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Abstract
Origin-Destination (OD) demand prediction is a
pivotal yet challenging task in intelligent trans-
portation systems, aiming to accurately forecast
cross-station ridership flows within urban net-
works. While previous studies have focused on
modeling node-to-node relationships, most of them
neglect the fact that nodes (stations/regions) ex-
hibit similar spatio-temporal (ST) patterns, which
are termed as spatio-temporal prototypes. Cap-
turing these prototypes is crucial for understand-
ing the unified ST dependencies across the traffic
network. To bridge this gap, we propose STPro,
an ST prototype-based hierarchical model with a
dual-branch structure that extracts ST features from
the micro and macro perspectives. At the micro
level, our model learns unified ST features of in-
dividual nodes, while at the macro level, it employs
dynamic clustering to identify city-wide ST proto-
types, thereby uncovering latent patterns of urban
mobility. Besides, we leverage different roles of
nodes as origins and destinations by constructing
dual O and D branches and learn the mutual in-
formation to model their intricate interactions and
correlations. Extensive experiments on two public
datasets demonstrate that our STPro outperforms
recent state-of-the-art baselines, achieving remark-
able predictive improvements in OD demand pre-
diction.

1 Introduction
With rapid urbanization and the ever-growing demand for
transportation, urban mobility systems face significant chal-
lenges, including traffic congestion [Gong et al., 2020b;
Ji et al., 2023], resource inefficiency [Gross et al., 2006], and
prolonged passenger wait times [Gong et al., 2020a]. Under-
standing passenger movement patterns is a critical pathway to
optimizing urban transportation systems. Origin-Destination
(OD) demand prediction, which focuses on forecasting the
number of passengers traveling from specific origins to des-
tinations, has emerged as a critical research area in urban

∗Corresponding author.

Figure 1: An illustration of OD demand and spatio-temporal proto-
types.

computing [Rong et al., 2024]. OD demand prediction can
identify the underlying spatio-temporal patterns of passenger
movements and forecast their mobility intentions, thereby of-
fering essential insights into the dynamics of urban mobility.

Due to its significance in practical applications, OD de-
mand prediction has recently attracted extensive attention in
both academic and industrial communities [Wang et al.,
2019; Han et al., 2022; Ye et al., 2024; Yu et al., 2025].
Some studies transform passenger flow data into grid-based
representations and utilize CNNs to capture spatial dependen-
cies [Wang et al., 2019; Jiang, 2023]. To model more com-
plex spatial relationships, other approaches represent passen-
ger flow data as graphs and employ GNNs to extract intricate
spatio-temporal patterns [Liu et al., 2022; Ye et al., 2024;
Liu et al., 2024]. However, despite these advancements, ex-
isting methods still face several limitations. One significant
issue is the failure to adequately capture the distinct charac-
teristics of a station when it functions as an origin (O) com-
pared to when it serves as a destination (D). As illustrated
in Figure 1, the demand patterns of Node c as an origin can
differ substantially from its traffic demand distribution pat-
terns as a destination. A clear real-world example of this
phenomenon is the contrasting traffic patterns observed in
workplace districts during morning and evening peak hours.
Previous studies often model origin and destination features
jointly, which overlooks their inherent semantic differences.

The second challenge lies in capturing the implicit spatio-
temporal patterns from a global perspective. As illustrated in
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Figure 1, different nodes may exhibit similar spatio-temporal
evolution patterns regardless of their geographical proximity.
We refer to these shared patterns, which are applicable across
multiple nodes, as spatio-temporal prototypes. The proto-
types often represent the traffic demand evolution features of
a specific category of nodes, providing a higher-level under-
standing of urban mobility dynamics. Effectively capturing
the spatio-temporal prototypes and modeling their intricate
correlations is a crucial yet unexplored step in OD prediction.

To address these challenges, we propose STPro, a spatio-
temporal prototype based dual-branch hierarchical frame-
work for OD demand prediction. Our framework works at
two levels to comprehensively capture spatio-temporal dy-
namics. At the macro level, we focus on learning spatio-
temporal prototypes to capture the shared mobility patterns
across nodes. These prototypes are constructed using dy-
namic clustering, which adaptively groups nodes with sim-
ilar spatio-temporal evolution trends. At the micro level, we
extract the fine-grained spatio-temporal features for individ-
ual nodes with a hypervariate graph that fully connects all
nodes. To address the inherent semantic differences between
origin and destination roles, we design a dual-branch archi-
tecture that separately models the characteristics of nodes
as origins (O-branch) and destinations (D-branch). At each
branch, spatio-temproal features learned from the micro and
macro levels are fused to generate the unified embeddings.
To enable effective interaction between the two branches, we
employ a cross-attention mechanism to integrate mutual in-
formation between the O-branch and D-branch, which is then
used to make final OD demand predictions. Extensive exper-
iments conducted on two real-world datasets demonstrate our
method, as it consistently outperforms baseline methods. In
summary, our work makes the following key contributions:

• We propose STPro, a hierarchical framework for OD
demand prediction. We utilize dynamic clustering to
construct spatio-temporal prototypes at the macro level
and leverage the fine-grained node features at the mi-
cro level. This hierarchical integration enriches spatio-
temporal semantics and enhances prediction accuracy.

• We design a dual-branch architecture to separately
model the semantic characteristics of nodes as origins
(O-branch) and destinations (D-branch). To model the
dynamic interactions between origin and destination
roles, a cross-attention mechanism is employed to ex-
tract and integrate mutual information between the two
branches.

• Extensive experiments are conducted on two widely
used real-world datasets to evaluate the STPro. The
experimental results demonstrate that our approach can
build effective spatio-temporal prototypes and achieve
state-of-the-art performance in both single-step and
multi-step OD demand prediction.

2 Related Works
2.1 Origin-Destination Demand Prediction
Origin-destination demand prediction is a critical task in ur-
ban mobility analysis. It aims to forecast traffic demand be-

tween two locations and has attracted significant research at-
tention in recent years. With the rapid development of deep
learning techniques, neural network-based methods have
emerged as the dominant approach for addressing this task.
Shi et al. [2020] used LSTM units to extract temporal charac-
teristics for each pair of OD and separately learned the spatial
dependencies of the origins and destinations. Ke et al. [2021]
represented OD pairs with multiple OD graphs and devel-
oped a spatio-temporal encoder-decoder residual framework
to model the spatial dependencies between different OD pairs
and the temporal dependencies of OD pairs themselves. Liu
et al. [2022] proposed a heterogeneous information aggrega-
tion mechanism, which fully utilizes incomplete OD matrices
from historical data to jointly learn the evolution patterns of
OD and DO rides. Liu et al. [2024] introduced ODMixer,
a method for learning traffic evolution by analyzing all OD
pairs. They proposed a fine-grained spatio-temporal MLP ar-
chitecture specifically designed for metro OD prediction.

However, previous studies do not explore the hierarchical
spatio-temporal information inherent in OD demand, which is
crucial for capturing both global trends and local variations.
Furthermore, most of them predict the OD matrix without
considering the distinct semantic attributes and intrinsic cor-
relations between origins and destinations

2.2 Prototype Learning
Prototypes have been extensively utilized in various ma-
chine learning paradigms, including transfer learning [Quat-
toni et al., 2008], multi-task learning [Kang et al., 2011],
and few-shot learning [Snell et al., 2017; Liu et al., 2019;
Li et al., 2021a]. Traditionally, a prototype is defined as
the mean feature vector of samples within the same class
[Wieting et al., 2015; Babenko and Lempitsky, 2015]. This
definition leverages the central tendency of feature distri-
butions to represent class-specific information, which has
proven effective in tasks requiring generalization across sim-
ilar instances. For instance, in distributed machine learn-
ing systems, prototypes have been employed to capture task-
agnostic information, enabling the fusion of multi-task mod-
els for new tasks [Hoang et al., 2020]. Furthermore, the
generalization capability of prototypes has been harnessed
in federated learning, where they assist local training by ag-
gregating semantic knowledge from distributed data sources
[Michieli and Ozay, 2021; Tan et al., 2021; Li et al., 2021b;
Mu et al., 2023].

In this paper, the spatio-temporal prototypes are defined as
dynamic clustering centers that adaptively capture shared mo-
bility patterns across nodes. Unlike static mean prototypes,
our approach leverages dynamic clustering to iteratively up-
date prototypes based on evolving spatio-temporal character-
istics. This dynamic nature allows the prototypes to reflect
temporal variations and spatial dependencies, which are crit-
ical for accurate OD demand prediction.

3 Problem Statement
In this section, we provide the definition of origin-destination
demand prediction.

The primary objective of this work is to predict future
OD demands based on past observed demand data. Given

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

C
on

v

C
on

ca
te

na
te

 

Pr
ed

ic
tio

n

D-branch

 

Q
O

K
O

V
O

So
ft

m
ax

D
ua

l O
D

 A
tt

en
tio

n

Q
D

K
D

V
D

So
ft

m
ax

ST Hypervariate
Graph

ST PrototypeST Prototype

M
L

P

ST Prototype
Graph

Hierarchical
Fusion

M
L

P

22

P3t-T+1
t

t-T+1
t

t-T+1
t

t-T+1
t

1

P1

1

P2

22

P6

1

P4

1

P5

P3

P1 P2

P3

P1 P2

Prototype Embedding

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

O-branch

Learnable Weights

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

Figure 2: Overview of our proposed STPro. STPro establishes a dual-branch structure based on the distinct attributes of nodes as origins
and destinations. Each branch first generates spatio-temporal features of nodes based on a fully connected spatio-temporal graph. Next, OD
prototypes are generated using dynamic clustering. Dual-branch interaction is achieved through OD dual attention. Finally, the outputs of
dual-branch mutual information are fused to produce the final prediction.

the passenger flow between stations (or regions) at a specific
time, we formulate this information into an OD matrix Xt ∈
RN×N , where N denotes the number of stations. We treat
these stations as nodes in the urban network in the follow-
ing context. Here, we represent the node features from two
perspectives and generate the input for the O-branch and D-
branch. The i-th row of Xt represents the flow from the node
i to all other nodes. From the origin perspective, we consider
the origin feature of the node vOi

t ∈ RN and the set of all
nodes is VO

t =
{

vO1
t , ..., vOi

t , ..., vON
t

}
∈ RN×N . Similarly,

the j-th column of the Xt represents the flow from all nodes
to node j. The destination feature of the node is vDj

t , and the
set of all nodes is VD

t =
{

vD1
t , ..., vDi

t , ..., vDN
t

}
∈ RN×N .

In this work, we utilize the passenger flow from previous T
time steps to forecast the future OD demand matrix. The ori-
gin feature of T time steps VO will be the input for the O-
branch and the destination feature VD will be the input for
the O-branch. Finally, the prediction task is formulated as:

[Xt−T+1, ...,Xt]
f→ [Ŷt+1, ..., Ŷt+m]. (1)

4 Proposed Method
In this paper, we propose a dual-branch hierarchical model
capable of learning the multi-level information of OD to ef-
fectively model the spatio-temporal distribution of OD. As
shown in Figure. 2, our model consists of an O-branch hierar-
chical module, a D-branch hierarchical module, and a cross-
attention mechanism for O-D interaction modeling. Specif-
ically, at the micro level of each branch, an OD hypervari-
ate graph is constructed to learn spatio-temporal unified node
information. Meanwhile, dynamic clustering is applied to
generate OD prototypes at the macro level, exploring typical
spatio-temporal patterns in the city. Subsequently, the dual-
branch information is interacted to enhance the modeling. We
develop a hierarchical OD framework to jointly predict multi-
level complete OD demand for the future.

4.1 Hierarchical OD Modeling
We propose a hierarchical model for OD demand forecast-
ing that integrates macro and micro levels to capture both
global and local spatio-temporal patterns. The micro level
captures spatio-temporal local features via fully connected
nodes, while the macro level extracts global OD flow pat-
terns by dynamic clustering. Hierarchical interaction com-
bines two levels, providing multi-level representations in the
OD system. However, the origin and destination OD flow of
a node is affected by different factors that we should consider
separately. Therefore, we model the hierarchical structure in
both branches (O-branch and D-branch).

OD Hypervariate Graph
Urban OD flow is essentially a spatio-temporal traffic sys-
tem with a non-Euclidean topology. Recently, GCN has been
proven to be effective for spatio-temporal non-Euclidean data
embedding [Yi et al., 2024]. However, the unified spatio-
temporal graph structure is usually unknown in OD flow sce-
narios [Zhang et al., 2022; Han et al., 2022; Liu et al., 2022].
Inspired by these works, we construct spatio-temporal OD
hypervariate graphs with two branches and utilize graph con-
volutional units to learn the spatio-temporal representations
for OD prediction.

To capture long-term spatio-temporal information, we
choose NT nodes from T time steps for the OD hypervari-
ate graph. In the O-branch, we define the set of nodes for
T time steps as UO

t =
{

VO
t−T+1, ...,VO

t

}
∈ RNT×N , and

construct an OD hypervariate graph GO
t =

{
UO

t ,AO
t

}
. Since

the prior graph structure is unknown, and nodes are spatially
and temporally correlated with each other because of the time
lag effect [Wei, 1990], we assume all nodes in the graph GO

t

are fully connected. Therefore, AO
t ∈ RNT×NT is the ad-

jacency matrix initialized to make GO
t as a spatio-temporal

fully-connected graph. In the same way, in the D-branch, we
construct the graph GD

t =
{

UD
t ,AD

t

}
.

Based on the fully connected graphs, we utilize the stan-
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dard graph convolution [Kipf and Welling, 2016] to learn
spatio-temporal representations HO/D

t ∈ RNT×d. In detail,
for each branch, we update its representation by aggregating
the state embedding vectors of all its fully connected neigh-
bors including itself. In formulation, the representation of
HO/D

t follows:

HO/D
t = AO/D

t (UO/D
t WO/D

t ), (2)

where WO/D
t ∈ RN×d is a weight matrix; the superscript O

and D denotes the spatio-temporal representation generation
processes of the O-branch and D-branch, respectively.

OD Prototypes Embedding
The traffic system naturally exhibits a spatio-temporal hier-
archical structure [Guo et al., 2021]. OD system not only
includes the basic micro layer of spatio-temporal nodes but
also has the macro layer of prototypes. While focusing on
the local spatio-temporal behavior of individual OD pairs, we
also aim to capture the global spatio-temporal OD flow pat-
terns.

To explore the dynamic hierarchical relationships in the
OD network, we use a learnable matrix ΘO/D to dynamically
cluster spatio-temporal nodes into different spatio-temporal
prototypes, where ΘO/D ∈ Rd×I and I is the number of
the prototypes. In detail, the incidence probability matrix
Λ

O/D
t ∈ RNT×I between spatio-temporal nodes and pro-

totypes is formalized as:

Λ
O/D
t = Softmax(HO/D

t ΘO/D). (3)

In OD systems, there are complex dependencies between
prototypes. Therefore, we introduce a learnable matrix
PO/D ∈ RI×I to capture the connection relationships of the
prototypes. Here, PO/D is regarded as the spatio-temporal
prototype graph used for graph convolution. Then, we utilize
the graph convolution [Zhao et al., 2023] to learn spatio-
temporal prototype embeddings, which have spatio-temporal
global information from the hierarchical OD demand net-
work. Specifically, we generate each prototype’s embedding
EO/D
t ∈ RI×d by aggregating the embeddings of all spatio-

temporal nodes and the spatio-temporal prototype graph:

EO/D
t = ϕ

(
PO/D

(
Λ

O/D
t

)T

HO/D
t

)
+

(
Λ

O/D
t

)T

HO/D
t , (4)

where ϕ is a non-linear activation function.

OD Hierarchical Fusion
To realize the interaction between the macro and micro lay-
ers, we propose an OD hierarchical fusion to integrate lo-
cal spatio-temporal node features and global spatio-temporal
prototype features. First, we define the transformation ma-
trix TranO/D

t ∈ RNT×I based on the incidence probability
matrices in the previous section:

TranO/D
t = ΛO/D. (5)

We transform the obtained local node features and the
global prototype features into the same dimension using the
transformation matrix:

EO/D
tran = TranO/D

t EO/D
t , (6)

where EO/D
tran ∈ RNT×d and each variable in EO/D

tran contains
information about all nodes of the same prototype. To inte-
grate features from different levels, we design the hierarchical
fusion function as follows:

FO/D
t = MLP

(
ReadOut

(
EO/D
tran ,HO/D

t

))
, (7)

where the readout is a summation operation.

4.2 Dual OD Attention
After obtaining clear multi-level representations from the two
branches, we explicitly model the correlation between the
two branches to enhance the overall representation of OD
demand. Inspired by Liu et al. [2022], we introduce a dual
OD attention mechanism to model the O and D distribu-
tions jointly by propagating their mutual information in a dual
manner. Following this interaction, the multi-level O and D
features become informative for OD demand flow prediction.

Our dual OD attention is implemented with cross-branch
cross-attention, where the bidirectional transformer propa-
gates information from the O-branch to the D-branch, as well
as from the D-branch to the O-branch. Specifically, FO

t and
FD
t are first respectively fed into three linear layers for query,

key, and value embedding:

QO
t = Conv(FO

t ,WO
q ) + bO

q ,QD
t = Conv(FD

t ,WD
q ) + bD

q ,

KO
t = Conv(FO

t ,WO
k ) + bO

k ,KD
t = Conv(FD

t ,WD
k ) + bD

k ,

VO
t = Conv(FO

t ,VO
v ) + bO

v ,VD
t = Conv(FD

t ,WD
v ) + bD

v ,

(8)

where all convolution kernel sizes are 1 ∗ 1 with individual
parameters, and the biases for the query, key, and value have
dimensions of NT × d . Same as FO

t and FD
t , these query,

key, value features also have a dimension of NT × d.
Based on attention mechanisms, the cross-branch informa-

tion propagation is performed with the following formula-
tions:

ZO2D
t = FO

t + softmax(QO
t (K

D
t )⊤)VD

t ,

ZD2O
t = FD

t + softmax(QD
t (KO

t )
⊤)VO

t ,
(9)

where softmax(QO
t (K

D
t )⊤) and softmax(QD

t (KO
t )

⊤) are
two propagation coefficients that dynamically determine the
amount of information propagated between the features of the
O-branch and the D-branch. Through this process, the repre-
sentations of the O-branch and the D-branch not only rein-
force each other but also better capture the intrinsic interac-
tion between the origin and destination attributes of nodes in
the OD system.

4.3 OD Demand Prediction
Finally, the extracted features are fused and used for OD de-
mand prediction. The model is capable of predicting both
single-step and multi-step OD demands. For multi-step OD
demand prediction, the model directly outputs predictions for
multiple future time steps to avoid error accumulation. The
model uses Mask OD Loss to measure prediction errors and
continuously improve its performance.
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To predict the OD demand at timestamp t + 1, the model
utilizes the interaction features from previous timestamps, in-
cluding O2D features and D2O features. First, we combine
the two features and multiply them by the transformation ma-
trix Wz resulting in a matrix with dimensions NT×N . Then,
we reshape the matrix into T×N×N . Finally, we sum along
the temporal dimension to obtain a combined matrix with di-
mension of 1 × N × N , aggregating the information across
T time steps. The combination feature can be expressed as
follows:

Comt =
∑
T

(ZO2D
t ⊕ ZD2O

t )Wz. (10)

After combining spatio-temporal features, a convolution
layer is employed to make the prediction. The OD demand
prediction result at the time t + m can be expressed as fol-
lows:

Ŷ t+m = Conv(Comt,Ker1∗1(m)), (11)

where Ŷ t+m is the prediction results for future m time steps
and Ker denotes the convolution kernel, with the number of
kernels corresponding to the predicted the next m time steps,
and the size of each kernel being 1 ∗ 1.

5 Experiments
5.1 Experimental Setup
Datasets
The two OD datasets used in our experiments are NYC-
TOD2018 and NYC-TOD2019 [Yu et al., 2025]. New York
City taxi datasets were provided by the New York City Taxi
and Limousine Commission (TLC). We selected the yellow
taxi data for this study. According to the division of TLC,
Manhattan is divided into 69 nodes. The NYC-TOD2018
dataset collected passenger demand data for 69 areas in Man-
hattan from January 1,2018 to December 31, 2018, and the
NYC-TOD2019 dataset collected passenger demand data for
69 areas in Manhattan from January 1, 2019, to December 31,
2019. The time interval for both datasets is 1 hour.

Evaluation Setting and Metrics
All models take 3 hours (3 time steps) of historical data as
input and make predictions for the future 1/2/3 hours (1/2/3
time steps) of OD demand. For both datasets, we use 60% of
the data for training, 20% for validation, and the remaining
20% for testing the model’s performance. We choose widely
used Mean Absolute Error (MAE) and Root Mean Square Er-
ror (RMSE) as the evaluation metrics.

Baselines
We conduct a comprehensive comparison of the proposed
STPro with a wide range of baselines, spanning from tradi-
tional statistical methods to state-of-the-art graph-based ap-
proaches. The baselines include: (1) the statistical-based
method HA; (2) RNN-based machine learning methods, such
as GRU [Cho et al., 2014] and LSTM [Hochreiter and
Schmidhuber, 1997]; (3) recent graph-based traffic predic-
tion methods, including STGCN [Yu et al., 2017], Graph-
WaveNet [Wu et al., 2019], and DCRNN [Li et al., 2017];
and (4) state-of-the-art graph-based OD prediction methods,
such as GEML [Wang et al., 2019], CMOD [Han et al.,

2022], HIAM [Liu et al., 2022], C-AHGCSP [Ye et al.,
2024], and ODMixer [Liu et al., 2024]. Notably, STGCN,
GraphWaveNet, and DCRNN are representative models orig-
inally designed for traffic forecasting. To adapt them for OD
demand prediction, we re-implemented these models based
on their official code.

5.2 Comparison with Advanced Methods
The performance summary of single-step and multi-step OD
demand predictions for all comparison methods is presented
in Table 1. From the results, we observe that traditional meth-
ods exhibit relatively higher MAE and RMSE values across
different time intervals, indicating their limitations in cap-
turing complex spatio-temporal patterns. In contrast, graph-
based traffic prediction methods, such as STGCN, Graph-
WaveNet, and DCRNN, demonstrate improved performance
over traditional baselines and RNN-based models by lever-
aging graph convolution to model spatial and temporal de-
pendencies. Among these, GraphWaveNet achieves notable
results, particularly in multi-step predictions, due to its use of
dilated causal convolution, which effectively captures long-
term temporal dependencies. However, this mechanism ap-
pears less effective in capturing fine-grained details critical
for single-step predictions, which may explain its relatively
weaker performance in such scenarios. While graph-based
methods have made significant advancements in modeling
traffic dynamics, they primarily focus on establishing rela-
tionships between individual traffic points, often overlooking
the unified spatio-temporal prototypes.

Our proposed method introduces a novel hierarchical
spatio-temporal framework that effectively captures mobil-
ity patterns at multiple scales, addressing the limitations of
existing approaches. By integrating micro-level fine-grained
details and macro-level global trends, our model achieves a
balanced representation of OD demand dynamics, enabling
accurate predictions for both single-step and multi-step fore-
casting tasks. The experimental results demonstrate the ro-
bustness and effectiveness of our approach. On the NYC-
TOD2018 dataset, our model achieves a 5.58% reduction in
RMSE for 2-hour predictions, showcasing its ability to cap-
ture short-term mobility patterns. Similarly, on the NYC-
TOD2019 dataset, our model improves RMSE by 1.55%
for 2-hour predictions, further validating its generalizabil-
ity across different datasets. These consistent improvements
highlight the superiority of STPro in modeling the hierarchi-
cal spatio-temporal dynamics of OD systems.

5.3 Ablation Studies
In this section, we conduct comprehensive ablation studies
to evaluate the contribution of each component in the pro-
posed STPro. Table 2 summarizes the average performance
of all model variants for the 3-hour prediction task. The key
components under investigation include the dynamic cluster-
ing module (Prototypes), the O-branch for modeling nodes as
origins, and the D-branch for modeling nodes as destinations.

Effectiveness of Prototypes
From Table 2, it can be observed that the model with pro-
totypes significantly outperforms other variants in OD pre-
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Model
NYC-TOD2018 NYC-TOD2019

1 hour 2 hour 3 hour 1 hour 2 hour 3 hour
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 1.973 4.944 1.974 4.945 1.974 4.946 1.718 4.419 1.718 4.419 1.718 4.420
LSTM 1.569 3.568 1.596 3.772 1.620 3.996 1.350 3.147 1.369 3.607 1.403 3.635
GRU 1.586 3.613 1.608 3.839 1.627 3.953 1.365 3.160 1.376 3.613 1.418 3.646

STGCN 1.515 3.483 1.586 3.702 1.621 3.923 1.317 3.110 1.370 3.220 1.411 3.777
GraphWaveNet 1.752 4.668 1.668 4.342 1.625 4.179 1.476 3.995 1.406 3.767 1.373 3.646

DCRNN 1.533 3.925 1.570 4.068 1.613 4.199 1.324 3.533 1.353 3.562 1.390 3.669
GEML 1.787 4.071 1.817 4.230 1.855 4.386 1.544 3.592 1.548 3.609 1.583 3.739
CMOD 1.533 3.435 1.542 3.738 1.565 3.785 1.311 3.024 1.318 3.043 1.338 3.082
HIAM 1.424 3.621 1.434 3.632 1.462 3.702 1.215 3.160 1.226 3.167 1.251 3.234

C-AHGCSP 1.425 3.550 1.457 3.699 1.523 3.742 1.217 3.231 1.237 3.260 1.236 3.448
ODMixer 1.454 3.605 1.460 3.726 1.527 3.749 1.243 3.269 1.301 3.431 1.294 3.458

STPro (Ours) 1.420 3.410 1.429 3.429 1.454 3.505 1.209 2.977 1.211 2.992 1.221 3.044

Table 1: Performance of OD prediction on the NYC-TOD2018 and NYC-TOD2019.

Prototypes O-branch D-branch
NYC-TOD2018 NYC-TOD2019
MAE RMSE MAE RMSE√
1.477 3.695 1.257 3.324√
1.475 3.689 1.259 3.332√ √
1.457 3.615 1.239 3.194√ √
1.466 3.661 1.248 3.234√ √
1.464 3.660 1.245 3.265√ √ √
1.434 3.448 1.213 3.004

Table 2: Ablation studies on NYC-TOD2018 and NYC-TOD2019.

diction, indicating that the dynamic clustering module effec-
tively enhances OD prediction performance. Specifically, the
dynamic clustering module generates spatio-temporal proto-
types by aggregating features of similar samples into dynamic
centers. These prototypes enable the model to better learn
the intrinsic patterns of OD demand. For instance, on the
NYC-TOD2018 dataset, the STPro model with prototypes
achieves a 1.57% reduction in MAE and a 4.61% reduction
in RMSE compared to the variant without prototypes. Similar
performance improvements were also observed on the NYC-
TOD2019 dataset. These experimental results further validate
the effectiveness of the dynamic clustering module in captur-
ing spatio-temporal correlations.

Effectiveness of Dual OD Branch

The results in Table 2 also highlight the importance of the
dual OD branch structure, which explicitly models the in-
teractions between origins and destinations. The model in-
corporating OD branch interaction significantly outperforms
the variant without interaction, demonstrating its ability to
capture the complex relationships between origins and des-
tinations. These correlations are often overlooked or inade-
quately modeled in traditional approaches, and the OD branch
interaction module addresses this limitation.

Figure 3: Studies on the number of prototypes.

6 Model Analysis
6.1 Impact of the Number of Prototypes
In this section, we analyze the impact of the number of pro-
totypes I on the prediction performance. As described in the
methodology, we cluster N × T nodes to form I prototypes,
which serve as high-level representations of shared spatio-
temporal patterns. To determine the value of I , we first con-
ducted a wide-range grid search and identified that models
with I around twenty consistently achieved superior perfor-
mance. Based on this observation, we performed a detailed
study of I around twenty to evaluate the average performance
for both single-step and multi-step predictions.

As shown in Figure 3, both MAE and RMSE reach the min-
imum values for single-step and multi-step predictions when
I equals 23. When the number of prototypes I deviates from
23—either by being too small or too large—the prediction er-
rors increase. We infer that the number of prototypes should
align with the real-world number of macro spatio-temporal
patterns inherent in the dataset. The prototypes can reflect
the true diversity of real-world traffic patterns captured in the
data. An appropriate value of I enables the model to better
capture the underlying spatio-temporal correlations in the OD
demand data. While the choice of I has an implicit impact
on prediction performance, our hierarchical approach consis-
tently achieves competitive results compared to state-of-the-
art methods.
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Figure 4: Studies on the prototype generation methods.

6.2 Exploration of Prototype Generation Methods
In this section, we conduct a detailed exploration of var-
ious spatio-temporal prototype generation methods to vali-
date the effectiveness of our proposed approach. Specifi-
cally, we compare our method with the following approaches:
K-Means clustering (K C), Agglomerative clustering (A C),
Temporal clustering (T C), and Spatial clustering (S C). The
experimental results, presented in Figure 4, clearly demon-
strate that our proposed clustering method ST C significantly
outperforms other approaches. This superior performance
stems from its ability to jointly model spatial and temporal
information, effectively capturing the complex dependencies
inherent in spatio-temporal data. In addition to their subopti-
mal performance in prediction accuracy, K C and A C suffer
from high computational complexity and low efficiency. On
the other hand, S C and T C are limited by their focus on ei-
ther spatial or temporal features. Our proposed method effec-
tively captures the complex spatial and temporal relationships
in OD demand data and ensures a more accurate prediction.

6.3 Experiments on the Stability of the STPro
To further validate the stability of our model, we analyze the
prediction performance of STPro across different time peri-
ods. This analysis focuses on the model’s ability to han-
dle varying levels of OD flow complexity during weekdays
and weekends. We provide the comparison with the six best-
performing baselines in Figure 5. On weekdays, all meth-
ods often exhibit higher prediction errors during the morn-
ing and evening periods, primarily due to the increased com-
plexity of traffic patterns during peak hours. Our method
not only achieves optimal prediction results across all time
periods but also demonstrates exceptional performance dur-
ing peak hours, outperforming some methods even during
off-peak hours. Even though the traffic patterns on week-
ends differ from those on weekdays, our method consistently
achieves the best prediction performance across both scenar-
ios. By maintaining stable and accurate predictions under

(a) Weekdays (b) Weekends

Figure 5: Studies on model stability.

Model
OD demand
(HZMetro)

OD flow
(HZMOD)

MAE RMSE MAE RMSE
GEML 1.181 2.385 1.202 2.355
HIAM 1.035 2.011 0.978 1.939

C-AHGCSP 1.072 2.145 1.099 2.143
ODMixer 1.074 2.194 1.101 2.147

STpro 0.891 1.986 0.883 1.928

Table 3: Experiments of OD Flow and OD Demand predictions.

diverse conditions, our method ensures reliable performance
across a wide range of real-world applications, from weekday
commutes to weekend leisure travel.

6.4 Model Applicability Analysis

To validate the applicability of STPro, we conducted ad-
ditional experiments on datasets from a new city and ex-
tended the model to OD flow prediction. Experimental re-
sults presented in Table 3 demonstrate that STPro maintains
outstanding prediction performance on the HZMetro dataset
[Yu et al., 2025], collected from Hangzhou, China. For OD
flow prediction, it focuses on real-time flow estimation based
on incomplete trip observations (e.g., subway station entries
without exits) [Yu et al., 2025]. The results on HZMOD [Liu
et al., 2022] highlight STPro’s robustness against sparsity is-
sues in OD flow prediction.

7 Conclusion

In this paper, we present STPro, a dual-branch hierarchi-
cal model designed for OD demand prediction. STPro
captures multi-level spatio-temporal information, combining
fine-grained details at the micro level with city-wide patterns
at the macro level. STPro effectively models urban mobility
dynamics by leveraging dynamic clustering to identify spatio-
temporal prototypes and employing a dual-branch structure
to model origin-destination interactions. Experiments on two
real-world datasets show that STPro achieves state-of-the-art
performance in both single-step and multi-step OD demand
predictions. This work advances OD demand prediction and
provides a robust framework for spatio-temporal modeling in
intelligent transportation systems. Future research will ex-
plore extending the framework with additional data sources
and applying it to other spatio-temporal tasks.
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