| Xpa,) is defined as the causal mechanism of X;.
Definition 3 (Independent Causal Mechanisms (ICM) Princi-
ple). A change in P(X;|PA;) has no effect on and provides
no information on P(X|PAy) for any k # j.

Denote an underlying SCM M* with DAG structure G*
and joint distribution P*(X) = []{_, P*(X|Xpa). An en-
vironment arises from intervening causal mechanisms of a
subset of X. Formally, we have the following definition.
Definition 4 (Environment). An environment &y, is derived
from an underlying ANM M* = (X, f,Px) by applying in-
terventions on an unknown subset I of variables X. Accord-

ing to the ICM Principle (Def. 3), then the new joint distribu-
tion P"(X) can be factorized as follows:

PM(X) = [[P"(XilXpar) [ P*(Xj1Xea:). 3
i€l JEV\I

where PM(X;| Xpar) is the causal mechanism after interven-
tion. Here, we allow an intervention to modify the causal
mechanism of a variable while optionally removing part of
its direct parents, i.e., PA" C PA?.

With Def. 4, we have the definition of the shifted variables.

Definition 5 (Shifted Variable). A shifted variable is a vari-
able whose causal mechanism differs across different envi-
ronments. Formally, variable X; is a shifted variable, if there
exists two environments E, and &y, such that

P*(X;|PAY) # PP(X;|PAY), “4)

where P*(X;|PA?) and P*(X;|PA?Y) denotes the causal
mechanisms of X; in environment &, and &y, respectively.

Definition 6 (Additive Noise Model (ANM)). An additive
noise model M* is an SCM whose each structural equation
has the following form:

VieV, Xi = fi(Xpa,) + N, )
where f; is referred to as the data generation function.

In this paper, we assume that all SCMs in different environ-
ments satisfy the ANM model. That is, intervention can mod-
ify function f;, parent PA; or noise distribution N;. How-
ever, the new SCM after intervention still follows the ANM
model. Next, we introduce a lemma from [Montagna et al.,
2023] which serves as the basis of our approach.

Lemma 1. Given X be a d-dim random variables generated
according to Def. 5 with underlying DAG G. Let p(x) be the
pdf of X and s(x) = V log p(x) be the corresponding score
function. Denote R; be the residual of X; by regressing on
X\ (i}» and then obtain g(R;) as the estimator for s;(X) by
regressing on R;. V X; € X, we have:

E [(SZ(X) — g(Ri))ﬂ =0<= nodeiisaleafin G. (6)

Lemma 1 provides a sufficient and necessary condition for
detecting leaf nodes for those models generated according to
ANM. Notably, it requires no specific parametric assumption
on the noise distribution. Finally, to conclude this section, we
formally define the whole problem.

Problem definition. Given H datasets X', ..., X sampled
from K different environments where X* € R™»* consists
of my, independent and identically distributed samples from
environment &, our task is to identify the shifted variables
relative to H environments without any assumptions on the
specific noise distribution in the ANM.

4 Method

In this section, we propose CMSI to identify mechanism
shifts across environments, without any assumptions about
the noise distribution in the ANM.

Let X be the row concatenation of all the datasets X",
. T T
ie, X = [(X!) [---](XH) ]T € R™*4, where m =
Zle my,. The pooled data X represents an aggregation of
data sampled from H heterogeneous environments. To ac-
count for this aggregation, we introduce the probability mass

wy, 2 ™b which represents the probability that an obser-
m

vation belongs to the environment &, i.e., Ethl wp = 1.
Let Q(X) denote the distribution of the mixture data with
density function g(z), i.e., q(x) = S2p_, wpp™(x). We use
sh(x) & Vlog p"(x) to denote the score function of the joint
distribution of environment h with density p"(z). Also, we
use s(x) = Vloggq(z) to denote the score function of the
mixture distribution with density ¢(x).

4.1 Main Results

Inspired by Lemma 1 that identifies the leaf nodes in a sin-
gle environment via the score function. In the sequel, we
will show that the score function of the mixture distribution
s(z) £ Vlogq(z) can help reveal causal mechanism shifts
among different environments. Firstly, we make the follow-
ing assumptions on the underlying SCM.

Condition 1 ([Peters er al., 2014]). Given a bivariate model
X, = N, and X; := f;(X;)+ N;, we call the SCM an iden-
tifiable bivariate ANM if the triple (f;,pn,,pn,) does not
solve the following differential equation for all pairs x;,x;

with fi(xi)g" (x; — fi(x:)) # 0:

" el 1

k;”l — k;” <_gg/f _|_ J},) _ 29//f//fl
g/g///f//f/ g/(fl/)Q

g’ B [

)
+glf/l/ +

Here, f := f;, k := logpn,, g := logpy;. To improve
readability, the arguments z; — f;(x;), x; and z; of g, k and
f, respectively, have been removed.

Assumption 1. Forall j € V,i € PA; and all sets S C
V with PA;\{i} C S C ND;\{3,j}, there is an xg with
ps(zg) > 0, s.z.

(f;(@pa gy, Xo), £ (Xi | Xs = as), L(N;)) ()
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Algorithm 1 Regression the Score on Residual (ReSR)

Algorithm 2 Causal Mechanism Shifts Identification (CMSI)

Input: Dataset X.
Output: Estimator g(R) of the score s(X).

1: s(X) « estimate the score function of X.
R, « residual by regressing X; on X\ (43, Vi € V.
J(R) + obtained by regressing s(X) on R;, Vi € V.
return G(R).

Rl

satisfies Condition 1. In particular, we require the noise vari-
ables to have non-vanishing densities and the functions f; to
be continuous and three times continuously differentiable.

Theorem 1. For all h € [H], let G and p"(z) denote the
underlying DAG structure and pdf of environment &, re-
spectively, and let q(x) be the pdf of the mixture distribu-

tion of the H environments such that q(x) = Zthl wpp" ().
Also, let s(x) = Vlog q(x) be the associated score function,
Ri = AXZ - EXLNQ(XZ)[Xl‘X\{Z}]’ g*(Rz) = E[Sl(X)‘RZ]
Then, under Assumption I, we have: if l is a leaf in all DAGs
G", then l is a shifted node if and only if:

E[(g"(R) = s1(X))*] >0, ©)

except for the case that the causal functions are identical
across environments, i.e. Vh, h* € [H], flh = fir.

The proof of Theorem 1 is presented in the appendix. The-
orem 1 provides an effective approach for detecting mecha-
nism shifts for common leaf nodes. As the induced graph by
M* is acyclic and each intervention will only optionally re-
move edges without adding some new edges, we can always
find a common leaf node. Furthermore, after removing the
common leaf node found, we can always find a new one, un-
til the whole graph is empty. Consequently, all the shift nodes
can be found in this procedure by Theorem 1.

The idea above is outlined in Alg. 2. Concretely, we first
integrate the primary computational procedure of Lemma 1
into Alg. 1 as a component. In Alg. 1, to obtain the esti-
mator §(R) of the score s(X), we first regress each variable
X against the remaining variables X ;) to get the residual
R;, and finally regress the score function s(X) against the
residuals R.. In Alg. 2, we first identify the leaf nodes of the
underlying DAG for each environment based on Lemma 1
and then obtain the common leaf nodes L of all DAGs (Line
4-5). Subsequently, based on Theorem 1, we detect whether
the common leaf nodes are shift nodes (Line 6-8). Repeat the
above procedure until all variables have been detected (Line
9). Note that for each iteration, the common leaf nodes will
not be involved in the subsequent identification of leaf nodes,
regardless of whether they are shifted.

Computational Complexity. The computational complex-
ity of both score function estimation and regression within
a single environment &, is O(dm;). In Alg. 2, the primary
computational cost stems from the score function estimation
on the pooled data X € R™*? and regression on X, each
with a complexity of O(dm?). In the worst-case scenario,
where only one node is removed per iteration, the algorithm
requires at most d iterations. Therefore, the total computa-
tional complexity of Alg. 2 is O(d?m3).

Input: Dataset X', ..., X

Output: Estimated shifted variables set I
1: Initialization: T = {}, N = {1,...,d}.

2 X = [(XHT]--| (XH)T]" e Rmxd,

3: while N = 0 do

4: g(R") + ReSR(X"), Vh € [H].

5 L+ Mg {l | E[(su(X") = 9(R}'))?] = 0,1 € V}.
6:  g(R) < ReSR(X).

7. T TU{X;|E[s;(X)—=g(R:))? #0, i€ L}

8: remove X"[:, L] and X[:, L], Vh € [H].

9: N« N-{L}.

0: end while

1:

1
11: return I.

4.2 Practical Implementation

In this section, we present some practical implementation de-
tails of Alg. 2 used in the experiments.

Score Function Estimation. Given an environment £ and
its dataset X = {z!,..., 2™} € R™*4. To estimate the corre-
sponding score function s(z) = Vlogp(z), Stein’s identity
[Stein, 1972] provides an estimator using:

Ep(z) [2(z)V1ogp(z) T + Vh(z)] =0, (10)

where h : R? — R? s.t. lim,_,o h(x)p(z) = 0. In practice,
we adopt a similar approach to the method in [Li and Turner,
2017] and present the estimator for the point-wise first-order
partial derivative, corresponding to Eq. (10):

G =—(K+n) YV,K), (11)

where H = (h(z'),...,h(z™)) € R¥*" K = H'H,
Ki; = w(z',27) = h(z") Th(a?), Vh = 3L, Vh(z¥),
(V,K) = mH'Vh, and > 0 is a regularization parameter.
G = (Viogp(z'),...,Viogp(z™))T € R™*? and G is
used to approximate G.

Regression. In both stages of regression in Alg. 1, we uti-
lize kernel ridge regression due to its capability to model non-
linear relationships. To enhance computational efficiency, we
implement kernel ridge regression with NVIDIA’s cuML li-
brary from the RAPIDS AI open-source software suite. The
regularization coefficient in the kernel ridge regression is set
to o = 0.1, and we use the radial basis function (RBF) kernel
with a width parameter of v = 0.1.

Selection of Common Leaf. Before employing Theorem
1 to examine the shifted nodes, it is necessary to leverage
Lemma 1 first to obtain the leaf nodes in each individual en-
vironment &, and then deduce the common leaf nodes among
all environments. Estimating E[(s?(X) — g(R}))?] is per-
formed by computing the Mean Squared Error (MSE) be-
tween the prediction $(R!) and the ground truth s;(X"),
denoted as MSE?. In practice, due to the limited number
of samples, it is not feasible to select leaf nodes solely by
MSE! = 0 because MSE" is susceptible to errors. There-
fore, we first rank the nodes based on their individual MSE?
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Figure 1: Simulation results on synthetic datasets with d nodes, d € {20, 30, 40, 50}. The average degree of each node is set to 8. The x-axis
represents the number of nodes, the top axis indicates the noise distribution, and the right-side axis labels the graph model type (Erdds-Rényi
(ER)/Scale-Free (SF)). Each subplot shows the performance of CMSI and other baselines for a specific setting. The points indicate the average
values obtained from 30 simulations. The shaded areas around the lines represent the standard error.
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Figure 2: Simulation results on synthetic datasets with 50 nodes and kd edges, kd € {100, 200, 300, 400}. The x-axis represents the number
of edges, the top axis indicates the noise distribution, and the right-side axis labels the graph model type (Erdos-Rényi (ER)/Scale-Free (SF)).
Each subplot shows the performance of CMSI and other baselines for a specific setting. The points indicate the average values obtained from

30 simulations. The shaded areas around the lines represent the standard error.

values in each environment £,. Subsequently, we select the
node with the minimum sum of ranks across all environments
as the common leaf.

Selection of Shifted Variables. Based on X, the row con-
catenation of all datasets X", we compute the score func-
tion s(X) and its estimator §(R) based on the residuals R.
Similarly to the selection of common leaf, the estimation of
E [(s;(X) — 8(R;))?] is performed by computing MSE; and
limited samples can introduce errors in MSE;. Therefore,
similar to [Chen et al., 2024b], we introduce the following
statistic for each common leaf [:

MSE;,

Stats = —
miny, MSE;" + ¢

12)

. MSE,
The ratio iy, MSET

shifted common leaf nodes {. For shifted nodes, the ratio
is large. For non-shifted nodes, the ratio is small, as MSE;

converges to zero faster than MSElh, supported by the larger
dataset used for MSE,; computation (Theorem 1). The small

distinguishes between shifted and non-

€ in the denominator ensures numerical stability, e.g., 107°.
We iteratively identify common leafs and calculate the value
of this ratio for each common leaf. This process ultimately
generates a dictionary where each key-value pair comprises
a node index and its corresponding stat value. After sorting
this dictionary in non-increasing order, we utilize the Python
library kneed to find the knee point which is the point of max-
imum curvature in a curve. Finally, we selected the knee point
as the boundary between shifted and non-shifted nodes.

5 Experiments

In this section, we illustrate the capability of our algorithm
CMSI through extensive experiments on synthetic and real-
world datasets. In Section 5.1, we evaluate the algorithm’s
ability to detect shifted variables on synthetic datasets, where
the data generation function is characterized as a composite
trigonometric function. In Section 5.2, we demonstrate the
application of CMSI to real-world scenarios by experiments
on an ovarian cancer dataset. Additionally, we provide addi-
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Figure 3: Simulation results on synthetic datasets with 50 nodes and 400 edges under various sample counts m € {200, 300,400, 500}.
The x-axis represents the number of samples m, the top axis indicates the noise distribution, and the right-side axis labels the graph model
type (Erdos-Rényi (ER)/Scale-Free (SF)). Each subplot shows the performance of CMSI and other baselines for a specific setting. The points

indicate the average values obtained from 30 simulations. The shaded areas around the lines represent the standard error.

tional experiments in the Appendix including: (1) Extended
evaluations on shifted variable identification using the data-
generating functions of Section 5.1. (2) Identifying shifted
variables when the data generation is generated by sampling
Gaussian processes. (3) Identifying shifted variables when
the underlying causal graph structures are different.

5.1 Synthetic Experiments

Basic Settings. We use the Erdos-Rényi (ER) and Scale-
Free (SF) graph models to generate random DAGs with d
nodes (d € {20, 30,40, 50}) and kd edges (k € {2,4,6,8}).
The default sample size in each environment equals 500.

Synthetic Dataset. Based on the generated causal graph
and the additive noise model (noise € {Gaussian(0, 1),
Laplace(0, 1), Gumbel(0, 1), Exponential(1), Beta(l, 1),
Gamma(0.5, 0.5)}), we construct the synthetic datasets. The
non-shifted variables are generated by following additive
noise model:

X;= ) sin(X})+ N;. (13)
JjEPA;

To generate the shifted variables, we first select a sub-
set of non-root nodes as shifted nodes, based on a ratio
r € {0.15,0.20,0.25,0.30}. For each shifted node, a single
environment is randomly selected from all available environ-
ments to represent its shifted environment. The node does not
undergo a shift in the remaining environments. (For example,
consider a scenario with H = 3 environments, each contain-
ing d = 20 nodes. Using a ratio » = 0.2, we randomly select
4 non-root nodes as shifted nodes. Then, we randomly assign
shifted node 1 to environment 2 for its shift, shifted node 2
to environment 1, and so on for the remaining shifted nodes.
Each shifted node only exhibits a shift in its assigned environ-
ment.) For a shifted variable X; € I , we randomly select ¢

direct parents f’Ki C PA,; and then intervene in the relation-

ships between f’Kz and X;. Similar as [Chen et al., 2024b],
the intervention is implemented by changing the generation

function f; from sin(ij) to 4(:05(2Xj2 —3X;). SoVX,; eI

X; = Z sin(X7) + Z dcos(2X7 — 3X;) + N;.
jEPA;\PA; jEPA;

Basic Experimental Setup. We use F1 Score metric to

evaluate the algorithm’s ability to detect intervened variables.

Experiments were conducted on a system equipped with

an Intel Xeon(R) Platinum 8255C CPU and two NVIDIA

GeForce RTX 2080 Ti GPUs.

Baselines. We compared the performance of CMSI against
several baselines, which include: iSCAN [Chen et al.,
2024b], CITE [Varici et al., 2021], Shapley [Budhathoki et
al., 2021], DCI [Wang et al., 2018], UT-IGSP [Squires et al.,
2020].

Overall Results Analysis. From Fig. 1~4 we can see that
CMSI consistently achieves state-of-the-art performance in
terms of F1 score, compared with other well-performing
baselines. In contrast, CITE and DCI exhibit the worst per-
formance and the limitations are likely attributable to their in-
herent reliance on linearity restrictions on SCMs. In addition,
CSMI exhibits the lowest standard deviation in general, indi-
cating greater stability and reliability regardless of data vari-
ations. More significantly, considering different noise types,
CMSI exhibits the best performance in most scenarios. This
indicates that CMSI exhibits stronger robustness and general-
ization capabilities across different noise types.

Results w.r.t. number of nodes. Fig. 1 illustrates the re-
sults with d € {20, 30,40, 50} nodes and 8d edges. As the
number of nodes increases, the performance of CMSI steadily
improves under any noise conditions. In contrast, the perfor-
mance of CITE decreases as the number of nodes increases.
Furthermore, the trends exhibited by certain methods differ
according to the type of noise present. For instance, DCI’s
performance improves with increasing node numbers under
Laplace noise, but declines under Gamma noise.

Results w.r.t. number of edges. Fig. 2 displays the results
with 50 nodes and 50k edges (k € {2,4,6,8}). The per-
formance of CMSI consistently improves as the number of
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Figure 4: Simulation results on synthetic datasets with 50 nodes and 400 edges under various shifted nodes ratio r € {0.15, 0.20, 0.25,0.30}.
The shifted nodes ratio » means the proportion of shifted nodes across all environments relative to the total number of nodes in a single
environment. The x-axis represents the shifted nodes ratio r, the top axis indicates the noise distribution, and the right-side axis labels
the graph model type (Erdos-Rényi (ER)/Scale-Free (SF)). Each subplot shows the performance of CMSI and other baselines for a specific
setting. The points indicate the average values obtained from 30 simulations. The shaded areas around the lines represent the standard error.

edges grows. This suggests that CMSI has stronger gener-
alization abilities and excels at identifying shifted variables
in denser causal graphs. A notable exception is the scenario
presented in Fig. 2 where the edge count equal to 100 and the
node count equal to 50. This represents the sparsest graph
structure among all those tested with the largest number of
nodes. Therefore, the lack of sufficient edge information (i.e.,
information about causal relationships) in this scenario hin-
ders CMSTI’s ability to make accurate judgments, leading to
slightly poorer performance. Nevertheless, numerous real-
world applications (such as gene regulatory networks) involve
dense causal graphs, ensuring the wide applicability of CMSI.

Results w.r.t. number of samples. Fig. 3 displays the
results with 50 nodes, 400 edges and m samples (m &
{200, 300, 400, 500}). In general, an increase in the number
of samples results in enhanced performance for algorithms,
such as DCI. However, CMSI demonstrates stable perfor-
mance across different sample sizes, indicating its ability to
effectively acquire knowledge from the samples. This makes
it suitable for shift detection in small-sample scenarios. In
contrast, algorithms like DCI, Shapley, and CITE perform
poorly with small sample sizes, while iSCAN and UT_IGSP
exhibit performance fluctuations as the sample size increases.

Results w.r.t. shifted nodes ratio. Fig. 4 displays the re-
sults with 50 nodes, 400 edges and shifted nodes ratio r €
{0.15,0.20,0.25,0.30}). When the ratio r varies, the per-
formance of DCI, and Shapley fluctuates significantly, but
CMSTI’s performance remains stable and consistently the best.
This suggests that CMSI can detect shifts in causal mecha-
nisms under varying degrees of shift.

Additional Experiments. Due to space limitations, we
leave more experiments in the Appendix. Additional ex-
periments include 1) increasing the number of environments
H € [2,3,4,5], 2) more flexible data generation processes
using Gaussian process, 3) shifted variable identification with
diverse causal structures. All results consistently imply that
CMSI possesses greater general applicability than baseline
methods. See the Appendix for more details.

5.2 Experiments on Ovarian Cancer Dataset

We evaluated CMSI on an ovarian cancer dataset [Tothill er
al., 2008] that was previously analyzed by iSCAN [Chen er
al., 2024b] and DCI [Wang et al., 2018]. This dataset was
collected from patients with stage III or stage IV ovarian can-
cer and divided into two subsets based on survival duration.
Based on these two subsets, CMSI identified the two most
heavily intervened genes in the apoptosis pathway: BIRC3
and FAS. BIRC3 was also identified by iSCAN and DCI, but
FAS was exclusively identified by CMSI as a highly inter-
vened gene. In fact, BIRC3 is categorized as an inhibitor of
apoptosis proteins (IAPs) , and the changes in BIRC3 expres-
sion levels induced by intervention affect the survival time of
ovarian cancer patients [Hu et al., 2019]. In addition, FAS
is highly expressed in ovarian tumors [Mondal et al., 2023]
and the FAS receptor (CD95) expressed by FAS contributes
to tumor growth [Ceppi et al., 2014].

6 Conclusion

In this work, we propose CMSI, an applicable method for de-
tecting causal mechanism shifts under ANM with arbitrary
noise distributions. We prove that the score function of the
mixture distribution unveils information to detect distribution
shifts for the common leaf nodes for any noise distribution.
Then an algorithm is proposed that iteratively selects a com-
mon leaf variable among the DAGs in different environments
and evaluates whether such variable is shifted. The effective-
ness of CMSI was assessed using various synthetic datasets
and real-world ovarian cancer dataset. In the future, we are
eager to explore how to extend CMSI to scenarios in which
several latent confounders exist and how to identify mecha-
nism shifts for these latent confounders.
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