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Abstract
Segmenting ultra-high-resolution (UHR) images
poses a significant challenge due to constraints on
GPU memory, leading to a trade-off between de-
tailed local information and a comprehensive con-
textual understanding. Current UHR methods of-
ten employ a multi-branch encoder to handle local
and contextual information, which can be memory-
intensive. To address the need for both high ac-
curacy and low memory usage in processing UHR
images, we introduce a memory-efficient semantic
segmentation approach by squeezing context infor-
mation into local patches (SCPSeg). Our method
integrates the processing of local and contextual in-
formation within a single-branch encoder. Specif-
ically, we introduce a context squeezing module
(CSM) designed to compress global context de-
tails into local patches, enabling segmentation net-
works to perceive broader image contexts. Addi-
tionally, we propose a super-resolution guided lo-
cal feature alignment (LFA) technique to improve
segmentation precision by aligning local feature
relationships. This approach calculates similari-
ties within sliding windows, avoiding heavy com-
putational costs during the training phase. We
evaluate the effectiveness of our proposed method
on four widely used UHR segmentation bench-
marks. Experimental results demonstrate that our
approach enhances UHR segmentation accuracy
without incurring additional memory overhead dur-
ing the inference stage. The code is available at
https://github.com/StuLiu/SCPSeg.

1 Introduction
Semantic segmentation is a foundational challenge in com-
puter vision with applications ranging from land cover map-
ping in remote sensing to object extraction in medical imag-
ing and scene parsing in autonomous driving. Deep learn-
ing approaches have shown impressive performance in recent
years [Azad et al., 2024; Badrinarayanan et al., 2017]. How-
ever, the increasing resolution of images captured by mod-

∗Corresponding Author

ern sensors presents a significant obstacle to semantic seg-
menting ultra-high-resolution images (UHRSS) on memory-
constrained edge devices [Zhu et al., 2024]. Our focus
is on developing an accurate and memory-efficient UHRSS
method tailored to the limitations of edge equipment, offer-
ing a promising solution for this challenging scenario.

To address the above challenge, the downscaling paradigm
is employed, which involves resizing the UHR images to
a more manageable size before feeding them into the seg-
menter. However, this approach leads to coarse predictions
due to the loss of fine-grained detail [Minaee et al., 2022].
An alternative is the stride inference paradigm, which works
by cropping image patches from the original UHR image and
processing these patches individually. While this method pre-
serves more detail, it suffers from insufficient contextual in-
formation. Ultimately, both strategies fail to strike a balance
between detail preservation and context utilization.

In recent years, various advanced methods have been pro-
posed to address the trade-off between local detail preserva-
tion and the need for global context understanding in pars-
ing UHR images. These methods can be categorized into
detail refinement [Huynh et al., 2021; Cheng et al., 2020],
shallow and deep fusion [Guo et al., 2022; Ji et al., 2023b;
Ji et al., 2023a], and cropped global and local fusion [Li et
al., 2021; Ding et al., 2022; Zhang et al., 2024; Zhu et al.,
2024], as depicted in Figure 1 (a)-(d). In the detail refine-
ment paradigm, a refining module is introduced to correct the
coarse predictions obtained from down-scaled images based
on either the detailed output [Huynh et al., 2021] or global
predictions [Cheng et al., 2020]. However, this approach re-
quires pre-processing the global predictions, leading to a high
computational cost. The shallow and deep fusion paradigm
utilizes a shallow branch to process the original UHR im-
ages and a deep segmenter to parse the down-scaled images.
The cropped global and local fusion paradigm parses global
patches by a shallow branch and the local patches by a deep
branch. Despite these paradigms achieving better perfor-
mance than generic ones, they still suffer from high memory
consumption due to the multi-branch architecture.

In this study, we introduce a novel single-branch UHRSS
approach that incorporates context information into patches,
illustrated in Figure 1 (d). Our method processes images in a
single branch akin to slide inference, compressing redundant
context surrounding local patches using a Context Squeez-
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Figure 1: The architectures of the UHRSS methods. (a) Detail refinement methods. (b) Shallow and deep fusion methods. (c) Cropped global
and local fusion methods. (d) Our context squeezing method with a single branch.

ing Module (CSM). By slightly downsizing local patches and
squeezing in context data efficiently, our CSM achieves a bal-
ance between global context awareness and local detail reten-
tion. Additionally, we propose an auxiliary super-resolution
decoder (SRD) assisted local feature alignment loss (LFA) to
enhance segmenter detail features, aiding in preserving local
intricacies when analyzing the squeezed global patch. This
approach enhances context and detail information without
imposing excessive memory demands during testing, elevat-
ing segmentation accuracy for UHR image processing com-
pared to conventional methods.

The key contributions of this work are as follows:

• We introduce SCPSeg, a method for semantic segmenta-
tion of UHR images that efficiently incorporates context
into local patches within a single branch.

• Specifically, we propose a context squeezing module
(CSM) to merge global context understanding with lo-
cal detail retention effectively.

• Furthermore, we employ a multi-task learning strategy
and propose a local feature alignment loss to enhance
detail preservation within the segmenter.

• Through extensive experiments, SCPSeg demonstrates
an exceptional balance between memory efficiency and
segmentation accuracy, outperforming conventional se-
mantic segmentation methods without increasing mem-
ory demands during testing.

2 Related Works
2.1 Generic Semantic Segmentation
Semantic segmentation has made notable advancements in
recent years with the development of convolutional neural
networks [He et al., 2016] and vision transformers [Xie
et al., 2021]. Most of these methods follow an encoder-
decoder architecture [Ronneberger et al., 2015] inspired by
the first fully convolutional networks for semantic segmen-
tation [Long et al., 2015]. To enhance segmentation accu-
racy, several strategies are commonly adopted, including in-
creasing the receptive field [Zhao et al., 2017; Chen et al.,
2018], integrating global and local features [Lin et al., 2017;
Fu et al., 2019], and maintaining high-resolution branches
[Yu et al., 2018; Sun et al., 2019; Zhao et al., 2018]. In

efforts to reduce computational costs, numerous real-time
semantic segmentation methods have been developed [Pan
et al., 2023; Xu et al., 2023]. These methods typically
feature a lightweight encoder [Fan et al., 2021; Sandler et
al., 2018], an efficient segmentation head [Li et al., 2020;
Xie et al., 2021], and sometimes an auxiliary training decoder
for detailed prediction [Fan et al., 2021; Zhao et al., 2018].
However, these generic semantic segmentation methods face
challenges related to high memory consumption when pro-
cessing UHR images.

2.2 Semantic Segmentation for UHR Images

Despite the potential of employing slide inference and im-
age down-scaling techniques to alleviate the substantial mem-
ory overhead associated with parsing Ultra-High-Resolution
(UHR) images, these methods often suffer from decreased ac-
curacy due to the loss of contextual information and detail
blurring. To address the challenge of achieving both high
accuracy and efficient memory utilization for UHR image
segmentation, a set of specialized methods has been devel-
oped, primarily falling into two categories: detail refinement
[Xia et al., 2016; Cheng et al., 2020; Huynh et al., 2021;
Kirillov et al., 2020] and global-local fusion [Zhao et al.,
2018; Chen et al., 2019; Li et al., 2021; Guo et al., 2022;
Ji et al., 2023b; Ji et al., 2023a]. Detail refinement approaches
typically involve segmenting high-resolution scenes in multi-
ple stages. For example, the Cascade Segmentation Refine-
ment model [Cheng et al., 2020] generates detailed results by
parsing coarse predictions with high-resolution images. Like-
wise, MagNet [Huynh et al., 2021] parses high-resolution im-
age patches by integrating low-resolution outputs from pre-
ceding stages. However, this iterative refinement paradigm
makes them computationally intensive and impractical for
real-time applications. Global-local fusion often segments
high-resolution images using a multi-branch encoder, where a
local branch extracts detailed information, and global patches
collect contextual details. For example, recent approaches
such as ISDNet [Guo et al., 2022], FCtL [Li et al., 2021],
and GINet [Zhu et al., 2024] use lightweight shallow CNNs
to extract detailed features in the high-resolution branch and
an efficient image encoder for context features in the low-
resolution branch. Nevertheless, the incorporation of multi-
branches introduces additional computational and memory
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Figure 2: The overview of the proposed SCPSeg for RSISS. (a) The training pipeline. (b) The illustration of the proposed context squeezing
module. (c) The illustration of the proposed local feature alignment loss.

costs, posing challenges for deployment on edge devices.

3 Method
This section outlines the architecture and functionalities of
the proposed SCPSeg and its components in detail.

3.1 Overview of the Proposed Method
This work presents a novel ultra-high-resolution segmenta-
tion approach, named SCPSeg, as illustrated in Figure 2.
SCPSeg effectively integrates global context and local details
within a single-branch encoder fE, achieving high accuracy
with limited memory consumption. The fundamental con-
cept behind SCPSeg involves compressing global context in-
formation into local patches, enabling the segmentation net-
work to sense a broader image field. To facilitate this, we
employ a context squeezing module (CSM) that strategically
aggregates context information into local patches, ensuring
effective utilization of both macro-level context and micro-
level details. Furthermore, to enhance the preservation of lo-
cal details, we introduce a super-resolution guided local fea-
ture alignment technique (LFA), that helps the segmentation
decoder yield detailed predictions. Additionally, the single-
branch encoder processes ultra-high-resolution (UHR) im-
ages in a sliding window manner. A series of global patches
XG are cropped from the origin UHR image XUHR and fed
into the encoder. The overall architecture is optimized using
a multi-task learning strategy, which combines segmentation
loss LCE, super-resolution loss LSR, and a novel local fea-
ture alignment loss LLFA to ensure comprehensive training
and achieve optimal performance.

Figure 3: The illustration of several context-squeezing examples on
the ISPRS Potsdam datasets. The green boxes indicate the local
images. For each example, the top image is the original context
image, and the bottom ones are the local patch and squeezed image.

3.2 Context Squeezing Module (CSM)
The CSM is the cornerstone of our proposed SCPSeg frame-
work. Its primary function is to compress and integrate global
context information into local patches through a series of in-
terpolations. The CSM operates on the principle of context
compression, where redundant pixels in the global context are
removed. This process involves the following steps:

Given a square-like global patch XG with size of G where
its centric is the local patch XL with size of L. We first resize
the local patch to a down-scaled local patch XD:

XD = ∇ (XL) (1)

where ∇ () represents the resize operation. Secondly, we
squeeze the context information (the blue part in Figure 2
(b)):

Xp1
C = ∇

(
stack

(
X1

C,X
3
C,X

7
C,X

9
C

))
(2)
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Xp2
C = ∇

(
stack

(
X2

C,X
4
C,X

6
C,X

8
C

))
(3)

where stack () indicates the tensor stack operation. Finally,
we concatenate the squeezed context Xp1

C , Xp2
C , and the

scaled local patch Xcs
L to get the final squeezed patch XCS:

XCS = cat
(
Xp1

C ,Xp2
C ,Xcs

L

)
(4)

where cat () indicates the tensor concatenate operation. The
squeezed context and local patch XCS has the same size as
the origin local patch XL.

The final squeezed patches contain both highly squeezed
global context and slightly squeezed local details, providing
a comprehensive representation of the image. The effective-
ness of the CSM lies in its ability to compress context infor-
mation without losing critical details. In this way, the CSM
ensures that the segmenter can perceive a larger image field
while maintaining high accuracy. This approach is particu-
larly beneficial for UHR images, where both global context
and local details are essential for accurate segmentation.

3.3 Local Feature Alignment (LFA)
To further enhance the preservation of local details, we intro-
duce a super-resolution guided local feature alignment tech-
nique. This technique leverages the high-resolution details
features in the super-resolution decoder (SRD) hSR to guide
the alignment of local features in the segmentation decoder
hSS. The primary goal is to ensure precise alignment of local
features, leading to more accurate segmentation outputs.

Super-resolution Decoding
For the auxiliary super-resolution task, we utilized several
convolutions and de-convolutions to construct the SRD hSR.
It decodes the encoded local features and recovers the original
high-resolution local patch:

PSR = hSR (fE (XCS)) (5)
where fE is the image encoder. Then, a super-resolution
loss is computed between the predicted high-resolution local
patch PSR and the real high-resolution local patch XL:

LSR =
1

L× L

∑L×L

i=0

∥∥ccrop (Pi
SR

)
−Xi

L

∥∥p=1
(6)

where ∥·∥p=1 is the L1 norm. ccrop () indicates the center-
crop function for cut out the features of XL.

Local Feature Aligning
The features of the SRD contain rich structural information
of the original image, although they do not explicitly map
the categories. Since computing similarity over all the fea-
ture pixels will lead to heavy memory and computational cost,
we can effectively model the pixel relationship within sliding
windows with a size of k×k. These relationships can implic-
itly deliver semantic information, thus benefiting the task of
semantic segmentation.

Firstly, the segmentation features PSS and super-resolution
features PSR are cropped by the slide windows. Then, we
compute the self-similarity matrix within the sliding window:

Si,j =

(
Pi

∥Pi∥p=2

)T

·

(
Pj

∥Pj∥p=2

)
(7)

where Si,j indicates the similarity between pixel i and pixel
j within a sliding window. Besides, PSS = hSS (fE (XCS)).
The decoded features P can be crop(PSS) and crop(PSR).
At last, to optimize the alignment process, we introduce a lo-
cal feature alignment loss to align the features by minimizing
the similarity matrixes between slide windows at the same
location:

LLFA =
1

k × k

∑k

i=0

∑k

j=0

∥∥∥Si,j
SR − Si,j

SS

∥∥∥p=1

(8)

3.4 Optimization

The final objective function is computed as follows:

L=LCE+w1 × LSR+w2 × LLFA (9)

where LCE is the cross-entropy loss for segmentation. LSR

is the super-reolution loss defined in Equation.6. LLFA is the
local feature alignment loss defined in Equation.8. w1 and
w2 are set as 0.5 and 0.5, making the gradients of the loss
components ranges comparable.

4 Experiments

4.1 Datasets

We conduct experiments on four UHRSS datasets to compre-
hensively evaluate the effectiveness of our proposed method.

ISPRS Potsdam. This dataset is a land cover mapping
dataset collected in an urban area. It contains 38 tiles with
the size of 6000× 6000. The train, val, and test sets are split
to 18, 6, and 14 tiles following [Zhang et al., 2024]. The
bands of this dataset include red, green, blue, near-infrared,
and DSM information.

BLU. This dataset is collected in urban and rural areas. It
contains 4 tiles with the size of 15680× 15680. We crop the
original URH data into nonoverlapped tiles with resolution
2048×2048 following [Ding et al., 2022]. It is split into 192,
28, and 32 tiles for training, validating, and testing, respec-
tively.

DeepGlobe. This is a land cover mapping dataset collected
in both urban and rural areas. It contains 803 tiles with the
size of 2448×2448. We split it into 455, 142, and 206 subsets
for training, validating, and testing following previous work
[Chen et al., 2019].

Inria Aerial. Inria Aerial is a building extraction dataset
collected in urban areas. It contains 180 UHR images with
5000 × 5000 pixels. We split it into 126, 27, and 27 subsets
for training, validating, and testing following previous work
[Chen et al., 2019].

4.2 Evaluation Metrics

We utilize the mean intersection-of-union (mIoU), mean F1
(mF1), and accuracy (Acc) to assess the effectiveness. The
GPU memory cost is monitored by the ”gpustat” tool.
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Methods mIoU↑ mF1↑ Acc↑ Mem↓
Generic Methods

FCN-8s† 83.8 91.0 89.4 2447
DeepLabv3+ 83.9 91.1 89.7 5122

PSPNet 82.3 90.0 89.3 6289
ST-UNet 84.5 90.1 - -
BiTSRS 75.5 - 83.6 -

UNetFormer 84.6 91.6 89.7 4644
GLOTS 82.8 - - -
CF-Net 84.1 90.9 89.6 4278
LANet† 83.7 90.7 89.5 2642

UHR Methods
GLNet 84.0 90.4 85.6 2663

WiCoNet† 84.1 91.2 89.8 2014
TCNet† 85.0 91.7 90.3 2445

SCPSeg (ours)† 86.7 92.7 91.0 1818
SCPSeg (ours) 87.6 87.5 91.7 1834

Table 1: Experiment results on ISPRS Potsdam test set. † indicates
that FCN-8s with a ResNet50 encoder is used as the basic segmenter.

4.3 Implementation Details
We utilize Deeplabv3+ with a ResNet-18-d8 as the basic seg-
menter. All the experiments are conducted in a single Nvidia
RTX4090. The encoders were pre-trained on the ImageNet-
1K dataset. SGD is used to optimize the neural networks. The
learning rate is initially set to 0.01 and decayed by a cosine
learning rate policy after each iteration. The training iteration
number is set to 40000. The slide window size k in LFA is set
to 7. For the ISPRS Potsdam, BLU, and Inria Aerial datasets,
we set G = 512, L = 256, and D = 192, respectively. The
training batch size is set to 16. For DeepGlobe datasets, we
set G = 1024, L = 512, and D = 384, respectively. The
training batch size is set to 8.

4.4 Comparing with Other Methods
In this section, we compare our method with other state-
of-the-art ones including FCN-8s [Long et al., 2015],
DeepLabv3+ [Zhao et al., 2017], PSPNet [Zhao et al., 2017],
ST-UNet [He et al., 2022], BiTSRS [Liu et al., 2023a], UN-
etFormer [Libo et al., 2022], GLOTS [Liu et al., 2023b], CF-
Net [Peng et al., 2022], LANet [Ding et al., 2021], GLNet
[Chen et al., 2019], WiCoNet [Ding et al., 2022], TCNet
[Zhang et al., 2024], U-Net [Ronneberger et al., 2015], ICNet
[Zhao et al., 2018], BiseNetv1[Yu et al., 2018], STDC [Fan
et al., 2021], CascadePSP [Cheng et al., 2020], PointRend
[Kirillov et al., 2020], MagNet [Huynh et al., 2021], ISD-
Net [Guo et al., 2022], FCtL [Li et al., 2021], WSDNet [Ji
et al., 2023b], and GINet [Zhu et al., 2024] on ISPRS Pots-
dam, BLU, DeepGlobe, and Inria Aerial, in terms of mIoU
(%), mF1 (%), OA (%), Mem (M). Some of these meth-
ods are generic semantic segmentation methods denoted as
”Generic Methods” and the other methods are specially de-
signed for UHR images, denoted as ”UHR Methods”. The
generic methods tagged by ”*” are tested in the slide infer-
ence mode.

Methods mIoU↑ mF1↑ Acc↑ Mem↓
Generic Methods

FCN-8s† 70.1 81.9 86.5 2447
DeepLabv3+ 68.2 80.4 86.3 5122

PSPNet 70.4 82.2 86.7 6289
ST-UNet 68.2 80.4 - -
CF-Net 70.7 82.3 86.9 4278
LANet 70.4 82.1 86.5 2642

UHR Methods
GLNet 70.5 82.2 - 2663

WiCoNet† 71.0 82.5 87.0 2014
TCNet† 71.6 82.9 87.4 2445

SCPSeg (ours)† 71.1 82.6 87.2 1818
SCPSeg (ours) 71.9 83.5 87.9 1834

Table 2: Experiment results on BLU test set. † indicates that FCN-
8s with a ResNet50 backbone is utilized as the basic segmenter.

Results on the ISPRS Potsdam Dataset. We compare our
SCPSeg with the aforementioned methods on the ISPRS
Potsdam testing set. Due to the high inter-class similar-
ity between buildings and impervious surfaces, this dataset
poses significant challenges. Table 1 presents the perfor-
mance of each semantic segmentation method. The experi-
ments demonstrate that our method outperformed all others
in terms of mean Intersection over Union (mIoU), mean F1
score (mF1), and overall accuracy (Acc). Specifically, we sur-
pass the UHRSS methods (GLNet, WiCoNet, and TCNet) by
substantial margins, clearly demonstrating the effectiveness
of our segmentation approach and the improvements in per-
formance. Additionally, we evaluate memory usage during
the testing phase, and the experimental results indicate that
our approach achieves the highest scores among all models in
this regard. With such impressive performance, our method
strikes an excellent balance between accuracy and memory
cost.

Results on the BLU Dataset. Table 2 presents the per-
formance metrics for both generic and UHRSS methods on
the BLU dataset. In all evaluation scenarios, our approach
demonstrated the highest accuracy coupled with the low-
est memory usage. Overall, the UHRSS methods consis-
tently outperformed the generic methods, highlighting the ad-
vantages of utilizing extensive contextual information in se-
mantic segmentation tasks. Notably, our method surpassed
the performance of the cropped global and local fusion ap-
proach, WiCoNet and TCNet, indicating the effectiveness of
our context-squeezing strategy, which achieves superior re-
sults with lower memory requirements compared to this ar-
chitecture.

Results on the DeepGlobe Dataset. As shown in Table 3,
we first compare our method with the above-mentioned meth-
ods on the DeepGlobe testing set. The WSDNet achieves the
best performance because it encodes the whole image which
contains all the context information. Our method achieves
comparable results to other UHRSS methods. With such im-
pressive performance, our method is economical in the mem-
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Figure 4: Illustration of the ISPRS Potsdam validating set, compared with the other methods. ’*’ indicates the slide inference mode.

Methods mIoU↑ mF1↑ Acc↑ Mem↓
Generic Methods

U-Net 38.4 - - 5507
U-Net∗ 37.3 - - 949
ICNet 40.2 - - 2557

PSPNet 56.6 - - 6289
DeepLabv3+ 63.5 - - 3199

DeepLabv3+∗ 63.1 - - 1279
FCN-8s 68.8 79.8 86.2 5227

FCN-8s∗ 71.8 82.6 87.6 1963
BiseNetv1 53.0 - - 1801

DANet 53.8 - - 6812
STDC 70.3 - - 2580

UHR Methods
CascadePSP 68.5 79.7 85.6 3236

PPN 71.9 - - 1193
PointRend 71.8 - - 1593
MagNet 72.9 - - 1559
GLNet 71.6 83.2 88.0 1865
ISDNet 73.3 84.0 88.7 1948
FCtL 73.5 83.8 88.3 3167

WSDNet 74.1 85.2 89.1 1876
GINet 73.5 - - 4086

SCPSeg (ours) 74.0 84.0 88.1 2124

Table 3: Experiment results on DeepGlobe test set. ’*’ indicates the
slide inference mode when testing the generic methods.

ory cost, attaining a satisfactory balance between effective-
ness and memory efficiency.

Results on the Inria Aerial Dataset. We present a com-
parison using the Inria Aerial test dataset in Table 4. This
dataset is particularly challenging, featuring images with ap-
proximately 25 million pixels, around four times that of the

Methods mIoU↑ mF1↑ Acc↑ Mem↓
Generic Methods

DeepLabv3+ 55.9 - - 5122
FCN-8s 69.1 81.7 93.6 2447
STDC 72.4 - - 7410

UHR Methods
CascadePSP 69.4 81.8 93.2 3236

GLNet 71.2 - - 2663
ISDNet 74.2 84.9 95.6 4680
FCtL 73.7 84.1 94.6 4332

WSDNet 75.2 86.0 96.0 4379
GPWFormer 76.5 86.2 96.7 4710

GINet 76.6 - - 4086
SCPSeg (ours) 78.6 88.0 95.8 1818

Table 4: Experiment results on Inria Aerial test set.

DeepGlobe dataset. The substantial size of this UHR dataset
places significant demands on memory usage for semantic
segmentation tasks. Our experimental results demonstrate
that SCPSeg significantly outperforms other UHRSS meth-
ods across all accuracy metrics while maintaining superior
memory efficiency.

4.5 Ablation Study
In this section, we investigate the proposed modules and
demonstrate their effectiveness. All the ablation studies are
performed on the ISPRS Potsdam validating set.

Effectiveness of the SCPSeg Components. We conduct
experiments to verify the effectiveness of the proposed
SCPSeg based on various basic segmenters, such as FCN-8s
[Long et al., 2015], Deeplabv3+ [Chen et al., 2018], PSPNet
[Zhao et al., 2017], SegFormer [Xie et al., 2021], TopFormer
[Zhang et al., 2022], DDRNet [Pan et al., 2023], PIDNet [Xu
et al., 2023]. The experiment results show that the segmen-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Basic Segmenter FCN-8s Deeplabv3+ PSPNet SegFormer TopFormer LANet DDRNet PIDNet
w/o SCPSeg 84.5 86.5 84.7 84.9 84.7 84.9 85.2 86.1
w SCPSeg 86.2 87.8 85.8 85.3 86.1 86.1 86.3 87.6

Table 5: Ablation study for the effectiveness of incorporating our method.

Segmenter CSM SRD LFA mIoU Mem

FCN-8s
(ResNet50)

84.5 1818
! 85.6 1818
! ! 85.9 1818
! ! ! 86.2 1818

Deeplabv3+
(ResNet18)

86.5 1834
! 87.4 1834
! ! 87.7 1834
! ! ! 87.8 1834

Table 6: Ablation study for the key components of our SCPSeg on
the ISPRS Potsdam validating set.

Figure 5: Illustration of the different context size and down-scaled
local size versus mIoU on the ISPRS Potsdam validating set.

tation accuracy (mIoU) improves around 1.2% after incorpo-
rating the proposed method, which indicates the effectiveness
of our SCPSeg. We also verify the effectiveness of different
components in SCPSeg, as shown in Table 6. Firstly, incor-
porating CSM leads to considerable performance gain, indi-
cating the effectiveness of the context-squeezing paradigm.
Secondly, the auxiliary SRD improves the performance of the
segmentation task slightly, which proves that super-resolution
guided multi-task learning is useful for parsing down-scaled
local images. Thirdly, a considerable improvement is gained
after the utilization of LFA because the local feature align-
ment loss helps transfer mutual knowledge from different de-
coders. Lastly, the memory footprint is not increased, indi-
cating our method is memory-efficient in the testing stage.

Influence of Window Size. We conduct experiments to an-
alyze the influence of the context window size G and down-
scaled local size D. As Figure 5 shows, the best perfor-
mance gains when the context size is set to 512 × 512 and
the down-scaled local size is set to 192 × 192. As context
size increases, the performance decreases because squeez-
ing too much context information into a fixed area results
in context degradation. Moreover, leveraging a few context
information improves performance only marginally. As the
down-scaled local size increases, the squeezed context infor-
mation decreases, which results in a decrease in performance.

Figure 6: The feature visualization of the semantic segmentation
and super-resolution branches. (a) Input images. (b) Features of the
super-resolution branch. (c) Features of the segmentation branch be-
fore aligning. (d) Features of the segmentation branch after aligning.

As the down-scaled local size decreases, the local images be-
come blurred, which leads to poor segmentation performance.
Therefore, a moderate context window size and a properly
down-scaled local size are important to balance the global in-
formation and local details.
Visualization of Features. To show the effectiveness of the
proposed local feature alignment, we visualize the features of
super-resolution and semantic segmentation branches in Fig-
ure 6. By comparing (b) and (c) in Figure 6, we can easily
find that the super-resolution branches contain more complete
structure information of objects. The locally aligned semantic
features in Figure 6 (d) have clearer edges than the unaligned
features. It indicates that the local-consistent relationship be-
tween super-resolution features can be effectively transferred
to the semantic segmentation branch, thus benefiting the task
of semantic segmentation.

5 Conclusion
We proposed a memory-efficient semantic segmentation
method, SCPSeg, for the UHR images. It leverages both the
global context and local fine structure effectively to enhance
the segmentation in the scenario of ultra-high resolution with-
out sacrificing the GPU memory usage. Our work provides a
bright new paradigm for parsing UHR images where squeez-
ing redundant context information is useful. Extensive ex-
periments indicate that our method provides a good trade-off
between accuracy and memory efficiency. In the future, we
plan to extend SCPSeg to other high-resolution vision tasks,
such as object detection and instance segmentation, to further
validate its generalizability. Besides, adaptive mechanisms to
dynamically adjust memory usage based on image complex-
ity will be investigated.
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