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Abstract
Speculative decoding accelerates Large Language
Model (LLM) inference by employing a small
speculative model (SSM) to generate multiple can-
didate tokens and verify them using the LLM in
parallel. This technique has been widely integrated
into LLM inference serving systems. However, in-
ference requests typically exhibit uncertain execu-
tion time, which poses a significant challenge of ef-
ficiently scheduling requests in these systems. Ex-
isting work estimates execution time based solely
on predicted output length, which could be in-
accurate because execution time depends on both
output length and token acceptance rate of ver-
ification by the LLM. In this paper, we pro-
pose a semi-clairvoyant request scheduling algo-
rithm called Least-Attained/Perceived-Service for
Speculative Decoding (LAPS-SD). Given a num-
ber of inference requests, LAPS-SD can effectively
minimize average inference latency by adaptively
scheduling requests according to their features dur-
ing decoding. When the token acceptance rate is
dynamic and execution time is difficult to estimate,
LAPS-SD maintains multiple priority queues and
allows request execution preemption across differ-
ent queues. Once the token acceptance rate be-
comes stable, LAPS-SD can accurately estimate
the execution time and schedule requests accord-
ingly. Extensive experiments show that LAPS-SD
reduces inference latency by approximately 39%
compared to state-of-the-art scheduling methods.

1 Introduction
Large Language Models (LLMs), such as the GPT se-
ries [Brown et al., 2020], have demonstrated exceptional
capabilities in various generative tasks [Yao et al., 2024;
Zhuang et al., 2024]. LLM inference adopts an autoregressive
decoding approach, which is inefficient because, for each to-
ken generated, it requires a full forward propagation of com-
puting through the entire model. Recently, speculative decod-
ing [Chen et al., 2023; Leviathan et al., 2023] has been pro-

∗Corresponding author

Figure 1: The illustration depicts different scheduling algorithms for
speculative decoding requests. The generation context is represented
by squares with colors (■ ■ ■), while the speculative context is
represented by squares with stripes.

posed as a promising approach to accelerate LLM inference.
This technique leverages a small speculative model (SSM)
alongside the primary LLM. The SSM first rapidly generates
candidate tokens, which are then verified by the LLM. Since
the SSM’s compact size allows for high-speed generation of
speculative tokens, and those tokens can be verified in parallel
via a single forward pass of the LLM, speculative decoding
achieves substantial inference speedups.

Due to the promising acceleration achieved by specula-
tive decoding, existing work has integrated this technology
into LLM inference serving systems to reduce inference la-
tency [Miao et al., 2024; Li et al., 2024; Chen et al., 2025].
However, most existing work primarily focuses on devel-
oping advanced models to enhance the benefits of specula-
tive decoding, while overlooking the critical challenge of in-
ference request scheduling, which is essential to minimize
the inference latency [Patel et al., 2024; Fu et al., 2024a;
Sun et al., 2024a]. The main challenge of scheduling LLM
requests lies in the unknown execution time of each request,
as the number of its output tokens is uncertain. Some recent
work [Qiu et al., 2024; Zheng et al., 2024] has proposed LLM
output length prediction methods that can then be used to es-
timate execution time. For example, Qiu et al. [Qiu et al.,
2024] employ a fine-tuned BERT-based model to predict the
output length of inference requests, and Zheng et al. [Zheng et
al., 2024] propose an instruction-tuned LLaMA model for the
same purpose. With predicted output lengths, existing work
adopts the Shortest-Job-First (SJF) algorithm to schedule re-
quests to reduce the average inference latency, which is also
called the average job completion time (JCT).

However, in LLM serving systems using speculative de-
coding, relying solely on output lengths cannot accurately es-
timate inference execution time because it depends on both
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the output length and token acceptance rate of LLM verifi-
cation, i.e., the proportion of tokens generated by the SSM
that are accepted by the LLM during decoding. Specifically,
some speculative tokens generated by the SSM could be re-
jected by the LLM but still contribute to the execution time.
The total number of generated and verified tokens is gener-
ally larger than the output length. Consequently, using only
output lengths for request scheduling could not effectively re-
duce the average inference latency.

Figure 1 provides a simple example to show how token
acceptance rate affects request scheduling. In this example,
three requests (R1, R2, and R3) have different output lengths
and token acceptance rates. For example, R1 needs to gener-
ate 10 tokens as the final output, with an acceptance rate of
0.5. This implies that the SSM needs to generate 20 can-
didate tokens, which all need to be verified by the LLM.
More candidate tokens mean that LLM needs to run more
inference operations for token verification, which leads to
a longer execution time. We assume that three requests ar-
rive in sequence at almost the same time, and each token re-
quires an average of 10ms for verification by the LLM [Miao
et al., 2024]. For simplicity, the generation time of candi-
date tokens by the SSM is omitted due to its small size. In
Figure 1(a), we illustrate the scheduling results of the First-
Come-First-Serve (FCFS) algorithm, which is commonly
used by LLM inference serving systems [Li et al., 2023;
Kwon et al., 2023]. Here, FCFS first schedules R1 and R2,
with longer execution time, resulting in an average inference
latency of 583ms. Figure 1(b) shows the scheduling results
of the existing SJF algorithm based on the predicted output
lengths. R2 is scheduled first because it has the shortest out-
put length of 5. However, R2 has the lowest acceptance rate
of 0.1, taking the longest execution time to generate its 5 to-
kens. This leads to an average inference latency of 683ms.
If we have information about both the request length and
the acceptance rate, we can estimate the true execution time
of speculative decoding requests, which leads to the optimal
scheduling, as shown in Figure 1(c).

In this paper, we propose a semi-clairvoyant request
scheduling algorithm called Least-Attained/Perceptible-
Service for Speculative Decoding (LAPS-SD), to minimize
the average inference latency. LAPS-SD exploits a unique
feature of speculative decoding that token acceptance rate
is dynamic in the early stage of decoding and then becomes
stable and predictable. Thus, LAPS-SD defines multiple
execution priority queues and put requests in these queues
according to their attained or perceptible inference service.
In the early decoding stage when the acceptance rate is hard
to be predictable, we assign priorities to requests according
to their attained inference services. Execution preemption
is allowed, but with negligible overhead because only a few
tokens are generated in this stage. Later, as more tokens
are generated and acceptance rate also becomes stable,
LAPS-SD can accurately predict the total execution time
and schedule requests by following the SJF principle. In
such a way, LAPS-SD can well handle requests when their
execution time is unknown, while reducing overhead of
frequent preemption.

Our main contributions include:

• We carefully examine the unique challenges in schedul-
ing speculative decoding requests, and identify the
weaknesses of existing work in minimizing inference la-
tency. The obtained insights well motivate this paper.

• We propose a semi-clairvoyant scheduling algorithm,
named Least-Attained/Perceived-Service for Specula-
tive Decoding (LAPS-SD), which leverages both execu-
tion preemption and accurate execution time estimation
to reduce inference latency.

• We evaluate LAPS-SD using three commonly used
datasets: Chatbot Instruction Prompts [Alessandro
Palla, 2023], MBPP [Austin et al., 2021], and Mini-
Thinky [Xuan Son NGUYEN, 2024]. Extensive exper-
iments demonstrate that LAPS-SD can reduce average
inference latency by about 39% compared to existing
baselines.

The rest of this paper is organized as follows. Section 2
provides the background, followed by the problem statement
in Section 3. The design of the scheduling algorithm is de-
tailed in Section 4, and the evaluation of the proposed algo-
rithm is presented in Section 5. Section 6 reviews related
works, and Section 7 concludes the paper.

2 Background
2.1 LLM Inference
The inference process of Large Language Models (LLMs) is
generally divided into two main stages. In the first stage, the
entire prompt text is fed into the model to generate a KV
cache and the first output logits. This process is efficient be-
cause it can process the entire prompt text in parallel. Let
the prompt text be x = [x1, x2, . . . , xn], where xi represents
the i−th token. Upon receiving the prompt text, the model
computes an initial hidden state h0, and then generates the
KV cache KV = {(k1, v1), (k2, v2), . . . , (km, vm)} based
on this hidden state and the model parameters, where ki and
vi represent the i-th key and value, respectively. Due to the
parallel processing, the time complexity of this stage mainly
depends on the number of layers in the model and the size of
the hidden state, rather than the length of the prompt text.

The second stage is decoding and autoregressive genera-
tion, where the model generates tokens one by one. The
model computes the next hidden state based on the current to-
ken and the previous hidden state. This process repeats until
an termination token <EOS> is generated. Due to the sequen-
tial nature of the decoding process, generating each token re-
quires streaming the entire model’s weights through the com-
putation units. Therefore, the arithmetic intensity, i.e., the
ratio of floating-point operations (FLOPs) to memory band-
width, of this stage is extremely low, especially when run-
ning with small batch sizes. This makes the decoding process
typically the most expensive part of autoregressive genera-
tion [Cai et al., 2024; Liu et al., 2024a].

2.2 Speculative Decoding
To accelerate the decoding process, speculative decoding uses
an SSM to generate multiple candidate tokens, which are then
used as prefixes along with the original input to be fed into a
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target LLM for parallel validation. For an input prefix se-
quence X1:n = [x1, x2, . . . , xn], the draft model autoregres-
sively generates the subsequent L tokens. Subsequently, the
target LLM employs rejection sampling criteria to validate
the generated candidate tokens.

The probability of a token X̂n+j generated by the
SSM can be represented as p(X̂n+j |X1:n, X̂n+1:n+j−1).
Then, the probability of the token X̂n+j generated by
the target LLM given a context X1:n, X̂n+1:n+j−1 is
q(X̂n+j |X1:n, X̂n+1:n+j−1). So, the probability that the can-
didate token can be accepted is the minimum of the ratio of
the probability distributions of the target LLM and the SSM
for that token, but not exceeding 1, which can be formally
expressed as:

min

(
1,

q(X̂n+j |X1:n, X̂n+1:n+j−1)

p(X̂n+j |X1:n, X̂n+1:n+j−1)

)
. (1)

If the candidate token is rejected, a new token is resam-
pled from the residual distribution. Therefore, the execution
time of each speculative decoding request depends on both
the output length and the token acceptance rate.

2.3 LLM Inference Scheduling
With the widespread adoption of LLMs, e.g., GPT-3,
LLaMA, in serving systems, efficient inference scheduling
has become crucial for minimizing latency to ensure high ser-
vice quality. However, scheduling remains challenging due
to the uncertainty in the execution time of inference requests,
and the complexity further increases when speculative decod-
ing technology is integrated. Traditional First-Come-First-
Serve (FCFS) scheduling can cause head-of-line blocking,
leading to large inference latency.

Existing work estimates execution time by predicting re-
quest output lengths [Qiu et al., 2024; Zheng et al., 2024] to
optimize inference scheduling performance. However, pre-
dicting output lengths does not accurately estimate the ex-
ecution time of inference requests with speculative decod-
ing. Specifically, the number of candidate tokens generated
in speculative decoding is typically larger than the predicted
request length, as some tokens may be rejected by the LLM.
All candidate tokens must be verified by the LLM, which
contributes to the total execution time. Therefore, existing
methods that rely solely on predicted output lengths cannot
accurately estimate execution time, leading to performance
degradation in inference scheduling with speculative decod-
ing.

In the absence of estimated execution time, some work
adopts Least-Attained-Service (LAS)-based scheduling for
inference requests [Leviathan et al., 2023]. The key idea
of LAS scheduling is to enable request preemption, ensur-
ing that long-running requests do not block short ones. How-
ever, preemption introduces additional switching costs, pri-
marily arising from the I/O overhead required to switch the
KV pairs of different requests. As the inference progresses,
these switching costs increase due to the growing size of KV
pairs.
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Figure 2: The ratio of switching costs to the inference time of re-
quests with different output lengths.

3 Problem Statement
We consider an LLM inference serving system enabling spec-
ulative decoding. It receives inference requests, which are
denoted by N , and each request i ∈ N is associated with an
arrival time ri and an execution time Ti. We assume that the
batch size of this serving system is set to 1 for clear presenta-
tion. Note that our proposed algorithm can be easily extended
to larger batch sizes.

The newly arrived requests need to wait if the system is
busy in serving other requests. We define a variable xi as the
inference start time of request i ∈ N and the corresponding
inference completion time is denoted by Ci. Thus, the infer-
ence latency can be calculated by Ci−ri. If request execution
cannot be preempted, the problem of minimizing the average
inference latency can be formulated as follows:

min
1

|N |
∑
i∈N

(Ci − ri), subject to: (2)

xi ≥ ri, ∀i ∈ N ; (3)
Ci ≥ xi + Ti, ∀i ∈ N ; (4)
|xi − xj | ≥ Tk, ∀i, j ∈ N , k=argmink=i,j{xk}, (5)

where the constraint (3) ensures that each request cannot start
before its arrival time, and inference completion time is con-
strained by (4). We use the constraint (5) to guarantee the
non-preemption among inference requests.

However, existing work fails to solve the above formula-
tion because they lack prior knowledge of the execution time
of each request, i.e., Ti, which depends on both output length
and token acceptance rate. Different from output length
that can be estimated before execution [Qiu et al., 2024;
Zheng et al., 2024], token acceptance rate is hard to be pre-
dicted because its dynamics, as shown in Figure 3, thus lead-
ing to unknown execution time. A common practice to han-
dle unknown execution time is to use Least-Attained-Service
(LAS) algorithm [Rai et al., 2003], which gives the high-
est execution priority to the request received the least ser-
vice time. LAS allows requests to be preempted, preventing
long requests from blocking short ones. However, frequent
preemption introduces significant overhead, primarily due to
the I/O costs associated with switching the KV caches of dif-
ferent requests for LLM verification. The ratio of switching
costs to total LLM inference time for requests with varying
output lengths is shown in Figure 2. We can see that switching
requests with long output lengths during speculative decod-
ing introduces significant overhead. For example, switching
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Figure 3: The average acceptance rate of three example requests
over the speculative decoding process.

a request with an output length of 500 tokens adds a 14.21%
overhead to the total LLM inference time.

4 Methodology
In this section, we present the proposed Least-
Attained/Perceived-Service scheme for speculative decoding,
called LAPS-SD, to address the weaknesses of existing
works. An overview of LAPS-SD is given first, followed by
elaboration of two key designs.

4.1 Overview
LAPS-SD is motivated by the observation that token accep-
tance rate is unstable in the early decoding stage and then sta-
bilizes over execution. As shown in Figure 3, we present the
average token acceptance rates of three requests during the
speculative decoding process. For every ten newly accepted
tokens, calculate the average acceptance rate of all currently
generated tokens. We observe that the acceptance rate is un-
stable during the early stages of decoding but stabilizes as
decoding progresses. For example, request 2 has a relatively
stable acceptance rate after generating 150 tokens. Based on
this observation, we are motivated to schedule speculative de-
coding requests as follows: in the early stage when token ac-
ceptance rates are difficult to predict, requests are scheduled
by following the general LAS principle that allows execution
preemption to avoid blocking. Once the acceptance rates of
some requests become stable and predictable, they are sched-
uled by following the SJF principle without preemption to
reduce execution switching cost.

The pseudocodes of LAPS-SD are shown in Algorithm 1.
It maintains multiple priority queues for request scheduling.
For inter-queue scheduling (§ 4.2), requests in higher-priority
queues are scheduled before those in lower-priority queues.
Within each queue, requests are classified into two states:
non-perceptible and perceptible. Non-perceptible requests
lack predicted execution time information, and perceptible
requests have such predictions because their acceptance rates
become stable. Initially, all newly arrived requests are clas-
sified as non-perceptible ones and are placed in the highest-
priority queue. Non-perceptible requests can be preempted if
they have been executed for a certain period without comple-
tion, preventing longer requests from blocking shorter ones.
At the same time, we monitor the acceptance rates of all re-
quests to identify when they stabilize during execution. Once

Algorithm 1 The Proposed LAPS-SD Scheduling Algorithm

Input: Arrival speculative decoding requests;
1: Initialize priority queues;
2: Initialize requests’ states as non-perceptible;
3: Put all requests in the queue with highest priority;
4: Schedule requests InterQueueSchedule();

5: procedure INTERQUEUESCHEDULE( )
6: for Non-empty queue with the highest queue do
7: Schedule requests IntraQueueSchedule()
8: end for
9: end procedure

10: procedure INTRAQUEUESCHEDULE( )
11: if Request becomes stable then
12: Change request’s state to perceptible;
13: Predict the acceptance rate and request length;
14: Estimate the execution time;
15: end if
16: Schedule requests with semi-clairvoyant strategy;
17: end procedure

Figure 4: The queue structure in the proposed scheduling algorithm.

a request’s acceptance rate becomes stable and predictable,
it changes to the perceptible state and is moved to the corre-
sponding queue accordingly, where they are scheduled with
a semi-clairvoyant strategy to reduce the average inference
latency (§ 4.3).

Non-perceptible requests can be well handled by LAPS-SD
using different priority queues. Although execution preemp-
tion could incur switching cost of KV caches, the overhead
is negligible because only a few tokens, whose KV cache is
small, are generated for non-perceptible requests. As more
tokens are generated, switching cost of KV caches becomes
larger, and fortunately requests become perceptible and pre-
emption is not allowed. Therefore, LAPS-SD can make full
use of the strengths of LAS and SJF schemes while avoiding
their weaknesses by exploiting the unique features of specu-
lative decoding.

4.2 Inter-Queue Scheduling
As shown in Figure 4, we define K priority queues, denoted
as {Q1, Q2, . . . , QK}, where Q1 has the highest priority and
QK has the lowest. Requests in a queue with higher prior-
ity are scheduled before those in lower-priority queues. Each
queue Qj is associated with two thresholds, Sdown

j and Sup
j ,

which define the range of attained execution services that can
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be accommodated in the queue. Threshold of different queues
exhibit an exponential relationship as Sup

j = M j−1 × Sup
1 .

On the one hand, the exponentially increasing queue size en-
ables us to handle requests with larger attained inference ser-
vices using a smaller number of queues. On the other hand,
queues for requests with large attained services will have a
larger queue size. Typically, inference requests with large
attained services correspond to longer output lengths, which
involve large KV pairs. A larger queue size ensures that these
requests are less likely to be preempted, thereby avoiding sig-
nificant switching costs. For a request i, its attained inference
services Ei is quantified by the current processing time, in-
cluding both speculation and verification operations from the
SSM and LLM.

The workflow of the preemptive scheduling is as follows.
The priority of a speculative decoding request is determined
by four lifecycle events:

• Arrival: New requests are marked as non-perceptible
state and are always placed in Q1, the highest priority
queue, since they have received no inference service.

• Scheduling: After each speculative decoding round, we
calculate the accumulated execution time and demote
the request to the appropriate queue according to the
threshold Sdown

j ;

• Stabilized: Once the token acceptance rate of the re-
quest becomes stable and can be predicted, the request
changes to the perceptible state;

• Completion: The request is moved out queues when it
completes.

The overhead of maintaining these priority queues could
be very low because it mainly involves statistical informa-
tion (e.g., accumulated execution time) collection and state
changes.

4.3 Intra-Queue Scheduling
Within each queue, we propose a multi-state scheduling strat-
egy to schedule requests in different states. We first present
how we predict the output length and acceptance rate. Then,
we elaborate how the estimated execution time is derived
based on these predictions. Finally, we introduce the semi-
clairvoyant strategy.

Output length and acceptance rate prediction. To es-
timate the execution time accurately, we exploit both out-
put length and acceptance rate. For the output length Li of
request i, we adopt an existing method proposed by [Z et
al., 2024], which use a fine-tuned LLM model to predict the
length of the generated response before scheduling. We pre-
dict the acceptance rate based on the observation that the rate
gradually stabilizes over time. Specifically, we continuously
monitor the acceptance rate for each request based on the to-
tal number of processed tokens and the number of accepted
ones. When the maximum difference of the acceptance rate
between γ consecutive speculative decoding rounds is smaller
than a given threshold δ, the request i is considered stable,
and the average of acceptance rates in these γ consecutive
speculative decoding rounds is used as the predicted value
Ai.

Execution time estimation. Based on the predicted output
length Li and acceptance rate Ai, we estimate the execution
time T̃i for request i as follows. The speculative decoding
of each request involves multiple rounds. In each round, the
SSM autoregressively generates n tokens, with the specula-
tion time per token denoted by TLLM. Then, the LLM verifies
all generated speculative tokens in parallel, with a time cost of
TSSM. The estimated execution time T̃i for request i is given
by:

T̃i =

{
nLiTSSM

nAi + 1︸ ︷︷ ︸
Speculation Time

+
LiTLLM

nAi + 1︸ ︷︷ ︸
Verification Time

}
(6)

where nAi + 1 indicates the estimated number of accepted
tokens in a speculative decoding round (since the LLM al-
ways generates one additional token), and Li

nAi+1 represents
the number of rounds required to accept Li tokens.

Multi-state scheduling. Since requests can arrive and
stabilize at different times, they may be in different states
even when placed in the same queue. In each queue, non-
perceptible requests are scheduled using a FCFS strategy.
Perceptible requests, which have an estimated execution time,
are scheduled using an SJF strategy, as their request sizes are
predictable. When handling requests with different states, we
always prioritize scheduling perception requests. The ratio-
nale is as follows: non-perceptible requests have the potential
to execute for a longer time, possibly exceeding the current
queue threshold, while perceptible requests are less likely to
exceed the queue’s threshold. Therefore, prioritizing percep-
tible requests can benefit reducing the average inference la-
tency.

5 Evaluation
5.1 Experiment Setup
Environment. We evaluate LAPS-SD on an NVIDIA L20
GPU with 48GB memory. The system runs Ubuntu 20.04.6
with Linux kernel version 5.15.0-91-generic, NVIDIA driver
550.120, CUDA 12.4, and cuDNN 8.6.0. The algorithm is
implemented in Pytorch version 2.5.1.
Workloads. We evaluate our proposed scheduling algo-
rithm using requests from three datasets: Chatbot Instruc-
tion Prompts [Alessandro Palla, 2023], MBPP [Austin et al.,
2021], and MiniThinky [Xuan Son NGUYEN, 2024], fol-
lowing the setup in [Miao et al., 2024]. We use LLaMA-
68M [Miao et al., 2024] as the SSM and the LLaMA-
7B [Touvron et al., 2023] as the LLM.
Baselines. We compare our scheduling algorithm against
the following baselines: (1) Length Prediction-based Short-
est Job First (LP-SJF) [Qiu et al., 2024]: this method uses
the predicted output length to estimate the execution time and
applies the SJF scheduling strategy; and (2) Least-Attained-
Services (LAS): this method allows inference requests to be
preempted based on their attained services, which has been
adopted by [Leviathan et al., 2023].

5.2 Experiment Results
We first evaluate the overall performance of our proposed
scheduling algorithm by analyzing the average inference la-
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Figure 5: The average inference latency with different scheduling algorithms.
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Figure 6: The impact of the number of priority queue.

tency. As shown in Figure 5, the number of requests is var-
ied from 10 to 50, and the inference latency of all requests
increases as more requests are scheduled. Our proposed
scheduling algorithm always outperforms others, reducing
the average inference latency by about 39%. Specifically,
LP-SJF is approximately 1.47× slower than our proposed
algorithm because relying solely on the predicted output
length cannot accurately estimate execution time, resulting
in higher inference latency. Compared to LAS, our schedul-
ing algorithm reduces inference latency by about 31%, as
the estimated execution time effectively minimizes preemp-
tions when requests are stable, thereby lowering the switch-
ing overhead. In addition, workloads from different datasets
result in varying inference latencies. For example, the aver-
age inference latency for workloads from the MBPP dataset
is significantly shorter than that of the Chatbot Instruction
Prompts and MiniThinky datasets. This is because requests
in the MBPP dataset have higher acceptance rates, leading to
shorter processing latency for both the SSM and LLM.

We investigate the impact of the number of priority queues
(K) on scheduling performance. Specifically, we change the
number of queues from 2 to 10 and report the average in-
ference latency of our proposed LAPS-SD algorithm in Fig-
ure 6. For requests from all datasets, we observe that the
average inference latency initially decreases as the number of
priority queues increases but eventually rises when the num-
ber of queues continues to grow. This behavior can be ex-
plained as follows: increasing the number of priority queues
effectively prevents blocking by long requests and closely ap-
proximates the SJF strategy, thereby reducing the average in-
ference latency. However, as the number of priority queues
grows, preemption among requests becomes more frequent,
introducing significant switching overhead. When the num-
ber of queues is small, the reduction in latency from mitigat-

ing long-request blocking outweighs the increased switching
costs. Conversely, when the number of queues becomes large,
the switching overhead dominates, resulting in increased in-
ference latency.

Furthermore, we observe that the optimal number of pri-
ority queues varies with the number of inference requests.
For example, as shown in Figure 6(a), the optimal number
of queues is 6 when there are 10 inference requests, but it de-
creases to 4 as the number of requests increases to 30. We
analyze this as follows: with more inference requests, the
possibility of preemption increases. As the number of queues
grows, the associated switching costs also become more sig-
nificant. Therefore, to mitigate the impact of frequent pre-
emptions, maintaining a smaller number of queues becomes
necessary for handling a larger number of inference requests
effectively.

We also observe that inference requests from different
datasets prefer different optimal numbers of priority queues.
For example, with the same number of inference requests,
i.e., 10, the optimal number of queues is 6 for requests from
the Chatbot Instruction Prompts dataset, while it is 4 for re-
quests from the MiniThinky dataset, as shown in Figure 6(b)
and Figure 6(c). This difference arises because the Mini-
Thinky dataset has longer average input and output lengths,
leading to higher switching costs for request preemption. As
a result, a smaller number of queues is required to minimize
the overhead for requests from the MiniThinky dataset.

We finally evaluate the effectiveness of the proposed
method for estimating request execution time, by compar-
ing the estimated execution time with the real execution time
of inference requests under varying output lengths. The re-
sults are shown in Figure 7. Our proposed estimation method
achieves an overall average error of 6.84%, indicating the ef-
fectiveness of the proposed method for execution time esti-
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Figure 7: The estimation accuracy of the execution time.

mation. In addition, the average estimation errors are 7.63%,
11.21%, and 8.51% for the three datasets, respectively. The
larger estimation error for requests on the MBPP dataset is
due to the lower accuracy of the predicted acceptance rate
compared to the other two datasets.

6 Related Work

6.1 Speculative Decoding

Recently, speculative decoding [Leviathan et al., 2023] has
been proposed to accelerate LLM inference by adopting an
SSM to generate multiple candidate tokens and then verify
them with the LLM in parallel. Existing works strive to
enhance the performance of speculative decoding. For ex-
ample, Specinfer [Miao et al., 2024] proposes a tree-based
speculative inference and verification mechanism to reduce
end-to-end latency. Glide with a Cape [Du et al., 2024] re-
duces computational redundancy by leveraging an enhanced
KV cache mechanism. N. Jha et al. [Lakshminarayana et
al., 2000] proposes incorporating speculative execution into
the scheduling of control-flow-intensive designs, which can
significantly improve performance. A staged speculative de-
coding algorithm [Spector and Re, 2023] accelerates LLM
inference in small-batch scenarios. SpecDec++ [Huang et
al., 2024] introduces an adaptive candidate length mecha-
nism that dynamically adjusts candidate lengths to match
the size of inference tasks and system load. Spectr [Sun et
al., 2024b] optimizes the speculative decoding system using
a verification framework based on optimal transport. Min-
ions [Wang et al., 2024] combines multiple inference tasks
into a single batch, using grouped processing and pipeline
mechanisms to improve system throughput. SmartSpec [Liu
et al., 2024b] uses Goodput as a performance metric and im-
plements priority-based scheduling. SpecExec [Svirschevski
et al., 2024] proposes a massively parallel speculative de-
coding method designed specifically for resource-constrained
consumer devices. Speculative Streaming [Bhendawade et
al., 2024] implements a streaming framework that overlaps
the token generation and verification processes. Although
existing work has successfully improved the performance of
speculative decoding, the scheduling problem for speculative
decoding requests has been seldom studied, which motivates
us to fill this gap in this paper.

6.2 Scheduling for LLM Serving System

In order to improve inference efficiency and performance, Ex-
eGPT [Oh et al., 2024] proposes a constraint-aware system
that maximizes throughput while meeting latency require-
ments. PerLLM [Yang et al., 2024] introduces a personalized
scheduling framework for edge-cloud collaboration. Another
approach leverages LLMs to predict output lengths and group
similar queries [Zheng et al., 2024]. Additionally, a learning-
to-rank method for predicting relative output lengths [Fu et
al., 2024b] enables better approximation of shortest-job-first
scheduling. FDIS [Wu et al., 2023] decomposes inference
tasks into smaller subtasks and processes them in parallel
across multiple computing nodes to reduce latency and im-
prove throughput. Adaptive Batch Budget [Yeşil et al., 2024]
presents an adaptive batch budget scheduling method to im-
prove the efficiency of LLM inference by enhancing GPU
utilization and throughput. Sarathi-Serve [Agrawal et al.,
2024] is an efficient LLM inference scheduler that improves
serving throughput within desired latency SLOs by leverag-
ing chunked-prefills to create stall-free schedules. INFER-
MAX [Kim et al., 2024] analyzes that preemption mecha-
nisms like LAS can reduce GPU costs. Existing scheduling
methods primarily target traditional LLM inference requests,
resulting in sub-optimal performance for speculative decod-
ing requests. To address this, we leverage the perceptible
characteristics of speculative decoding and propose a novel
scheduling algorithm to minimize inference latency.

7 Conclusion

In this paper, we present LAPS-SD, a semi-clairvoyant
scheduling algorithm for LLM inference with speculative de-
coding. LAPS-SD combines execution preemption and exe-
cution time estimation to reduce inference latency. Specifi-
cally, LAPS-SD initially maintains multiple priority queues,
allowing requests to be preempted when their execution times
are difficult to predict, thereby preventing blocking issues
caused by long requests. Once the execution times of requests
become predictable, LAPS-SD estimates them accurately by
predicting both output length and acceptance rate. Extensive
experiments demonstrate that LAPS-SD reduces the average
inference latency by approximately 39% compared to base-
line methods.
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