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Abstract

Molecular Relational Learning (MRL) aims to
understand interactions between molecular pairs,
playing a critical role in advancing biochemical re-
search. Recently, Large Language Models (LLMs),
with their extensive knowledge bases and advanced
reasoning capabilities, have emerged as powerful
tools for MRL. However, existing LLMs, which
primarily rely on SMILES strings and molecular
graphs, face two major challenges. Firstly, they
struggle to capture molecular stereochemistry and
dynamics, as molecules possess multiple 3D con-
formations with varying reactivity and dynamic
transformation relationships that are essential for
accurately predicting molecular interactions but
cannot be effectively represented by 1D SMILES
or 2D molecular graphs. Secondly, these mod-
els do not consider the autoregressive nature of
LLMs, overlooking the impact of input order on
model performance. To address these issues, we
propose a Dynamic relationship capture and self-
adaptive Ordering 3D molecular Conformation
LM for MRL, termed as DO-CoLM. By introduc-
ing modules to dynamically model intra-molecular
and inter-molecular conformational relationships
and adaptively adjust the molecular modality input
order, DO-CoLM achieves superior performance
on 12 cross-domain datasets.

1 Introduction

Molecular Relationship Learning (MRL) aims to understand
interactions between molecular pairs, a critical topic with ap-
plications in drug discovery and materials science. For ex-
ample, drug-drug interactions (DDIs) are vital in pharmacol-
ogy and drug development, while solute-solvent interactions
(SSIs) play a key role in solution chemistry and chemical pro-
cess design. However, validating these interactions experi-
mentally is time-intensive and costly.

Large Language Models (LLMs), with their vast knowl-
edge base and advanced reasoning capabilities, offer a
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Figure 1: A molecule can have multiple conformations with mu-
tual interconversion relationships [Skjerven er al., 2011] and the
actual molecular interactions are determined by the specific confor-
mations [Mortier et al., 2015].

promising solution [Taylor ef al., 2022a]. Models like Reac-
tionT5 [Sagawa and Kojima, 2023] and MolTC [Fang e al.,
2024] extend LLMs to MRL by leveraging multimodal data,
including molecular graphs (2D), chemical properties, and
SMILES (1D), for accurate interaction predictions. Despite
their potential, these models face unexplored challenges:

Lack of the molecular stereochemistry and dynamics.
Existing LLMs primarily rely on SMILES strings and molec-
ular graphs for predicting molecular interactions [Fang et
al., 2024; Sagawa and Kojima, 2023], but these 1D and
2D representations fail to capture the 3D information of
molecules [Liu et al, 2023] and the dynamic nature of
molecular conformations during chemical reactions [Morris
et al., 2019]. Essential properties such as stereochemistry
(including chirality and stereoisomerism) and molecular dy-
namics [Andrade et al., 2009] are crucial for understand-
ing molecular interactions and predicting reaction mecha-
nisms [Alonso et al., 2006]. On the one hand, as shown in
Figure 1, a molecule has multiple conformations that con-
tinuously interconvert [Skjerven er al., 2011]; on the other
hand, the interaction between two molecules occurs through
the interaction of their specific conformations, determined by
their 3D structures [Mortier et al., 2015], such as the binding
of small-molecule and target proteins [Wu ef al., 2022].
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Figure 2: Swapping the molecular input order leads to different pre-
dictions and MolTC'’s results for DDI tasks (Normal) compared to
when the SMILES order is swapped (Reverse).

Ignorance of the influence of input order. The per-
formance of LLM is naturally influenced by the input se-
quence [Berglund et al., 2023], which can have catastrophic
consequences in certain MRL tasks. For instance, in DDI
tasks, the SMILES order of input molecules should exhibit
symmetry, meaning that swapping the SMILES input order
should not affect the model’s prediction results. However, as
shown in Figure 2, swapping the input SMILES order causes
the model to produce different predictions, leading to a de-
crease in MolTC’s performance, with accuracy dropping by
11.58% on the Drugbank dataset, 9.24% on the ZhangDDI
dataset, 12.81% on the ChChMiner dataset, and 9.08% on
the DeepDDI dataset. Recent studies have highlighted this
issue [Berglund er al., 20231, which is attributed to the au-
toregressive training paradigm typically employed by LLMs,
leading the model to treat input order as a feature. This can
be helpful in some tasks, such as SSI tasks, but it should not
affect model performance in symmetric tasks. Notably, in
addition to the overall SMILES order, the internal order of
molecular tokens also could affect the model’s performance.

Considering the above issues, we propose DO-CoLM: a
Dynamic relationship capture and self-adaptive Ordering 3D
molecular Conformation LM for MRL. Specifically, we de-
sign the Dynamic Conformational Relationship Capture
Module (DCRCM), to address the lack of molecular stere-
ochemistry and dynamics. This module models both in-
tramolecular conformation transformation and intermolec-
ular conformation interaction relationships using heteroge-
neous graphs based on conformational information. Ad-
ditionally, we introduce the Adaptive Order Adjustment
Module (AOAM), which ensures the model’s robustness to
perturbations in symmetric input orders and allows it to adap-
tively find the optimal sequence for asymmetric input orders
from the model’s perspective.

The main contributions of this paper could be summarized
as follows:

* Given the current limitations of LLM in adequately consid-
ering molecular 3D information and dynamics, and the ne-

glect of input order in MRL tasks, we propose DO-CoLM,
a multimodal framework that adaptively integrates confor-
mational information and accommodates molecular order.

* DO-CoLM enables dynamic learning of relationships be-
tween molecular conformations by constructing a hetero-
geneous graph and adaptively selecting the optimal confor-
mation order, thereby achieving comprehensive molecular
information capture and tolerance to molecular encoder to-
kens variations.

* The superiority of DO-CoLM is empirically validated
through extensive experiments across 12 datasets from var-
ious domains, including DDI, CSI, and SSI tasks. These
results demonstrate that our approach significantly outper-
forms existing methods.

2 Related Work

2.1 Molecular Relational Learning

Early research primarily relied on graph neural networks
(GNNp) to construct predictive frameworks for MRL [Du et
al., ; Fu et al., 2020; Sizhe Liu et al., 2024]. For instance,
Nyamabo et al. proposed a substructure-substructure interac-
tion framework [Zhong ef al., 20241, which utilizes graph at-
tention network (GAT) layers for substructure extraction and
a co-attention layer to model interactions between different
substructures. To further capture molecular interactions, Lee
et al. [Lee et al., 2023] introduced the Conditional Graph In-
formation Bottleneck (CGIB) model, inspired by the infor-
mation bottleneck theory. However, their models lack prior
knowledge and fail to leverage the advantages of LLM:s.

2.2 LLMs in the Molecular Domain

LLMs have been widely applied in the molecular do-
main [Zheng et al., 2025; Jablonka et al., 2024]. In 1D,
model like MolT5 [Edwards et al., 2022] tokenizes SMILES
strings; in 2D, methods such as Text2Mol [Edwards er al.,
2021], MolCA [Liu er al., 2023], and DrugChat [Liang et
al., 2023] combine molecular graphs with LLMs; and in
3D, MolLM [Tang et al., 2024] and 3D-MoLM [Li et al.,
2024] capture spatial features using attention and 3D en-
coders. Multimodal models like ReactionT5 [Sagawa and
Kojima, 2023] and MolTC [Fang et al., 2024] integrate 1D,
2D, and chemical property data for prediction. However,
most existing work focuses on single molecules or 1D and
2D data, overlooking the role of 3D conformations in MRL.

2.3 Input Order

Previous studies show that input sequence order significantly
affects model performance. For instance, the improved
Seq2Seq model [Vinyals er al., 2015] reveals that even un-
ordered data can benefit from an optimal input order. Point-
Net [Qi et al., 2017] mitigates order sensitivity using sym-
metry functions. Work on the reversal curse [Berglund et
al., 2023] and inter-modal order [Tan et al., 2024] further
highlights order’s impact in LMs. However, most focus on
single-modal inputs or coarse inter-modal order, neglecting
fine-grained token-level order across modalities.
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Figure 3: The architecture of DO-CoLM. (a) is to encode 3D molecular conformations and dynamically model their relationships. (b) is
designed to adaptively adjust the input order and perform modality alignment to generate the output.

3  Our Proposed Model: DO-CoLM

In this section, we present the architecture of DO-CoLM.
As shown in Figure 3, DO-CoLM consists of five key steps.
First, the 3D Encoder is used to obtain molecular conformer
feature embeddings. Next, the DCRCM dynamically mod-
els the intramolecular and intermolecular conformational re-
lationships. Then, the AOAM adaptively adjusts the input
order based on the asymmetry of the input data to optimize
the model’s performance. Afterward, the Alignment module
ensures seamless integration by aligning molecular modal-
ity data with textual data. Finally, the LLM generates the
model’s output based on the processed information.

3.1 Conformer Encoder

LetC* = [C{,...,C Jand C* = [CY,...,C] ] represent the
conformer pairs for molecule a and molecule b, where C{
and Cf are the ¢-th conformations, n, and n; are the num-
ber of conformations for each molecule. We leverage Uni-
Mol [Zhou et al., 2023], a powerful 3D molecular feature
encoder f, along with attention pooling p, to capture the em-
beddings of conformer pairs.

V@ =[v],vy,...,v, |, where vi = p(f(C')),

V= [oh, b, .. 0h ], where of = p(£(C)), (1)

where V@ and V? represent the sets of conformation feature
embeddings for the two molecules.

3.2 Dynamic Conformational Relationship
Capture Module

Due to the dynamic nature of molecular conformations, ac-
curately modeling the transitions and interactions of molecu-
lar conformations requires complex simulations and exper-
iments. Therefore, a conformation transition relationship

graph based on predefined structures is not feasible. To ad-
dress this, we propose the DCRCM, which allows the model
to dynamically model intramolecular transitions and inter-
molecular interactions.

We define this relationship as the Heterogeneous Molec-
ular Conformation Interaction Graph (HMCG). The HMCG
is represented by Gumcg = (V,E,A, T, R), where V =
VU V? is the set of conformer nodes, £ is the edge set with
three types: intra-molecular edges within a, intra-molecular
edges within b, and inter-molecular edges between a and b.
A is the adjacency matrix representing node connectivity, T
denotes node types, and R denotes edge types.

To model the intra-molecular conformation transformation
edges Einya, We first obtain Ay, through the following algo-
rithm, taking molecule a as an example.

A?ntra =01 (02 (U(ll (US)T) — 02 (U[QL (Urll)T»

= 01(02(1 V4 (02VH)T) — ag(tﬂ)ﬂva(f)lva)T)),2
2
where U{ represents the representation learning for the intra-
molecular conformation as the source node, and U as the
target node, ¢; and A, represent the learnable vectors for
learning the source and target nodes, respectively, and o1 and
o9 are the activation functions. Such an operation ensures
that the generated graph is a directed and asymmetric graph.
To reduce the complexity of the graph, we perform a spar-
sification operation on it.
idx, idy = argtopk(Aj.[:,:]) idx # idy,

Al [—idx, —idy] = 0, 3)
where argtopk(-) returns the indices of the most likely confor-
mation nodes for transformation. The weights of other edges
are set to 0. For the conformation transformation edges in

: 2 Ab
molecule b, we adopt the same approach to obtain A}, ..
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Since the inter-molecular conformation interaction is sym-
metric, we use a bidirectional graph to construct the inter-
molecular conformation interaction edges Ejner- The algo-
rithm to obtain the adjacency matrix Ajn., representing the
edges is as follows:

Ainter =01 (02 (Ua (U[))T))

= 01(02(0, V0, V")), )

where U® and U? represent the relationship representa-
tions of the source node and target node for the inter-
molecular conformation interaction, respectively. Here, we
use molecule a as the source node and molecule b as the tar-
get node, and ©, and O, are learnable vectors for learning the
relationship between the source node and the target node. Af-
ter applying the same sparsification operation as in Equation
(3), we obtain A,

After obtaining Gumcg through the above operation,
we aggregate the node information on the graph using
Attention(-) and Message(:). The specific computation
formula is as follows:

Attention(u, e, v)

= Softmax( || FIT(“) (hg_l))Wf(e)Fg(")(hgl—l)))7

VueN (v) i€[1,mn]

Message(u,e,v) = || Fg’(u)(hgfl))wg(e)’ (5)

i€[1,np]
where N (v) represents the set of nodes connected to node
v, F7(®) denotes a fully connected layer with parameters
{WT®) b7 p(e) represents the type of edge, || repre-
sents the concatenation operation, and n;, denotes the number
of attention heads. Then update the node information.

7%(}) = @ (Attention(u,e,v) - Message(u,e,v)),
VueN (v)
MY = Wi (o () + b7 Y, ©)

where @ represents the aggregation operation, hq(,l)
gregated feature representation of the conformation.

is an ag-

3.3 Adaptive Order Adjustment Module

Due to the sensitivity of large models to input order, different
input orders can significantly impact model performance. In
our model, in addition to the overall SMILES order, there is
also the internal order of nodes which also impacts the per-
formance of the model. For these two types of order, we have
designed different strategies to enable the model to achieve
optimal performance.

The overall order of SMILES. In the DDI task, there are
only two possible input molecular sequences: molecular a
followed by molecular b, and molecular b followed by molec-
ular a. These two sequences are symmetric and should not af-
fect the model’s experimental results. Therefore, we can use
a simple operation to enable the model to understand these
two different sequences, ensuring that the overall order of
the input molecules does not influence the model’s perfor-
mance. This can be achieved by randomly shuffling the input
sequence, allowing the model to focus solely on the molecular

information itself without considering the positional informa-
tion it carries.

The internal order of nodes. Gyyicg comprises n con-
former nodes in total, corresponding to n! possible sequences.
Achieving order invariance by enabling the model to simul-
taneously process all these sequences is nearly impossible.
Given that different sequences impact model performance to
varying degrees, we propose that an optimal sequence exists
from the model’s perspective, one that cannot be captured
through prior knowledge-based ordering. To address this, we
hypothesize that each conformer has an inherent priority and
allow the model to autonomously determine these priorities
and dynamically adjust them based on different situations,
thereby uncovering the optimal sequence in the model’s view.

We use a Learnable Sorting Network K(-) with a learnable
parameter for each conformation to allow the model to prior-
itize the node h;. Then we obtain the sorted order S, while
the initial order is S,.

Sp = argsort(K(h1), K(h2), ..., K(hn)), (1)

where n is the number of the conformers. Due to the non-
differentiability of argsort, we employed the Sinkhorn Oper-
ator [Cuturi, 2013] to dynamically update the sorting process.

Initially, we obtain the transport matrix Q.
i — Si|
€

)s (8)

where S¢ and Sg represent the position values of conformers
1 and j, € is a control factor. In the iterations, Q is updated as:

Q;; = exp(—

1 1
= —— — — 9
where K is the size of Q, which means the number of
rows and columns, u = 1g. The iterations stop when

A(vQ'u,1x/K) < 1. The max iteration number is depend
on e: typically, the smaller e, the larger the number is needed
to ensure that vQ " u is close to 15 /K. Then we obtain the
conformer representation Z by normalizing () and multiply-
ing with the conformation H.

Z = diag(u)Qdiag(v)H, (10)
where diag(-) means diagonal operation.

3.4 Alignment

After acquiring the multi-conformer representations Z, and
Zy, of molecule a and molecule b, the next step is to map
them into the backbone LLM’s hidden space using projectors
foroj1s foroj2» Where firoi1 and foropo share the same parameters.
These projectors act as critical connectors, translating Z, and
Zy, into LLM-comprehensible encodings M, and M.

We instantiate fproj1 and fyrop2 using trainable projection
matrices, which share the same dimensionality as the word
embedding space in the language model. More formally, the
encodings can be expressed as:

Ma = [mlll7 mga ceey mg] = fprOjl(Za)v

] = fuop(Zn), (11
where d denotes the feature dimensionality of the LLM
and m; represents the embedded representation of a single
aligned conformer.

b b
M, = [mj, mg, ...
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3.5 Backbone LLM

DO-CoLM uses Galactica;sp [Taylor et al, 2022b], a
decoder-only transformer based on the OPT framework,
trained on scientific literature, as its backbone. It excels in in-
terpreting molecular sequences. DO-CoLLM leverages Galac-
tica’s reasoning to analyze interactions between two molec-
ular sets and their information tokens. The prompt sequence
X is as follows:

X ={P,M,, M} = [z1,22,....,2,] st. P~P, (12)

where n denotes the total integrated input length, P repre-
sents the task-specific prompt, and P refers to a collection of
manually designed prompts, each specifically crafted for the
molecular interaction task r. The details of the prompt will
be discussed in Section 3.6. The generation process employs
a causal mask to produce a response that encapsulates the key
interactive properties, with a length of L:

'7§3L]7 (13)

The training objective is to predict the target response from
the input prompt X. Specifically, the output for the i-th token,
represented as &, is determined based on its preceding tokens
as follows for ¢t € (1, L):

X = [&1, &, ..

p (X[l:t]|x> = ﬁp (i’i|X’ X[mfu) ; (14)
i=1

3.6 Prompt

For different tasks related to molecular interactions, we have
designed distinct prompts. Here, SMILESI and SMILES? rep-
resents the SMILES notation, ConEmbl and ConEmb2 rep-
resents multiple conformer tokens M, and M. For DDI
tasks, the goal is to enable the LLM to leverage the confor-
mational information of the two input molecules. By doing
so, the LLM actively determines and provides an answer as
to whether there is an interaction between the two molecules,
drawing on their respective conformations to make judgment.

Prompt for DDI Tasks

<SMILES >, the information about
its conformers is <ConEmbl>.
<SMILES2>, the information about
its conformers is <ConEmb2>. Do
they have any side effects?

Input
Prompt

Considering the conformer informa-
tion of moleculel and the conformer
information of molecule2, there is a
side effect between molecule A and
molecule B.

Target
Response

For SSI tasks, where LLMs are less adept, we design a
prompt that encourages the model to consider molecular con-
formations during inference. Instead of a direct answer, the
model predicts a range of possible interaction outcomes based
on the conformations. It then synthesizes the data to estimate
a specific value within that range.

Prompt for SSI Tasks

<SMILES]>, the information about
its conformers is <ConEmbl>.
<SMILES2>, the information about
its conformers is <ConEmb2>.
What is the solvation Gibbs free en-
ergy of this pair of molecules?

Input
Prompt

Considering the conformation of
moleculel and molecule2, the sol-
vation Gibbs free energy of these
two molecules is above 2 . 5 and be-
low 3.0, so the accurate value is
2.768.

Target
Response

4 Eeperimental Results

4.1 Experimental Setting

We evaluate DO-CoLM on well-established downstream
molecule interaction tasks involving qualitative and quantita-
tive analysis. Here we provide a overview of our experimental
setup. Detailed descriptions are presented in the Appendix C.
Datasets. We employ 12 datasets across various domains
such as DDI, SSI, and CSI. Specifically, we collect Drugbank
(Version 5.0.3), ZhangDDI, ChChMiner, DeepDDI, TWO-
SIDES, Chromophore, MNSol, CompSol, Abraham, Combi-
Solv, FreeSolv, and CombiSolv-QM. Here, we process each
molecule using RDKit to obtaining several conformations for
each molecule. The hyperparameter experiment on the num-
ber of different conformations is shown in the Appendix E.
Here, 10 conformations are used in subsequent experiments.
Baselines. For a comprehensive evaluation, we conduct var-
ious baseline methods encompassing distinct categories such
as methods based on: GNNs, DL models other than GNN,
and LLMs. Specifically, for DDI task, we employ IGIB-ISE
[Zhang et al., 2025], MHCADDI [Deac et al., 20191, Deep-
DDI [Ryu et al., 2018], SSI-DDI, CGIB, CMRL, MDF-SA-
DDI [Lin et al., 2022], DSN-DDI [Li ef al., 2023], MoITC
[Fang et al., 2024] as the baseline. For SST and CSI tasks, we
utilize D-MPNN [Vermeire and Green, 2021], SolvBert [Yu
etal.,2023], SMD [Meng et al., 20231, CGIB, MMGNN [Du
et al., 2024], GEM [Fang et al., 2022], GOVER [Rong et al.,
2020], Uni-Mol [Zhou et al., 2023] as the baseline. Further-
more, all downstream tasks adopt LLM-based methods, such
as Galactica, Chem T35 [Christofidellis et al., 2023], MolT3,
MOolCA [Liu et al., 2023] and MolTC as the baseline.

4.2 Evaluation Metrics

We employ prediction Accuracy (%) and AUC-ROC (Area
Under the Receiver Operating Characteristic curve) as com-
parative metrics, while for quantitative tasks, MAE (Mean
Absolute Error) and RMSE (Root Mean Square Error) are
utilized as the metrics.

4.3 Experimental Results and Analysis

Due to the limitations of certain models on some datasets, we
only present a subset of the results here. For detailed results
on other datasets, please refer to Appendix D.
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Baseline Model Drugbank ZhangDDI ChChMiner DeepDDI
Accuracy  AUC-ROC | Accuracy AUC-ROC | Accuracy AUC-ROC | Accuracy AUC-ROC
IGIB-ISE 95.16+0.37 98.83+0.56 | 88.80+0.35 94.7540.41 | 94.9740.38 97.844032 | 96.244035 98.5240.31
GNN SSI-DDI 94.1240.32 98.2840.29 | 87.0240.32 93.66+0.38 | 93.16+0.21 97.9140.12 | 94.9710.23 98.41+0.30
Based DSN-DDI 94.9510.12 99.01*:{:0_11 87.5540.11 94.83410.28 | 84.2040.18 94.0540.26 | 95444028 98.02410.15
CMRL 94.9310.12 98.7640.11 | 87.68+032 94.581021 | 94.251026 98.3410.12 | 96.2710.3¢ 98.97" 10.20
CGIB 94.67+0.32 98.53+0.24 | 87.8240.73 93.9840.61 | 94.3540.36 98.45"10.32 | 96.134+0.49 97.98+0.64
ML DeepDDI 93.05i0,25 98.36;{:0,54 83.60i0,49 91-23:!:0.58 9044:!:0.62 95.83i0,27 92-49:l:0.38 98.12i0,41
Based MHCADDI 79.30+0.80 86.23+0.45 | 77.66+0.40 87.0410.6s8 | 84.56+0.53 90.0140.82 | 87.7110.77 88.64+0.73
MDF-SA-DDI 93.96:[:()‘32 97.59:(:()‘29 86‘69:[:025 94.13:&033 93.74;{:0.21 98.12;{:019 94.89;[:031 97‘74:(:()‘34
Galactica 79.28i0,34 86.25i0,34 67~30:t0.56 79.02:{:0‘59 74.51:{:0,43 84-01:t0.67 71.20:{:0,42 79.08i0,40
LLM Chem T5 85.93i0.31 92-07i0'37 72-44i0.39 89.51i0432 80.99i0.52 85.35i0,4s 75~78i0463 84.52i0,44
Based MolCA 87.85+0.49 94.0140.37 | 68.51+0.62 88.33+0.52 | 90.1740.45 93.04+061 | 82.97+057 89.03+0.74
MolT5 89.594+0.37 93.1840.37 | 76.8940.41 87.62+0.53 | 80.97+0.37 90.18+0.38 | 89.2240.37 94.0210.33
MolTC 95.89*i0A13 98.87i0,31 89-39*i0A13 95.55*i0,17 95.59*i0.21 98.06i()‘19 96-70*i026 98.85i0A42
DO-ColLM (OUI‘S) ‘ 96-4310.18 99.13:{:0,31 ‘ 92-14:t0.28 96.03:{:0,12 ‘ 96.31:{:0,32 98-5210.16 ‘ 97.243:0,24 99.12:‘:0,31

Table 1: Comparative performance of various methods in qualitative interactive tasks. The best-performing methods are highlighted in bold,
while the second-best methods are marked with * for emphasis.

Baseline Model FregSolv Abraham CompSol CombiSolv
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
MMGNN | 0.538+0.031 0.904+0.028 | 0.197+0.000 0.396+0.012 | 0.170%0.005 0.302+0.005 | 0.18610.004 0.390%0.015
GNN D-MPNN 0.712i0,015 1.229i0‘029 0.494i0,013 0.715i0‘027 0.208io_007 0.372i0,008 0.492i0A014 0.905i0_055
Based GEM 0.608;{:0_019 1.198:|:0,052 0~254j:0.006 0-537:&0.008 0.205:&0,007 0.343;{:0_005 0‘295:‘:0,009 0.773:[:0,019
CGIB | 0.55040.011 0.92210.057 | 0.261+£0.008 0.53140.009 | 0.174+£0.005 0.31340.004 | 0.231140.004 0.395+0.010
GOVER | 0.646.10.026 1.09410.045 | 0.367+0.009 0.635+0.017 | 0.187+0.006 0.381+0.015 | 0.41310.017 0.73810.035
ML  SolvBert | 0.592+0.031 1.054+0.054 | 0.498+£0.008 0.687+0.015 | 0.191+0.010 0.348+0.008 | 0.436+0.018 0.709+0.021
Based Uni-Mol 0.576:{:0‘061 1.009:{:0,072 0-365j:0.008 0.612:{:0‘024 0.197i0,002 0.345:|:0,003 0.269i0,005 0.671i0,017
SMD | 0.60940.037 1.21140.036 | 0.39840.022 0.645410.037 | 0.19740.006 0.34910.007 | 0.65610.012 1.01310.031
Galactica | 0.89210.011 1.398+0.067 | 0.6511+0.008 1.058+0.016 | 0.597+0.008 0.862+0.008 | 0.8411+0.021 1.456+0.039
Liy ChemTS | 081240035 1.35740057 | 0.63920.010 0.91520.017 | 044740005 0.739x0.010 | 0.89240.015 1.308.40.02
Based MoICA | 0.77140.035 1.29210.041 | 0.58410.007 0.887+0.011 | 0.4771+0.008 0.72610.023 | 0.638+0.043 1.095+0.037
MolT5 | 0.715+0.047 1.11540.075 | 0.553+0.000 0.84240.006 | 0.486+0.003 0.701+0.008 | 0.673+0.031 1.114+0.029
MoITC | 0.497%0.013 0.694%0.042 | 0.194%0.011 0.389%0.010 | 0.179+0.006 0.295%0.004 | 0.183%0.00a 0.452+0.008
DO-CoLM (Ours) ‘ 0.469.0.014 0.6490.030 ‘ 0.17510.008 0.372+0.012 ‘0-165;\:0.007 0.281+9.003 ‘0.172i0,005 0.385+0.012

Table 2: Comparative performance of various methods in quantitative interactive tasks. The best-performing methods are highlighted in bold,
while the second-best methods are marked with * for emphasis.

Quantitative Prediction Performance: Table 2 presents
the performance of DO-CoLM on quantitative tasks. The data
indicates that LLM-based models generally perform slightly
worse than GNN-based and ML-based models. Howeyver,
DO-CoLLM has maintained a leading position in quantitative
analysis tasks, which are typically challenging for LLM mod-
els. DO-CoLM achieved an RMSE of 0.385, representing
nearly a 15% improvement over the second-best LLM-based
model, MolTC, which had an RMSE of 0.452. Furthermore,
DO-CoLLM demonstrated significant performance gains over
the best GNN-based model, MMGNN. For instance, on the
FreeSolv dataset, DO-CoLM reduced the RMSE by nearly
28%. These improvements can be attributed to DO-CoLM’s
integration of 3D molecular conformation information, which
more accurately captures molecular interactions, as well as
chain-of-thought reasoning and its unique design considera-
tions for input order from the model’s perspective.

Qualitative Prediction Performance: Table 1 presents
the comparative performance of DO-CoLLM and various base-
line methods on four widely-used chemical datasets. The re-
sults clearly demonstrate the consistent superiority of DO-
CoLM over existing approaches across all datasets. For in-
stance, on the ZhangDDI dataset, our model achieves a 3%
improvement in accuracy compared to MolTC. This can be
attributed to the incorporation of our molecular conforma-
tional relationship capture mechanism and the heterograph
neural network, which effectively integrates conformational
information. These enhancements enable the model to cap-
ture the 3D structural information and latent conformational
interactions that are often overlooked in 1D SMILES and 2D
molecular graphs. In addition, the DO-CoLM in our model
reorders molecular token nodes from the model’s perspec-
tive, allowing for a better understanding of molecular modal-
ity data and resulting in superior reasoning performance.
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| - DO-ColLM \ MoITC
Datasets Metrics
\ | EP | IP  |EDRate(%)|IDRate(%)| EP | IP | RDRate (%) | IDRate (%)

Drugbank | Zccuracy | 96.16:0.19 | 96.33+0.18 0.27 0.11 | 84431017 | 94.032015 | 12.07 1.93
& AUC-ROC | 98.890.30 | 99.02+0.31 0.24 0.10 87.6210.42 | 96.7710.31 11.37 2.12
ZhaneDDI | Accuracy | 92.0140.7 | 92122025 | 0.14 0.02 | 80.1510.16 | 88.0410.15 | 10.33 1.05
& AUC-ROC | 95.7610.14 | 95.95+0.12 0.15 0.03 85.6410.10 | 94.3710.21 10.41 1.19
ChChMiner Accuracy | 96.06+0.27 | 96.14+0.32 0.25 0.14 82.78+0.17 | 93.78+0.21 13.34 1.89
AUC-ROC | 98.49+0.16 | 98.4210.15 0.27 0.10 85.4210.15 | 96.03+0.19 12.89 2.07
DeepDDI Accuracy | 97.05+40.23 | 97.1440.24 0.12 0.09 87.6240.31 | 95.46+0.26 9.45 1.30
p AUC-ROC | 99.01+0.32 | 99.030.31 0.11 0.10 89.76-0.37 | 96.9550.42 9.20 1.81

Table 3: Comparison of results for perturbations in overall external order (EP) and internal multimodal node order (IP). EDRate reflects
the performance decrease due to external order perturbations, while IDRate shows the decrease due to internal multimodal node order

perturbations.

4.4 Sequence perturbation performance

In this section, we test the model’s robustness by introduc-
ing perturbations to the input data order. Table 3 presents
the experimental results of DO-CoLM and MolTC under in-
put sequence perturbations. Since input order inherently ex-
hibits asymmetry in quantitative prediction tasks, this eval-
uation primarily focuses on qualitative prediction tasks. We
introduced two types of input perturbations for the experi-
ments: overall molecular input order perturbation and internal
molecular conformation node order perturbation. As shown
in Table 3, DO-CoLM demonstrates significant robustness in
qualitative prediction tasks, with overall molecular input or-
der perturbation having almost no impact on its performance,
while MolTC exhibits significant performance degradation.
For example, on the DrugBank dataset, MolTC’s accuracy
drops from 95.89% to 84.43%, a decrease of 12.07%, and
AUC-ROC decreases by 11.37%. Under internal molecular
conformation node order perturbations, DO-CoLM remains
stable, while MolTC experiences an average decline of 1.7%.
This is due to the design of the AOAM, which enables the
model to adaptively handle different input sequences, result-
ing in stable performance.

4.5 Ablation Study

Table 4 presents the results of the ablation experiments, where
w/o DCR indicates the removal of the DCRCM. w/o AO rep-
resents the exclusion of AOAM, replaced by three alterna-
tive ordering methods: random order, degree-based order, and
fixed order. By removing the DCRCM, we analyzed the im-
pact of molecular conformational information interaction on
model performance. Additionally, by comparing model per-
formance under random, fixed, and degree-based orders, we
validated that AOAM identifies the optimal sequence from
the model’s perspective. The experimental results demon-
strate that each module significantly improves model perfor-
mance. The removal of DCRCM has the most noticeable im-
pact, causing nearly a 10% decrease in performance on quan-
titative tasks. Furthermore, replacing AOAM with other prior
knowledge-based ordering methods leads to a certain degree
of performance degradation. We also performed an ablation
study on the conformations, as detailed in the Appendix E.

Dataset Metric w/o DCR wio AO
Random Deg Fixed
Accuracy 1.2240.14 0.6340.07 0.444+0.04 0.56+0.05
DDI Rate () 1.51% 0.77 % 0.54 % 0.69 %
AUCROC 1.67+0.32 0.7840.08 0.55+0.07 0.6240.00
Rate () 1.78 % 0.83 % 0.58 % 0.66 %
MAE  0.017+0.0040.01240.0020.007+0.0030.010+0.004
ggp Rate() 743%  524%  3.06%  A.37%
RMSE 0.025+0.0070.016+0.0030.011+0.0040.012+0.005
Rate (1) 9.43 % 6.03 % 3.72 % 4.52 %
MAE 1.07+0.11 0.61+0.03 0.4840.04 0.51+0.05
CSI Rate (1) 8.04 % 4.58 % 3.61 % 3.84 %
Abs. RMSE 1.5840.20 0.7240.06 0.60+0.05 0.65+0.04
Rate (1) 10.18 % 4.64 % 3.87 % 4.18 %
MAE 2.0710.17 1.05t0.14 0.7410.10 0.8110.11
CSI Rate (1) 11.12% 5.64 % 3.97 % 4.36 %
Emis. RMSE  2.89:02s 1471012 1.0310.11 1.1040.15
Rate (1) 12.34 % 6.27 % 4.40 % 4.71 %
MAE 0.074+0.0030.026+0.0040.016+0.0020.020+0.003
CSI Rate (1) 10.70 % 3.76 % 2.31 % 2.89 %
Life. RMSE 0.095+0.0100.034+0.0080.023+0.0070.029+0.010
Rate (1) 11.26%  4.02%  2.73%  3.43 %

Table 4: Ablation Study of Removing DCRCM (w/o DCR) and Re-
placing AOAM (w/o AO) with other ordering methods.

5 Conclusion

In this paper, we propose DO-CoLM, which incorporates the
Dynamic Conformational Relationship Capture Module and
the Adaptive Order Adjustment Module to address the chal-
lenges of inadequate molecular 3D information and dynam-
ics, as well as sensitivity to input order in existing LM-based
MRL models. Experiments across twelve diverse datasets in
various domains demonstrate the superiority of our approach
over current GNN and LLM-based baselines. This advance-
ment establishes a new standard for integrating multimodal
data in LLM-based MRL. The limitations are further dis-
cussed in Appendix F.
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