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Abstract
Argumentation is a central subarea of Artificial In-
telligence (AI) for modeling and reasoning about
arguments. The semantics of abstract argumenta-
tion frameworks (AFs) is given by sets of arguments
(extensions) and conditions on the relationship be-
tween them, such as stable or admissible. Today’s
solvers implement tasks such as finding extensions,
deciding credulous or skeptical acceptance, count-
ing, or enumerating extensions. While these tasks
are well charted, the area between decision, count-
ing/enumeration and fine-grained reasoning requires
expensive reasoning so far. We introduce a novel
concept (facets) for reasoning between decision and
enumeration. Facets are arguments that belong to
some extensions (credulous) but not to all extensions
(skeptical). They are most natural when a user aims
to navigate, filter, or comprehend the significance
of specific arguments, according to their needs. We
study the complexity and show that tasks involving
facets are much easier than counting extensions. Fi-
nally, we provide an implementation, and conduct
experiments to demonstrate feasibility.

1 Introduction
Abstract argumentation [Dung, 1995; Bench-Capon and
Dunne, 2007] is a formalism for modeling and evaluating
arguments and its reasoning problems has many applica-
tions in artificial intelligence (AI) [Amgoud and Prade, 2009;
Rago et al., 2018]. The semantics is based on sets of argu-
ments that satisfy certain conditions regarding the relation-
ship among them, such as being stable or admissible [Dung,
1995]. Such sets of arguments are then called extensions of a
framework and various practical solvers for decision and rea-
soning tasks [Egly et al., 2008; Niskanen and Järvisalo, 2020;
Thimm et al., 2021; Alviano, 2021] compete biannually in the
ICCMA competition [Thimm et al., 2024].

Qualitative reasoning problems such as finding an extension
or deciding credulous or skeptical acceptance are reasonably
fast to compute [Dvořák, 2012] but have limitations. Namely,
these two reasoning modes represent extremes on the rea-
soning spectrum, as they provide no insight into preferences

sweetsavory

burritomaple syrup

taco bell

expensive

small portion

Figure 1: An example argumentation framework.

among arguments for further analysis. As a result, enumera-
tion, counting, and fine-grained quantitative reasoning modes
have been studied and computationally classified [Fichte et
al., 2023a; Fichte et al., 2024] enabling probabilistic reason-
ing over arguments. While enumeration is well suited when
the total number of extensions is small, some argumentation
semantics easily result in a vast number of extensions. How-
ever, users might still want to investigate the space of possible
extensions in more detail. Possible examples are restricting
or diversifying extensions, identifying resilient arguments or
sanity checks, evaluating outcomes in argumentation frame-
works generated by LLMs, or gaining insights into specific
frameworks through explanations.

In all such scenarios evaluating the significance for individ-
ual arguments in a framework is central. In existing proposals,
computing the significance for arguments relied on quantita-
tive measures over extensions containing certain arguments
or supporting particular claims. These notions rely on count-
ing all extensions containing a particular argument (or claim),
which is computationally expensive [Fichte et al., 2024]. Ex-
ample 1 illustrates difficulties when comparing significance of
certain arguments in the overall world of extensions.

Example 1. Consider the argumentation framework F , de-
picted in Figure 1, illustrating the choice between a sweet or
savory breakfast, that is between maple syrup and burrito. In-
tuitively, if one prefers a savory flavor, they would not choose
maple syrup; likewise, sweet attacks burrito. One does not
go to taco bell expecting maple syrup, nor are small portions
typical at taco bell. While it is possible to make burritos at
home, doing so requires buying expensive ingredients. Making
a small portion or going to taco bell avoids this.

The stable extensions of F are: {w,m, p}, {s, b, p} and
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{s, b, t}. Now it is not immediate to compare the significance
of accepting/rejecting certain arguments to each other.

In this paper, we propose a combination of credulously and
skeptically accepted arguments, which ask whether a given
argument belongs to some extension (credulous) but not all
extensions (skeptical). We call arguments that are credulously
but not skeptically accepted facets. Facets quantify the uncer-
tainty of arguments in extensions, providing a measure of their
indeterminacy within the framework. They can be utilized to
evaluate the significance of specific arguments. Example 2
provides a brief intuition.
Example 2. We return to the argumentation framework F
from Example 1. Six of the seven arguments are facets under
stable semantics, with only e being a non-facet, indicating a
substantial degree of uncertainty.

Assume we aim to compare the relative significance of an
argument. Consider the extensions of F rejecting (not contain-
ing) the argument “sweet”. There are two such stable exten-
sions {s, b, p} and {s, b, t}. Therefore, rejecting the argument
w leaves us with two facets p and t. In contrast, consider the
extensions accepting (containing) the argument “sweet”. This
results in one stable extension {w,m, p} and hence no facets.
Accepting the argument w eliminates any uncertainty, whereas
rejecting w does not. Consequently, we consider accepting

“sweet” to be more significant than rejecting “sweet”.
While the computational complexity of credulous and skep-

tical reasoning is well studied [Dvořák, 2012], we ask for the
concrete complexity of facets and whether counting facets
provides a theoretical benefit over projected counting and pro-
jected enumerating extensions.
Contributions. In more details, we establish the following.

1. We introduce facets to abstract argumentation as a rea-
soning tool for significance and filtering extensions in
a directed way. By this, we fill a gap in the literature
between quantitative and qualitative reasoning.

2. We present a comprehensive complexity analysis for vari-
ous qualitative and quantitative problems involving facets.
Table 1 provides an overview on our results.

3. Finally, we present experiments that demonstrate the fea-
sibility of our framework. We evaluate our implementa-
tion on instances of the ICCMA competition.

Related Work. The computational complexity in abstract ar-
gumentation is well understood for decision problems [Dunne
and Bench-Capon, 2002; Dvořák and Woltran, 2010; Dvořák,
2012], parameterized complexity involving treewidth [Fichte
et al., 2021a], for (projected) counting [Fichte et al., 2024] as
well as for fine-grained reasoning based on counting [Fichte
et al., 2023a]. The decision complexity ranges from P to
ΣP

2 for credulous reasoning, and from P to ΠP
2 for skep-

tical reasoning. The complexity of counting extensions
ranges between #P and # · coNP depending on the seman-
tics. In theory, we know that PH ⊆ P#·P [Toda, 1991]
where

⋃
k∈N ∆P

k = PH and NP ⊆ ∆P
2 = PNP [Stock-

meyer, 1976]. This renders counting extensions theoretically
significantly harder. Approximate counting is in fact eas-
ier, i.e., approx-#·P ⊆ BPPNP ⊆ ΣP

3 [Lautemann, 1983;

Problems/σ σ1 σ2 σ3

ISFACETσ P R3 NP T5 ΣP
2

T5/7

FACETS≥kσ P T8 NP T11 ΣP
2

T12

FACETS≤kσ P T8 coNP T15 ΠP
2

T15

FACETS=kσ P T16 DP T17 ∈ DP2
T18

Sσ[F, ℓ] “∈ P” T16 “∈ ∆P
2” T21 “∈ ∆P

3” T21

Table 1: Overview of our complexity results for the semantics σ1 ∈
{conf, naiv}, σ2 ∈ {adm, stab, comp}, and σ3 ∈ {pref, semiSt,
stag}. All results depict completeness except for P-cases or when
stated o/w. ISFACETσ asks whether a given argument is a facet;
FACETS·k

σ asks whether there are at least (≥ k), at most (≤ k),
or exactly (= k) facets. Sσ[F, ℓ] asks what the significance of ap-
proving (ℓ = a) or disapproving (ℓ = ā) of a σ-facet a in AF F
is. Superscripts behind the complexity classes refer to Remark (R)
and Theorem (T), with the proof. “∈ ∆P

i ” slightly abuses notation
meaning that it can be computed by a deterministic polynomial-time
Turing machine with access to a ΣP

i−1 oracle.

Sipser, 1983; Stockmeyer, 1983], but turns out to be still
harder than counting facets. Facets were initially proposed
for answer-set programming (ASP) by Alrabbaa et al. [2018]
as a tool to navigate large solution spaces. Their computa-
tional complexity has been systematically classified [Rusovac
et al., 2024]. ASP is a popular problem solving paradigm to
model and solve hard combinatorial problems in form of a
logic program that expresses constraints [Gebser et al., 2012].
Plausibility reasoning has been developed for ASP based on
full counting [Fichte et al., 2022a]. Dachselt et al. [2022]
developed a tool to navigate argumentation frameworks using
ASP-facets. Note that ASP-navigation is based on forbidding
or enforcing atoms in programs via integrity constraints. In
contrast, argumentation facets enable approving or disapprov-
ing arguments, while not necessarily removing the extensions
entirely leading to a natural notion of significance of an ar-
gument (see Section 4). Finally, our complexity analysis (Ta-
ble 1) indicates a computational gain for reasoning with facets
compared to separately asking credulous/skeptical reasoning
in each case (see e.g., [Dvorák and Dunne, 2017]). Facets have
recently also been applied to planning [Speck et al., 2025].

Proofs of statements marked with (⋆) can be found in [Fichte et al., 2025].

2 Preliminaries
We assume familiarity with computational complexity [Pip-
penger, 1997], graph theory [Bondy and Murty, 2008], and
Boolean logic [Biere et al., 2021].

Complexity Classes. We use standard notation for basic
complexity classes and for example write P (NP) for the
class of decision problems solvable in (non-deterministic)
polynomial time. Additionally, we let coNP be the class
of decision problems whose complement is in NP, and let
DP be the class of decision problems representable as the
intersection of a problem in NP and a problem in coNP.
On top, we use more classes from the polynomial hier-
archy [Stockmeyer and Meyer, 1973; Stockmeyer, 1976;
Wrathall, 1976], ∆P

0 := ΠP
0 := ΣP

0 := P and ∆P
i := PΣP

i−1 ,
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ΣP
i := NPΣP

i−1 , and ΠP
i := coNPΣP

i−1 for i > 0 where CD
is the class C of decision problems augmented by an oracle
for some complete problem in class D. Recall that PH :=⋃
i∈N ∆P

i
[Stockmeyer, 1976]. The canonical NP-complete

problem is the Boolean satisfiability problem for formulas
in conjunctive normal form (CNF), i.e., given φ :=

∧m
i=1 Ci

where eachCi is a clause, decide whether φ admits at least one
satisfying assignment. For coNP the corresponding problem is
simply to check unsatisfiability, and for DP to check whether
φ is satisfiable and ψ unsatisfiable for a given pair of formu-
las (φ,ψ) (the SAT-UNSAT problem). The complexity class
DPk is defined as DPk := {L1 ∩ L2 | L1 ∈ ΣP

k, L2 ∈ ΠP
k},

DP=DP1 [Lohrey and Rosowski, 2023]. For ΠP
2 we may

e.g. consider the evaluation problem for a quantified Boolean
formula of the form ∀X∃Y.φ where X and Y are two disjoint
sets of variables and φ a formula in CNF over X and Y . For
ΣP

2 the problem is instead to check that ∀X∃Y.φ is false.
Abstract Argumentation. We use Dung’s argumentation
framework (1995) and consider only non-empty and finite sets
of arguments A. An (argumentation) framework (AF) is a
directed graph F = (A,R), where A is a set of arguments
and R ⊆ A×A, consisting of pairs of arguments representing
direct attacks between them. An argument a ∈ E, is called de-
fended by E in F if for every (a′, a) ∈ R, there exists a′′ ∈ E
such that (a′′, a′) ∈ R. The family defF (E) is defined by
defF (E) := { a | a ∈ A, a is defended by E in F }. In
abstract argumentation, one strives for computing so-called
extensions, which are subsets E ⊆ A of the arguments that
have certain properties. The set E of arguments is called
conflict-free in E if (E × E) ∩R = ∅; E is admissible in F
if (1) E is conflict-free in F , and (2) every a ∈ E is defended
by E in F . Let E+

R := E ∪ { a | (b, a) ∈ R, b ∈ E } and
E be conflict-free. Then, E is (1) naive in F if no E′ ⊃ E
exists that is conflict-free in F , and (2) stage in F if there is
no conflict-free set E′ ⊆ A in F with E+

R ⊊ (E′)+R. An
admissible set E is (1) complete in F if defF (E) = E;
(2) preferred in F , if no E′ ⊃ E exists that is admissible
in F ; (3) semi-stable in F if no admissible set E′ ⊆ A
in F with E+

R ⊊ (E′)+R exists; and (4) stable in F if ev-
ery a ∈ A \ E is attacked by some a′ ∈ E. For a seman-
tics σ ∈ {conf, naiv, adm, comp, stab, pref, semiSt, stag},
we write σ(F ) for the set of all extensions of semantics σ
in F . Let F = (A,R) be an AF. Then, the problem EXISTσ
asks if σ(F ) ̸= ∅. The problems cσ and sσ question for a∈A,
whether a is in some E ∈ σ(F ) (“credulously accepted”) or
every E ∈ σ(F ) (“skeptically accepted”), respectively. We let
Cσ (resp., Sσ) denote the set of all credulously (skeptically)
accepted arguments under semantics σ.

3 Facet Reasoning
Central reasoning problems in argumentation include deciding
whether an argument is credulously (or skeptically) accepted.
In the following, we will see how the problem of deciding
facets can be seen as a generalization of these two modes.

We begin by defining reasoning problems pertaining to
facets in argumentation. Intuitively, a σ-facet is an argument
which is accepted in some, but not all σ-extensions for the
considered semantics σ. Formally, given a semantics σ, then

an argument a is a σ-facet if a ∈ Cσ \ Sσ . Given an AF F and
semantics σ, then Fσ(F ) denotes the set of all σ-facets in F
In this work, we consider the following reasoning problems
parameterized by a semantics σ.

• The problem ISFACETσ asks, given an AF F = (A,R)
and an argument a ∈ A, is a a σ-facet in F ?

• The problems FACETS=kσ , FACETS≥kσ and FACETS≤kσ
has an integer k as an additional input, and ask whether
an input F = (A,R) has exactly, at least, or at most k
σ-facets, respectively.

We continue by analyzing the complexity of these prob-
lems, beginning with ISFACETσ in Section 3.1, FACETS≥kσ
and FACETS≤kσ in Section 3.2, and complete the study with
FACETS=kσ in Section 3.3.

3.1 Complexity of Deciding Facets
Regarding the complexity classification, for conflict-free and
naive semantics, the problem ISFACET is rather straightfor-
ward to classify. To see this, for conf, each argument not
attacking itself is a facet (provided there are at least two such
arguments in the AF), and for naiv, one additionally has to
remove each argument not in conflict with any other argument
since it can not be a facet.
Remark 3. ISFACETσ is in P for σ ∈ {conf, naiv}.

For the remaining semantics, we get hardness by observing
that ISFACETσ is as hard as the credulous reasoning (cσ) for
each considered semantics σ.
Lemma 4. Let σ be any semantics. Then cσ ≤P

m ISFACETσ .

Proof. We provide a polynomial time many-one reduction
from cσ to ISFACETσ for each semantics σ as follows. Let
F = (A,R) be an AF, and a ∈ A be an argument. Our
reduction yields an AF F ′ where we duplicate the argument
a which has all the incoming and outgoing attacks similar to
a ∈ A. Precisely, F ′ = (A′, R′) is as follows:

• A′ := A ∪ {a′} for a fresh a′ ̸∈ A,
• R′ := R ∪ {(a, a′), (a′, a)} ∪ {(a′, x) | (a, x) ∈ R} ∪
{(x, a′) | (x, a) ∈ R}.

Then, for any semantics σ, the argument a is credulously
accepted under σ in F iff a is a facet under σ in F ′. Indeed,
let a be credulously accepted, then there is a σ-extension
E ⊆ A such that a ∈ E. Since a defends itself against a′
in F ′, we have that a is also credulously accepted in F ′ as
the other attacks remain the same. Finally, a can not be in all
σ-extensions E in F ′, as E \ {a} ∪ {a′} is also a σ-extension.
Therefore the claim follows.

We specifically obtain the following characterization.
Theorem 5. ISFACETσ is NP-complete for σ ∈
{adm, comp, stab} and ΣP

2 -complete for σ ∈ {semiSt, stag}.

Proof. The hardness in each case follows due to Lemma 4 and
the complexity for credulous reasoning under corresponding
semantics.

The membership follows, since one can guess two σ-
extensions for an input F , one containing the argument
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in the question, and another without it. The verifica-
tion (of σ-extensions) requires (1) polynomial time for
σ ∈ {adm, comp, stab}, and (2) coNP-oracle for σ ∈
{semiSt, stag}. This establishes the membership results.

The following observation is necessary to establish the hard-
ness proof in Theorem 7. Let Φ = ∀X∃Y.φ be a QBF in-
stance, where φ :=

∧n
i=1 Ci is a CNF. If φ is not satisfiable,

the formula Φ can not be true. Whereas, the problem to check
whetherφ is satisfiable, is NP-complete. GivenΦ, one can con-
struct a new formula Φ′ = ∀X ′∃Y.φ′ such that φ′ is satisfiable
and Φ is true iff Φ′ is true. To this aim, we let X ′ = X ∪ {z}
for a fresh variable z ̸∈ X ∪ Y . Then φ′ :=

∧
C∈φ(¬z ∨ C).

Notice that Φ[z 7→ 0] is trivially true whereas Φ[z 7→ 1] is true
iff Φ is true. Consequently, we have the following observation.

Remark 6. Given a QBF instance Φ = ∀X∃Y.φ, where φ is
a CNF. One can assume w.l.o.g. that φ is satisfiable.

Next, we establish that ISFACETpref is ΣP
2 -complete. No-

tice that this case is not covered by Theorem 5 as the credulous
reasoning for preferred semantics (cpref ) is only NP-complete.

Theorem 7. ISFACETpref is ΣP
2 -complete.

Proof. The membership follows since one can guess two pre-
ferred extensions for an input F , one containing the argument
in the question, and another without it. The verification of
pref-extensions requires an NP-oracle. This establishes the
mentioned membership results.

For hardness, we utilize the following reduction proving
ΠP

2-hardness of skeptical acceptance with preferred seman-
tics [Dvorák and Dunne, 2017, Reduction 3.7]. Given a QBF
Φ = ∀Y ∃Z.φ where φ :=

∧m
i=1 Ci is a CNF-formula with

clauses Ci over variables X = Y ∪ Z. We construct an AF
FΦ = (A,R), where A = {φ, φ̄} ∪ {C1, . . . , Cm} ∪X ∪ X̄ .
The relation R includes the following attacks:

{ (Ci, φ) | 1 ≤ i ≤ m }∪
{ (x,Ci) | x ∈ Ci } ∪ { (x̄, Ci) | x̄ ∈ Ci }∪
{ (x, x̄), (x̄, x) | x ∈ var(φ) }∪
{(φ, φ̄), (φ̄, φ)} ∪ {(φ̄, z), (φ̄, z̄) | z ∈ Z}.

Then, it holds that there is a preferred extension in FΦ not con-
taining the argument φ iff the formula Φ is false. Furthermore,
we have that φ is satisfiable. Therefore, there exists a preferred
extension S containing φ. Namely, S corresponds to a satisfy-
ing assignment θ for φ as S = {φ, ℓ | ℓ ∈ X ∪ X̄, θ(ℓ) = 1}.
As a result, φ is a pref-facet iff there is a preferred extension
S′ with φ ̸∈ S′ iff the formula Φ is false. This results in
ΣP

2 -hardness.

3.2 Atleast/Atmost k Facets Complexity
We begin by proving that for conflict-free and naive semantics,
one can count all the facets in polynomial time.

Theorem 8. FACETS≥kσ , FACETS≤kσ ∈ P, σ ∈ {conf, naiv}.

Proof. For conf, the AF F has at least k facets if F contains
at least k non self-conflicting arguments (without self-attacks).
For naiv, one additionally has to remove arguments (N ) not
in conflict with any other argument since those can not be a

facet. Thus, F has at least k naiv-facets if F \ N contains
at least k non self-conflicting arguments, where N includes
those arguments not participating in any attack.

The following reduction is essential for proving Lemma 10
which we utilize later in achieving certain lower bounds.

Definition 9 ([Dvorák and Dunne, 2017]). Let φ :=
∧m
i=1 Ci,

be a CNF-formula where each Ci is a clause. Consider the
AF Fφ = (A,R) constructed as follows:

A :={φ,C1, . . . , Cm} ∪ {x, x̄ | x ∈ var(φ)}
R :={ (Ci, φ) | i ≤ m } ∪ { (x, x̄), (x̄, x) | x ∈ var(φ) }

∪ { (x,Ci) | x ∈ Ci } ∪ { (x̄, Ci) | x̄ ∈ Ci }.

We call Fφ the argumentation framework of φ generated via
the standard translation.

It is known that φ is satisfiable iff the argument φ
is credulously accepted in Fφ under semantics σ ∈
{adm, comp, stab}. We next prove the following interme-
diate lemma. Essentially, the standard translation allows us
to characterize exactly the number of facets in Fφ based on
whether the formula φ is satisfiable or not.

Lemma 10 (⋆). Let φ be a CNF-formula involving m clauses
and n variables. Moreover, let Fφ be the AF of φ as depicted
in Definition 9 and let k = 2n+m+ 1. Then the following
statements are true for every σ ∈ {adm, comp, stab}.

1. φ is satisfiable iff Fφ admits exactly k σ-facets.

2. φ is not satisfiable iff Fφ admits exactly k − 1 σ-facets.

We continue with FACETS≥kσ and prove that it is either
NP-complete or ΣP

2 -complete depending on the choice of σ.

Theorem 11. FACETS≥kσ is NP-c., σ ∈ {adm, stab, comp}.

Proof. For membership, we guess k distinct arguments
{a1, . . . , ak}, and simultaneously 2k σ-extensions
P1, . . . , Pk, N1, . . . , Nk such that: ai ∈ Pi and ai ̸∈ Ni. The
verification that each S ∈ {Pi, Ni | i ≤ k} is a σ-extension
can be done in polynomial time. Then, F has at least k
σ-facets iff each argument in {ai | i ≤ k} is a σ-facet.

For hardness, we utilize Lemma 10. Indeed, φ is satisfiable
iff the AF Fφ has at least k facets where k = 2n+m+ 1 for
the formula φ with n variables and m clauses.

Theorem 12. FACETS≥kσ is ΣP
2 -c., σ ∈ {pref, semiSt, stag}.

Proof. For membership, we guess k distinct arguments
{a1, . . . , ak}, and simultaneously 2k σ-extensions
P1, . . . , Pk, N1, . . . , Nk such that: ai ∈ Pi and ai ̸∈ Ni. The
verification that each S ∈ {Pi, Ni | i ≤ k} is a σ-extension
can be done via an NP-oracle. Then, F has at least k σ-facets
iff each argument in {ai | i ≤ k} is a σ-facet. This yields
membership in NPNP (equivalently, ΣP

2 ).
For hardness, we reduce from ISFACETσ for σ ∈

{pref, semiSt, stag}. To this aim, let F = (A,R) be an
AF and a ∈ A be an argument in the question. Assume
that |A| = n. We let n − 1 additional copies of a and con-
sider the set Ca = {a1, . . . , an} of arguments where a1 = a
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and ai ̸∈ A are fresh arguments for i ≥ 2. Then, we con-
struct the AF F ′ = (A′, R′) where A′ = A ∪ Ca. The rela-
tion R′ consists of R and additionally the following attacks:
{(ai, x) | (a, x) ∈ R, i ≤ n} ∪ {(x, ai) | (x, a) ∈ R, i ≤ n}.
That is, F ′ simply copies the argument a together with all its
incoming and outgoing attacks for each of the n − 1 fresh
arguments.

We first prove that for a conflict-free (resp., admissible) set
S in F , adding arguments from Ca to S does not change its
conflict-freeness (admissibility) in F ′ as long as S contains a.

Claim 13. A set S ⊆ A containing a is conflict-free (resp.,
admissible) in F iff S ∪ Ca is conflict-free (admissible) in F ′.

Proof of Claim 13. We prove the case for conflict-freeness,
the case for admissible semantics follows analogously. If S
is not conflict-free in F then S is also not conflict-free in F ′

since R ⊆ R′.
Conversely, suppose S is conflict-free in F . Suppose to the

contrary, there exists x, y ∈ S ∪ Ca such that (x, y) ∈ R′.
Recall that Ca is conflict-free in F ′ by definition and S is
conflict-free in F ′ \ Ca. Then, it must be the case that x ∈ S
and y ∈ Ca (or vise versa). But this leads to a contradiction
to the conflict-freeness of S since a ∈ S and (x, ai) ∈ R′ iff
(x, a) ∈ R. Analogous case holds if x ∈ Ca and y ∈ S. Thus
S ∪ Ca is conflict-free in F ′.

Claim 14. The argument a is a σ-facet in F iff each argument
ai ∈ Ca is a σ-facet in F ′ for each σ ∈ {pref, semiSt, stag}.

Proof of Claim 14. Claim Proof. Suppose a is a σ-facet in F .
Then, there are σ-extensions S1, S2 in F such that a ∈ S1 and
a ̸∈ S2. Then, we prove that each argument in Ca belongs
to some, but not all σ-extensions of F ′. Notice first that S1

is not a σ-extension in F ′ for any σ ∈ {pref, semiSt, stag}.
This holds due to the arguments in Ca. Indeed, if S1 is a σ-
extension in F , then S1 ∪ {x | x ∈ Ca} is a counter-example
to S1 being σ-set in F ′ due to Claim 13.

SomeE: S1 ∪ Ca is a σ-extension containing each ai ∈ Ca
(again, due to Claim 13).

NotAllE: We prove that S2 is a σ-extension in F ′ and
ai ̸∈ S2 for each ai ∈ Ca. We prove the claim for preferred
semantics, other cases can be proven analogously. Since S2 is
a subset maximal admissible set in F and a ̸∈ S2, either S2 ∪
{a} is not conflict-free, or not admissible in F . Consequently,
either S2 ∪ {ai} is not conflict-free, or not admissible (by
Claim 13). Since A′ \ A = Ca, this proves that S2 is a
preferred set in F ′. Similar arguments (with Claim 13) yield
results for the remaining two semantics. As a result, each
ai ∈ Ca is a σ-facet since ai ̸∈ S2 for each ai ∈ Ca.

Conversely, suppose a is not a σ-facet in F . If a is not in
contained in any σ-extension of F , then no argument from Ca
can be in any σ-extension of F ′ (using the same argument as
in SomeE). Hence, no argument ai ∈ Ca is a σ-facet in F ′.
Similarly, if a belongs to every σ-extension of F , once again
we have that every ai ∈ Ca is contained in every σ-extension
in F ′ (due to NotAllE). This results once again in no argument
ai ∈ Ca being a σ-facet in F ′.

We next observe that the argument a is a σ-facet in F
iff the AF F ′ admits at least n σ-facets for each σ ∈

{pref, semiSt, stag}. Indeed, a is a σ-facet in F iff each
ai ∈ Ca is also a facet in F ′ due to Claim 14. Thus re-
sulting in at least n facets in F ′. In contrast, if a is not a facet
in F then no argument in ai ∈ Ca is a facet. Hence F ′ has at
most n− 1 facets.

It is worth remarking that the reduction from ISFACETσ
to FACETS≥kσ presented in the proof of Theorem 12 does not
work for admissible semantics. This holds since the converse
direction of Claim 14 ‘if a is not a facet in F then no argument
ai ∈ Ca is a facet in F ′’ is no longer true. Suppose a is not a
facet. Assume further that a belongs to all admissible sets and
there is at least one such set. Now, take any admissible set S
in F . Clearly, a ∈ S, however, S \{a}∪{ai} is admissible in
F ′ and does not contain a. This results in every ai ∈ Ca being
adm-facet in F ′. Consequently, a is not an admissible-facet
in F although each of its copy in F ′ is an admissible-facet.
Moreover, F ′ also admits at least n − 1 adm-facets in this
case, thus violating the proof from Theorem 12.

Theorem 15 (⋆). FACETS≤kσ is coNP-c., σ ∈
{adm, stab, comp}, whereas ΠP

2-c., σ ∈ {pref, semiSt,
stag}.

3.3 Exact k Facets
Perhaps unsurprisingly, FACETS=k also turns out to be easy
for conflict-free and naive semantics.
Theorem 16 (⋆). FACETS=kσ is in P for σ ∈ {conf, naiv}.

For σ ∈ {adm, stab, comp} the problem FACETS=kσ turns
out to be more interesting since it is complete for the compa-
rably esoteric class DP.

Theorem 17. FACETS=kσ is DP-c., σ ∈ {adm, stab, comp}.

Proof. The membership follows directly from
FACETS≥kσ (Thm. 11) and FACETS≤kσ (Thm. 15).

For hardness, we reduce from SAT-UNSAT. To this aim, we
utilize Lemma 10 for an instance (φ,ψ) of SAT-UNSAT. We
assume w.l.o.g. that φ and ψ do not share variables. Then,
φ is satisfiable and ψ is not satisfiable iff the AF Fφ has k1
facets and Fψ has k2−1 facets, where Fi is the corresponding
AF for i ∈ {φ,ψ} with ki arguments. However, there is a
small technical issue as the AF Fφ ∪ Fψ can not distinguish
the failure of the satisfaction of φ from that of ψ. Therefore,
we can not simply take the union Fφ ∪ Fψ and let the number
of facets be k1 + k2 − 1. Nevertheless, we duplicate the
argument φ in Fφ to yield the pair φ,φ′. Then Fφ includes
the additional attacks (φ,φ′), (φ′, φ) as well as (C,φ′) for
each C ∈ φ. The resulting AF Fφ has k1 + 1 arguments
and φ is satisfiable iff Fφ has k1 + 1 facets. Note that the
newly added argument φ′ is a σ-facet iff φ is σ-facet for each
σ ∈ {adm, comp, stab}. Then, the theorem follows since
(φ,ψ) is a positive instance of SAT-UNSAT iff φ is satisfiable
and ψ is not satisfiable iff Fφ ∪ Fψ has exactly (k1 + k2)
σ-facets for σ ∈ {adm, comp, stab}.

We conclude our complexity analysis by stating the non-
tight bounds for FACETS=kσ for the remaining semantics.

Theorem 18 (⋆). FACETS=kσ is in DP2 for σ ∈
{pref, semiSt, stag}.
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4 Significance
Our notion of significance adopts a decision-driven perspec-
tive. We define significance of arguments in terms of the
influence of a decision to eliminate the degree of freedom
(on choices of remaining arguments). While counting ap-
proaches assess the plausibility of arguments in terms of their
likelihood of being accepted, we measure how much the ac-
ceptance of an argument decreases freedom (or increases the
significance of the decision). Intuitively, a higher significance
score indicates that a specific decision does have a huge in-
fluence on the remaining facets. Furthermore, the number
of facets directly measures the amount of uncertainty in ex-
tensions. Consider an argument a (as an opinion or a view
point) and denote by ā the complement/negation of a. E.g.,
an argument is approved (a) versus not approved (ā). Then,
a facet ℓ ∈ {a, ā} can be seen as the uncertainty regarding a,
since a can either be included in, or be excluded from cer-
tain extensions. We next introduce the notion of approving
and disapproving an argument. Let F = (A,R) be an AF,
and σ be a semantics. Recall that σ(F ) denotes the collec-
tion of σ-extensions in F . Moreover, Cσ (resp., Sσ) denotes
the collection of credulously (skeptically) accepted arguments
in F under semantics σ. For an argument a, we let σa(F )
denote the σ-extensions in F approving the argument a. Pre-
cisely, we define σa(F ) = {E ∈ σ(F ) | a ∈ E}. Moreover,
σā(F ) = {E ∈ σ(F ) | a ̸∈ E} represents the σ-extensions in
F disapproving a. Now, let Caσ (resp., Saσ) be the arguments in
some (all) E ∈ σa(F ). Finally, Fa

σ (F ) denotes the σ-facets
by considering only extensions in σa(F ) (i.e., Caσ \ Saσ).

For an argument a ∈ A and ℓ ∈ {a, ā}, we denote ℓ̄ = ā if
ℓ = a and ℓ̄ = a for ℓ = ā. We say that ℓ is approved iff ℓ̄ is
disapproved. Approving a facet ℓ ∈ {a, ā} reduces the uncer-
tainty regarding the remaining arguments in A by restricting
the extensions space to sets (not) containing a. Further, ap-
proving ℓ can render a facet argument b ∈ A non-facet. This
holds since, either (C1) b ∈ E for each E ∈ σℓ(F ) but b ̸∈ E
for each E ∈ σ(F ), or (C2) b ̸∈ E for any E ∈ σℓ(F ) but
b ∈ E for some E ∈ σ(F ). Intuitively, we say that the uncer-
tainty of such an argument b has been resolved by approving
ℓ. Further, we say that approving ℓ results in the approval of b
in the case of (C1), and disapproval of b if (C2) is the case.

Notice that approving (or disapproving) an argument results
in fewer facets for every semantics σ. That is, the (dis)approval
of any argument can not generate new facets. Intuitively, we
have less uncertainty than before after we (dis)approve certain
arguments. Precisely, we have the following lemma.

Lemma 19. For any argument a ∈ A and semantics σ,
Fa
σ (F ) ⊆ Fσ(F ).
Let σ be a semantics, a ∈ A be a σ-facet and ℓ ∈ {a, ā}.

The observation that “ℓ reduces the uncertainty among remain-
ing arguments” leads to the notion of significance of ℓ under
semantics σ. For an AF F , we define:

Sσ[F, ℓ] :=
|Fσ(F )| −

∣∣∣Fℓ
σ(F )

∣∣∣
|Fσ(F )|

. (1)

Intuitively, approving an argument a is less significant if many
uncertain arguments (facets) remain in Fa

σ (F ). Similarly,

ℓ ∈ {w,m, t, s̄, b̄, p̄} {s, b, w̄, m̄} {p, t̄}∣∣∣Fℓ
stab(F )

∣∣∣ 0 2 4

Sstab[F, ℓ] 1 2
3

1
3

Table 2: Argument significance for the AF from Example 20.

disapproving a (and thus approving ā) is less significant if
many facets remain in F ā

σ (F ).
Example 20 (Arguments Significance). Reconsider the AF
F from Example 1 with stable extensions stab(F ) =
{{w,m, p}, {s, b, p}, {s, b, t}}. While Example 2 gave an in-
tuition of significance, Table 2 presents precise values for each
argument. As outlined, the argument w has score 1, and is
thus more significant than w̄ (score 2/3). The argument e not
being a stab-facet is excluded for significance reasoning.

4.1 Computing Significance for Arguments
Let F = (A,R) be an AF, σ be a semantics and a ∈ A
be an argument. Observe that the computation of Sσ[F, ℓ]
(Equation 1) requires counting facets in Fσ(F ) and Fℓ

σ(F ).
We argue that one can count the number of σ-facets in a
framework F = (A,R) without having to enumerate or count
all σ-extensions explicitly. In fact, Fσ(F ) can be computed by
asking ISFACETσ for each argument a ∈ A, which requires
|A|-many queries. Moreover, one can also count the exact
facets in Fℓ

σ(F ) without having to explicitly identify all σℓ-
extensions. Observe that Fℓ

σ(F ) corresponds to the result of
remaining facets after approving ℓ.
Theorem 21. Let σ be a semantics and F = (A,R) be an AF.
For every a ∈ A and ℓ ∈ {a, ā} the sets Fσ(F ) and Fℓ

σ(F )
can be computed by a deterministic polynomial-time Turing
machine with access to

• an NP oracle for σ ∈ {adm, comp, stab}.

• a ΣP
2 oracle, for σ ∈ {pref, semiSt, stag}.

Proof. Given an AF F = (A,R), semantics σ and argument
a ∈ A. To compute Fσ(F ), we consider the following proce-
dure. For each b ∈ A:

1. Guess two sets E1, E2 ⊆ A,
2. Check that b ∈ E1, b ̸∈ E2,
3. Check that Ei ∈ σ(F ),
4. Answer “Yes” if each check is passed in Step 2− 3.

This procedure is repeated polynomially-many times (pre-
cisely |A|-many times). As a post-processing, count the num-
ber of arguments b ∈ A, for which Step-4 answers “Yes”. The
2nd step requires non-determinstic guesses, whereas the 3rd
step needs (1) P for σ ∈ {adm, comp, stab} and (2) coNP,
for σ ∈ {pref, semiSt, stag}. Step-4 is again a final post-
processing. As a result, the procedure overall runs in the men-
tioned runtime for corresponding semantics. That is, P-time
with an NP oracle for σ ∈ {adm, comp, stab} and ΣP

2 -oracle,
for σ ∈ {pref, semiSt, stag}.

To compute Fℓ
σ(F ), we additionally include the following

check to the Step-2 in the above procedure.
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2a. Check that a ∈ E1, a ∈ E2 if ℓ = a, and check a ̸∈ E1,
a ̸∈ E2 if ℓ = ā.

This does not increase runtime, and completes the proof.

Observe that one can not expect to lower the runtime in The-
orem 21 (e.g., to NP in the case of σ ∈ {adm, comp, stab}).
Intuitively, although each step (Step 1− 4 in the proof of The-
orem 21) requires NP-time, the final post-processing needs
counting the number of arguments for which each check is
passed. In fact, this would contradict Theorem 17 (unless
NP = DP) since one can count all facets in an AF and deter-
mine whether this number equals k.

5 Implementation and Experiments
Implementation We implemented counting of extensions
and facets for various semantics into our tool called frame
(Facets for Reasoning and Analyzing Meaningful Exten-
sions). We build on the Aspartix system, an ASP-based
argumentation system for Dung style abstract argumenta-
tion and extensions thereof [Egly et al., 2008]. We employ
Aspartix’s ASP encoding and take the ASP solver clingo
version 5.7.1 [Gebser et al., 2012] to compute credulous and
skeptical consequences and take set differences. We lever-
age ASP as the solvers have native support for enumerating
consequences without exhaustive enumeration of all answer-
sets [Alviano et al., 2023; Gebser et al., 2009].
Design and Expectations. We ran our experiments on a
Ubuntu 11.4.0 Linux 5.15 computer with an eight core Intel
i7-14700 CPU 1.5 GHz machine with 64GB of RAM. Each
run is executed exclusively on the system. To illustrate that we
can count facets on practical instances and obtain insights over
counting, we take the admissible, stable semantics, and semi-
stable semantics over instances from the 3rd International
Competition on Computational Models of Argumentation (IC-
CMA’19) [Bistarelli et al., 2019]. This gives us 326 different
argumentation frameworks of varying sizes in the range of 0
to 10.000 arguments with an average of 800.3 arguments and
a median of 160.0 arguments. We take admissible, stable, and
semi-stable semantics as representative from each different
level of hardness (see Table 1). We take the 2019 competition
as instances are of reasonable size, runtime, number for the
scope of this experiment, and we can use input instances with-
out further modification. We limit the runtime on each instance
to 60 seconds for sustainability reasons, as differences become
visible already with the limitation, and as a user might not
want to wait long when investigating search spaces. We collect
the number of extensions and facets and measure the solver
runtime. We have the following expectations: (i) computing
facets is faster than enumerating extensions, (ii) facets are still
accessible when the number of extensions is very high and
enumeration takes longer runtime, (iii) even when there are
many extensions, there are reasonably small number of facets.

Observations and Summary. Table 3 presents a survey
of our results. Details on the evaluation are available in the
supplemental data. We see that the number of admissible ex-
tensions can be larger than 106 and clingo fails to enumerate
all extensions (⋆) if the number of extensions is very high. For

σ n I #e #f te tf

adm⋆ 128 [106, ·) †189.0 · 106 165.1 61.0 0.5
adm 11 [106, ·) 27.1 · 106 40.6 6.2 1.3
adm 187 (0, 106) 29.4 · 103 266.7 0.8 1.4
stab⋆ 1 (0, 106) †3.0 · 100 — 61.0 61.0
stab ‡310 (0, 106) 36.0 · 100 43.1 0.7 0.8
stab 14 [0, 0] 0.0 · 100 0.0 1.4 1.2
semiSt⋆ 9 (0, 106) †43.8 · 100 79.9 61.0 49.4
semiSt 177 (0, 106) 50.9 · 100 33.9 3.7 2.1
semiSt⋆ 140 [0, 0] †0.0 · 100 — 61.0 —

Table 3: Overview of results on enumerating extensions and com-
puting facets for semantics σ ∈ {adm, semiSt, stab} where ⋆ marks
timeouts (in order to distinguish the cases with/without timeout on
enumerating extensions) and the columns contain the total number n
of argumentation frameworks with the interval I = [a, b) referring
to a ≤ #e < b; the average number #e and #f of extensions/facets;
the average runtime te and tf for enumerating extensions (e) / com-
puting facets (f). The symbol † illustrates that there is only a lower
bound as computation did not finish. We excluded one instance (‡)
due to timeout when computing credulous/skeptical extensions.

the admissible extensions, we observe that even if the num-
ber of extensions is quite high, the number of facets remains
reasonably small making it interesting to diversify extensions,
or investigate more details about those arguments, which still
allow flexibility. The observations confirm our expectations
for the admissible semantics. However, we gain only limited
insights for the semantics stab and semiSt. Here the number
of extensions is fairly low and the solver either manages to
enumerate all extensions, or already fails to solve one.

6 Conclusion
We defined a new perspective on exploring significance of
arguments in extensions of an abstract argumentation frame-
work. We present a comprehensive complexity analysis. We
establish that the complexity of deciding whether the number
of facets is exactly k ranges between P and DP2, including
tight lower bounds for most cases (see Table 1). While our
primary focus lies on establishing a comprehensive complexity
picture, our implementation allows computing the number of
facets practically building on top of existing solvers.

For future work, we plan to investigate techniques whether
significance originating from facets can be extended to ar-
guments depending on each other and notions of fairness in
argumentation frameworks. We also believe that the miss-
ing case for σ ∈ {pref, semiSt, stag} remains interesting to
study. We expect that the problem is also hard, as the de-
cision problems for at least and at most are ΣP

2 - and ΠP
2-

complete. From a practical perspective, we believe that it
would be interesting to integrate facet-based reasoning and sig-
nificance computation into modern SAT-based argumentation
solvers. Moreover, investigating facets for other formalisms
such abductive reasoning [Mahmood et al., 2020] or default
logic [Fichte et al., 2022b] seems interesting as well as closing
the gap to the topic of inconsistencies [Fichte et al., 2021b;
Fichte et al., 2023b].
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