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Abstract

In stock price forecasting, modeling the probabilis-
tic dependence between stock prices within a time-
series framework has remained a persistent and
highly challenging area of research. We propose
a novel model to explain the extreme co-movement
in multivariate data with time-series dependencies.
Our model incorporates a Hawkes process layer
to capture abrupt co-movements, thereby enhanc-
ing the temporal representation of market dynam-
ics. We introduce dynamic hypergraphs into our
model adapting to higher-order (groupwise rather
than pairwise) relationships within the stock mar-
ket. Extensive experiments on real-world bench-
marks demonstrate the robustness of our approach
in predictive performance and portfolio stability.

1 Introduction
With a total market capitalization reaching approximately
US$111 trillion in 20231, the stock market has experienced
rapid growth, accompanied by increasingly complex depen-
dencies among stock prices and their time-series character-
istics. Built on years of breakthroughs in AI, many quanti-
tative studies have adopted deep learning methods to model
nonlinear relationships between stocks [Chen et al., 2018;
Xu et al., 2021]. By employing sophisticated architectures,
stock price forecasting enters a new phase in a complex pat-
tern between stocks, modeling higher-order relationships.

The term ‘higher-order relationship’ extends the concept
of stochastic dependence in two directions: it encompasses
group-wise dependencies among stock prices and extreme
dependencies represented by higher-order moments. For in-
stance, stocks of companies within the same industry of-
ten exhibit similar reactions or trends in response to finan-
cial conditions. Furthermore, the synchronous movement of
stock prices on average sometimes leads to an extreme co-
movement of stocks within the same groups, such as abrupt

∗This work was conducted while the author was at the University
of Seoul.

†Corresponding author.
1wikipedia.org/wiki/Market capitalization

Figure 1: Illustration of complex higher-order relationships among
stock prices.

crush, which is a crucial factor for risk management [Li et al.,
2021].

To tackle these issues, existing deep learning methods typ-
ically incorporate hypergraph learning and the Hawkes pro-
cess [Hawkes, 1971] in the predictive model. The hyper-
graph is a general concept of graphs to allow edges are able
to join any number of nodes. Through the characteristics of
a hypergraph, the nodes (in our context, stocks) can be con-
nected with some hyperedge. Combining with graph neural
networks (GNNs), hypergraph learning is applied to model
higher-order relationships in stock price prediction [Sawhney
et al., 2021; Xia et al., 2024]. The Hawkes process dynam-
ically constructs the intensity function, effectively capturing
the tail distribution of the time series. Abrupt temporal de-
pendence in financial events such as transactions (buy and
sell) are modeled with the Hawkes process [Zuo et al., 2020;
Sawhney et al., 2021; Huynh et al., 2023]. More details of
the Hawkes process are presented in Section 3.

Despite these advancements, two critical challenges re-
main unaddressed. First, surges or plunges in stock prices
often exhibit co-movement characteristics. For example, Fig-
ure 1 shows the scaled prices of assets across multiple sectors,
normalized to 1 at the initial time point. It highlights a sharp
decline across multiple stocks between August and Septem-
ber 2015, as indicated by a dashed circle in the figure. How-
ever, existing approaches frequently overlook simultaneous
modeling for extremal and group-wise dependence across the
stock prices, resulting in their inability to effectively explain
the extreme co-movement. Second, the relationships among
stocks are exceedingly complex, often beyond the scope of
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prior domain knowledge, and can dynamically evolve over
time. As shown in Figure 1, stocks within the Information
Technology sector exhibited noticeably different patterns dur-
ing the same period. Furthermore, prior to October, stocks
within the same sector demonstrated relatively similar move-
ments, but significant divergences emerged afterward. At
certain points, stocks from different sectors also exhibited
similar movements, suggesting the possibility of temporary
groupings across sectors.

In this paper, we propose a novel stock price forecasting
model that effectively addresses both challenges. Our ap-
proach demonstrates significant enhancements by integrating
temporal learning and hypergraph modeling in an end-to-end
manner. We fully leverage the use of self-attention mech-
anisms to enhance temporal learning efficiency. Addition-
ally, we incorporate a Hawkes process layer to capture abrupt
changes and co-movement patterns. Finally, we combine do-
main knowledge-based and dynamic hypergraphs to model
evolving relationships over time. These approaches collec-
tively enable our model to achieve superior predictive perfor-
mance. Our main contributions are summarized as follows:

• A novel neural network layer is proposed to model tem-
poral point processes, with shared movement patterns
among stocks effectively captured, temporal represen-
tations enriched, and portfolio stability ensured.

• A novel hypergraph learning framework is introduced,
where dynamic and predefined hypergraphs are inte-
grated to enable the modeling of dynamic higher-order
relationships over time.

• The effectiveness of the proposed approach is demon-
strated on real-world datasets, with superior perfor-
mance shown compared to state-of-the-art baselines, and
the significance of the proposed components substanti-
ated.

The remainder of this paper is organized as follows: Section 2
reviews recent studies, and Section 3 provides background on
our research. Section 4 describes task definition and our pro-
posed model. Section 5 presents the experimental results and
additional analyses. Finally, concluding remarks and direc-
tions for future work are presented in Section 6.

2 Related Works
2.1 Transformer-based Model
The transformer [Vaswani et al., 2017] represents a ground-
breaking advancement in deep learning, utilizing a self-
attention mechanism to effectively model long-term depen-
dencies. Its success in natural language processing led to
its adaptation in various domains, including time series fore-
casting [Zhou et al., 2021; Wu et al., 2021]. In the context
of stock price forecasting, unique challenges arise, requiring
models that not only capture temporal patterns of individual
stocks but also model complex inter-stock relationships. Sev-
eral models tailored to address these challenges have been
developed. HMG-TF [Ding et al., 2020], a transformer-based
model, is specifically designed to account for the unique char-
acteristics of financial markets, including local dependencies

and hierarchical structures. DTML [Yoo et al., 2021] em-
ploys attention mechanisms along both the time and data axes
to learn asymmetric and dynamic stock correlations. MAS-
TER [Li et al., 2024], building upon a framework akin to
DTML, adopts a sequential attention mechanism across time,
stock, and time dimensions to model cross-time correlations
effectively.

2.2 Graph-based Model
Graph Neural Networks (GNNs) [Scarselli et al., 2008] are
designed to learn patterns from graph-structured data and
have been widely applied in various domains, including social
networks, traffic flow, and chemical structure. In stock price
forecasting, GNNs have been utilized to model intricate de-
pendencies and enhance predictive performance. RSR [Feng
et al., 2019a] models stock relationships using industry and
metadata information sourced from the web, allowing the
strength of these relationships to evolve over time. RT-
GCN [Zheng et al., 2023] enhances relational modeling by
constructing three-dimensional graphs that incorporate both
temporal and relational information from sources like indus-
try. Recently, the limitations of conventional graph models,
which can only handle pairwise relationships, have motivated
the development of hypergraph-based stock price forecast-
ing models. Details on hypergraphs are discussed further
in Section 3.2. STHAN-SR [Sawhney et al., 2021], simi-
lar to RSR, uses industry and Wikidata sources to construct
hypergraphs and models higher-order relationships through
hypergraph convolution and an attention mechanism. ESTI-
MATE [Huynh et al., 2023] applies correlation augmentation
to industry-based hypergraphs and employs wavelet hyper-
graph convolution to capture locality and ensure computa-
tional efficiency.

3 Preliminaries
3.1 Hawkes Process
A Temporal Point Process (TPP) is a stochastic process that
models discrete events occurring over a continuous time
axis [Cox and Isham, 1980]. TPPs are particularly useful for
describing the temporal distribution of events or analyzing
specific patterns and interactions, with applications in fields
such as finance.

The Hawkes process [Hawkes, 1971] is a type of TPPs
characterized by its “self-exciting” nature, meaning that the
occurrence of an event increases the probability of subsequent
events. The intensity function of a Hawkes process is defined
as:

λ(t) = µ+
∑
i:ti<t

ϕ(t− ti),

where λ(t) is the conditional intensity function representing
the expected event rate at time t, µ ≥ 0 is the base intensity,
representing the exogenous occurrence of events, and ϕ(t) >
0 is a prespecified decaying function, i.e., ϕ(t) = exp(−t).
Here, ti denotes the occurrence time of the i-th event. By
introducing the regression predictor the Hawkes process can
describe how past events influence future occurrences dynam-
ically.
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The Hawkes process has been applied in the stock market
to model extreme price movements and analyze correlations
between events [Bacry et al., 2015; Embrechts et al., 2011].
Its self-exciting nature effectively captures scenarios where
a sharp decline in one stock triggers movements in others
or extreme volatility events. These applications offer valu-
able insights into financial risk management and investment
strategies.

3.2 Hypergraph Learning
Traditional graphs are limited to modeling pairwise relation-
ships, where edges connect only two nodes. Hypergraphs
address this limitation by allowing a single edge to connect
multiple nodes, enabling the modeling of higher-order re-
lationships among data. This capability effectively extends
connectivity between nodes to capture complex relationships
involving multiple nodes.

Hypergraph learning was first introduced in [Zhou et al.,
2006], as a propagation process on hypergraph structures.
Following the existing works [Bai et al., 2021; Feng et
al., 2019b], an undirected hypergraph is defined as G =
(V, E ,W ), where V is the set of nodes, E is the set of hyper-
edges, and W is a diagonal matrix representing the weights
assigned to each hyperedge. The structure of a hypergraph
can be represented using the |V| × |E| incidence matrix H,
where the entries are defined as:

h(v, e) =

{
1, if v ∈ e,

0, if v /∈ e.

This incidence matrix provides a flexible representation for
capturing complex higher-order relationships that cannot be
modeled using traditional pairwise connections.

4 Methodology
4.1 Problem Formulation
In this paper, bold uppercase letters denote matrices or ten-
sors (e.g., X,H), bold lowercase letters represent vectors
(e.g., xs

t ,h
s
t ), and scalars are represented by non-bold low-

ercase letters (e.g., cst , r
s
t ). We utilize normalized OHLCV

data [Huynh et al., 2023] along with technical indicators
(moving average, MACD, RSI) to predict the change in stock
price rather than the absolute price. OHLCV data includes
open, high, low, close, and volume values, and the relative
price change of these values is referred to as the OHLCV ra-
tio. The historical data consists of both the OHLCV ratio and
technical indicators. The return ratio, which is the relative
close price change in τ days, is defined as rst+τ =

cst+τ−cst
cst

,
where cst is the closing price of stock s at time step t, and
τ represents the prespecified lookahead window. The return
ratio allows for the normalization of price variations between
different stocks, as compared to price changes. Based on the
data constructed as described above, we define our task as
follows:
Definition 1. Given the historical data X ∈ RS×T×F ,
where each element xs

t ∈ RF is a feature vector for stock
s ∈ {1, . . . , S} at time t ∈ {1, . . . , T}, the task of Stock
Price Forecasting is to predict a return ratio r ∈ RS using

a model parameterized by θ. Formally, the goal is to learn a
function f such that:

r̂T+τ = f(X; θ) ∈ RS ,

where θ denotes the parameters of the model.
The optimal parameters θ̂ are obtained by minimizing a

risk function L:
θ̂ = argmin

θ
L(rT+τ , f(X; θ)).

We present an overview of our framework in Figure 2.

4.2 Temporal Dynamics Representation Learning
Feature Embedding. Embedding input features into a
multi-dimensional latent space is known to improve the
model’s ability to capture complex temporal patterns in time
series data [Lim et al., 2021; Hong et al., 2024]. To achieve
this, we use a simple fully connected layer, which efficiently
transforms the rescaled feature vectors into a latent space.
Since we use self-attention mechanisms in subsequent stages,
it is crucial to preserve the temporal order during model
training. Thus, we apply sinusoidal positional encoding, as
proposed in [Vaswani et al., 2017] at the initial embedding
stage to ensure that the model maintains temporal informa-
tion throughout the prediction window.

zs
t = (W ex

s
t + be) + PE,

where W e ∈ Rde×F and be ∈ Rde are learnable weights and
biases, respectively, and PE is sinusoidal positional encod-
ing.
Intra-Stock Attention. RNN-based layers were frequently
employed to model the temporal dynamics of individual
stocks. However, RNNs are prone to long-term dependency
issues, where essential historical information may degrade
over time, leading to suboptimal predictions.

To address this, we leverage self-attention mecha-
nisms [Vaswani et al., 2017] to efficiently capture temporal
dependencies. To preserve the sequential nature of the data,
we apply a temporal mask. The temporal self-attention output
for a stock s is given by

H̃
s
= Attention(Qs,Ks,V s) = Softmax(

QsKs⊤
√
dk

)V s,

where Qs, Ks, and V s are the query, key, and value matrices
obtained through linear transformations of Zs = (zs

t : t =
1, . . . T ) ∈ RT×de , respectively. Given the complex time se-
ries, we further enhance the model’s representations by incor-
porating multi-head attention, allowing the model to focus on
different aspects of temporal features. The outputs of these
multiple attention heads are concatenated and then linearly
transformed to integrate the information from each head. Ad-
ditionally, a residual connection is applied to preserve the im-
portant stock characteristics. After the multi-head attention,
the outputs H̃

s
∈ RT×de are passed through two fully con-

nected layers with a ReLU activation and dropout, followed
by a residual connection.

Hs = (ReLU(H̃
s
W 1 + b1)W 2 + b2) + H̃

s
,

where W 1,W 2 ∈ Rde×de and b1, b2 ∈ Rde are learnable
weights and biases, respectively, and H = (Hs : s =
1, . . . , S) ∈ RS×T×de is historical context.
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Figure 2: Overview of our framework.

4.3 Enhancing and Aggregating Temporal
Representation

Modeling the Intensity Function of Hawkes Process. Ex-
isting works [Sawhney et al., 2021; Huynh et al., 2023]
have utilized Hawkes process-based temporal attention mech-
anisms to address the non-stationary nature of stock markets
and improve the ability of temporal attention mechanisms to
capture temporal dynamics. However, the use of static pa-
rameterization alone is insufficient to accurately model the
dynamic interactions between events.

To leverage the dynamic and self-exciting properties of the
Hawkes process, we introduce a layer that directly models its
intensity function. We utilize a slice of the historical context
H as a predictor to learn the base intensity (µs

t ), excitation
factor (ηs

t ), and decay rate(γs
t ) [Zhang et al., 2020]. These

quantities are parametrized by

µs
t = GeLU(W µh

s
t ), η

s
t = GeLU(W ηh

s
t ),

γs
t = Softplus(W γh

s
t ), (1)

where hs
t is a slice of H for stock s at time t,

W µ,W η,W γ ∈ Rde×de are learnable parameters. To en-
sure that γs

t is always positive, we applied the softplus activa-
tion function as shown in Eq. (1). To model the co-movement
of stocks during extreme market conditions, we construct
three parameters using shared weights across all stocks. This
approach allows the model to capture the synchronized be-
havior of stocks that emerge during periods of high market
volatility (refer to Section 5.3).

Finally, we express the intensity function of Hawkes pro-
cess as follows:

λs
t = Softplus

(
µs

t + (ηs
t − µs

t )
t∑

j=1

exp
(
−γs

j(t− j)
) )

.

Similarly, to ensure that the intensity function λs
t always re-

mains positive, we applied the softplus activation function.
The Hawkes process, originally designed for modeling influ-
ences in continuous time, is adapted in this study for discrete
daily stock data by refining the intensity function to accumu-
late past information.

To construct richer temporal representations, the historical
context Hs ∈ RT×de for stock s and the intensity function
output Λs = (λs

t : t = 1, . . . T ) ∈ RT×de from the Hawkes
process are combined and transformed, allowing the model to
effectively integrate both temporal dynamics and event inten-
sity.

Ĥ
s
= ReLU([Hs : Λs]W 3 + b3),

where [· : ·] denotes the tensor concatenation operation,
[Hs : Λs] ∈ RT×2de W 3 ∈ R2de×de , b3 ∈ Rde are learn-
able parameters and Ĥ

s
∈ RT×de are enhanced temporal

representations for stock s.
Aggregation for Temporal Information. To effectively
aggregate temporal information across all time steps and gen-
erate final embeddings for each stock, we utilized temporal
attention. In contrast to general self-attention, temporal at-
tention employs the context vector q̂s

T ∈ Rde from the last
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time step T as the query, enabling attention across sequences
of different lengths and aggregating information with a focus
on the last time step. This approach was adopted because the
preceding layers were designed during training to ensure that
the most critical information is concentrated near the last time
step, which is closest to the prediction timestamp, thereby
making it natural to base the aggregation on the query vector
from the last time step.

q̂s
T = Ŵ qĥ

s

T , k̂
s

t = Ŵ kĥ
s

t , v̂s
t = Ŵ vĥ

s

t ,

ast =
exp(q̂s

T
⊤k̂

s

t/
√
de)∑T

t=1 exp(q̂
s
T
⊤k̂

s

t/
√
de)

, ξs =
T∑

t=1

ast v̂
s
t ,

where ast represents the temporal attention score, and ξs ∈
Rde is the representation that aggregates the temporal infor-
mation for stock s. Finally, the representations for all stocks
are concatenated into Ξ = (ξs : s = 1, . . . S) ∈ RS×de ,
referred to as the stock representations.

4.4 Higher-Order Relational Representation
Learning via Hypergraph

Constructing the Predefined Hypergraph. As introduced
in Section 3.2, we construct a predefined hypergraph G =
(V, E ,W ) to model the intricate relationships in the stock
market. Here, V denotes the set of nodes (individual stocks),
E represents the hyperedges (groups of related stocks), and
W ∈ R|E|×|E| is a diagonal matrix of hyperedge weights, as-
signed equally for simplicity. The hyperedge set E combines
two components: EInd, connecting stocks within the same in-
dustry [King, 1966], and ECorr, derived from historical price
correlations [Bennett et al., 2022]. The final hyperedge set
is expressed as E = EInd ∪ ECorr. For details on the hyper-
graph construction methodology, we refer the readers to our
supplementary materials.

Wavelet Hypergraph Convolution. To model domain
knowledge-based correlations among stocks, we use hyper-
graph convolution. We adopt the wavelet hypergraph con-
volution proposed in [Sun et al., 2021; Huynh et al., 2023],
which balances efficiency and expressiveness by leveraging
a sparse wavelet basis. The hypergraph Laplacian ∆ repre-
sents structural relationships in the constructed hypergraph G
and is defined as ∆ = I −D

− 1
2

v HWD−1
e H⊤D

− 1
2

v , where
H is the incidence matrix, Dv and De are diagonal degree
matrices of nodes and hyperedges. By diagonalizing ∆ as
∆ = UΛfU

⊤, we obtain the the Fourier basis U , where Λf

is the diagonal matrix of eigenvalues. Using the Fourier ba-
sis, the wavelet basis Ψ is computed as Ψ = UΛsU

⊤, with
Λs = diag(e−λ1s, . . . , e−λns), where s controls the scale of
localization. Finally, the wavelet hypergraph convolution is
expressed as:

Ξ̂ = LeakyReLU
(
ΨΛβΨ

−1ΞWH

)
,

where Λβ = diag(β1, . . . , βS) and WH ∈ Rde×de are learn-
able parameters. Ξ̂ ∈ RS×de contains temporal dynamics
combined with prior relational knowledge.

Dynamic Hypergraph Structure Learning. In this study,
we leverage the low-rank approaches proposed in [Zhao et al.,
2023; Ju et al., 2024] to construct and learn dynamic hyper-
graphs, achieving a balance between computational efficiency
and modeling capability. The incidence matrix A ∈ RS×k of
the dynamic hypergraph is generated as shown in Eq. (2). To
construct the dynamic hypergraph, it is essential to incorpo-
rate information that varies across time steps. Utilizing stock
representations Ξ, derived from preceding layers that effec-
tively capture temporal dynamics, encapsulates such time-
varying information.

A = Softmax(ΞW I), (2)

where W I ∈ Rde×k is a learnable weight matrix, and k de-
notes the number of dynamic hyperedges.

After constructing a dynamic hypergraph, we utilize hy-
pergraph convolution to obtain high-level dynamic stock rep-
resentations. First, the information from neighboring nodes
is aggregated based on the dynamic hypergraph structure to
compute the dynamic hyperedge embedding matrix E. Sub-
sequently, the learned dynamic hyperedge embedding matrix
E is used to update the node representations, resulting in the
dynamic representation Ξ̃ ∈ RS×de . The process can be for-
mulated as follows:

E = ReLU(RA⊤Ξ) +A⊤Ξ, Ξ̃ = AE,

where R ∈ Rk×k are learnable parameters, k denotes the
number of dynamic hyperedges.

4.5 Model output
We combine the stock representations Ξ, predefined rep-
resentations Ξ̂, and dynamic representations Ξ̃ using a
weighted sum:

Ẑ = w1Ξ+ w2Ξ̂+ w3Ξ̃,

where w1, w2, w3 ∈ R are learnable weights. The final repre-
sentations Ẑ ∈ RS×de are used to predict the return ratio for
each stock via 2-layer MLP with ReLU activation. The loss
function is defined as the RMSE between the ground truth
return ratio r and the predictions r̂.

r̂ = MLP(Ẑ), L = RMSE(r, r̂).

The effectiveness of this methodology will be demonstrated
and validated in the subsequent experimental sections.

5 Experiments
In this section, we conduct experiments to answer the follow-
ing three research questions:
RQ1. How does the performance of our proposed approach

compare with state-of-the-art methods?
RQ2. Does our approach effectively capture tail dependen-

cies?
RQ3. Is dynamic hypergraph learning effectively integrated

and implemented in our approach?
Additional details and results (including ablation study) from
our numerical studies are provided in the supplementary ma-
terials and are also available in our online repository at https:
//github.com/kijeong22/ijcai2025-spf.
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5.1 Experimental Setup
Dataset. To evaluate our model, we used real-world
S&P500 market data, adapting the data collection and con-
struction methods from [Huynh et al., 2023]. Adjustments
were made to the data period, stock count, and phase struc-
ture to account for differences in historical data. Specifically,
stocks not listed in earlier years were excluded, reducing the
dataset to 463 stocks. The dataset was divided into 10 phases,
each comprising a 24-month training period, a 4-month vali-
dation period, and an 8-month test period.
Implementation Details. Our model was implemented in
PyTorch, and all experiments were conducted on an NVIDIA
RTX A6000 GPU. To identify the optimal hyperparame-
ters, we employed grid search and the best hyperparameters
were selected based on the validation-averaged IC across all
phases, resulting in model size de = 32, the number of dy-
namic hyperedges k = 64, and learning rate = 0.0001. The
lookback window was set to 20 days, the lookforward win-
dow to 5 days, and the number of heads in the multi-head at-
tention mechanism to 4. For the trading simulation, we adopt
a top-K daily buy-hold-sell trading strategy used in [Feng et
al., 2019a], setting K = 20.
Metrics. The evaluation metrics are categorized into pre-
dictive performance and portfolio performance. For pre-
dictive performance, we use Information Coefficient (IC),
Rank Information Coefficient (RankIC), and Precision@K
(Prec@K) to evaluate the alignment, ranking accuracy, and
top-K precision of predictions, respectively. Portfolio perfor-
mance metrics include Return, Sharpe Ratio (SR), and Max-
imum Drawdown (MDD), which assess profitability, risk-
adjusted return, and maximum loss during the investment pe-
riod.
Baselines. We compare our model with state-of-the-art
models from three categories: Transformer-based models,
Graph-based models, and Hypergraph-based models. These
include DTML [Yoo et al., 2021] and MASTER [Li et
al., 2024] for Transformer-based models, RSR [Feng et al.,
2019a] and RT-GCN [Zheng et al., 2023] for Graph-based
models, and STHAN-SR [Sawhney et al., 2021] and ESTI-
MATE [Huynh et al., 2023] for Hypergraph-based models.

5.2 RQ1 - Overall Performance
Table 1 presents the predictive performance of all compar-
ison models across phases and their overall average. Most
baselines were evaluated using their original configurations
and the same loss function for fairness. However, DTML, de-
signed for the classification of stock movements, employed
RMSE as its loss function to align with the evaluation met-
rics. Our proposed model demonstrates superior performance
in most phases compared to other baselines, and its overall
average scores for IC, RankIC, and Prec@10 also outper-
form all other models. For ESTIMATE, the IC and RankIC
scores are the highest in phases 2 and 4, and its average values
across all metrics are the best among the baselines. This can
be attributed to its architecture, which not only shares struc-
tural similarities with our model but also utilizes a predefined
hypergraph for learning higher-order relationships. Table 2
presents the average portfolio performance of all comparison

Figure 3: Visualization of the LTDC matrix for the Top 20 Stocks
by Market Capitalization in phase 8.

models across phases. Our proposed model consistently out-
performs others in Return, SR, and MDD. Notably, SR and
MDD, which reflect portfolio risk, highlight the capability of
our model to capture abrupt stock movements and construct a
stable portfolio throughout the trading period.

5.3 RQ2 - Lower Tail Dependence Coefficient
We evaluate the Lower Tail Dependence Coefficient (LTDC),
which measures the tendency of simultaneous extreme down-
ward movements, a critical factor influencing investor be-
havior and portfolio performance [Sibuya and others, 1960;
Ang et al., 2006]. LTDC [Joe, 1997] is defined as follows:

λℓ
i,j = lim

q→0+
P
(
Xj ≤ F−1

j (q) | Xi ≤ F−1
i (q)

)
,

where i and j denote stock indices, and F−1(q) is the inverse
cumulative distribution function. We compute LTDC for all
stock pairs to construct a |S| × |S| stock LTDC matrix. To
calculate LTDC, we use the empirical cumulative distribution
function due to its simplicity and effectiveness in handling
sample data without assuming a specific distribution.

Figure 3 shows the LTDC matrix for phase 8, visualizing
the top 20 companies by market capitalization. Our model
relatively closely matches the ground truth, successfully cap-
turing relationships, such as the near-identical movements of
GOOG and GOOGL (same company) and the highly corre-
lated stocks V and MA (with an almost identical business
model). In contrast, the other two models fail to capture these
relationships, demonstrating the effectiveness of designing
the intensity function of the Hawkes process as a separate
layer in accurately modeling LTDC.

5.4 RQ3 - Analysis of the Dynamic Hypergraph
Structure

We analyze the dynamic hypergraph structure in our model,
as shown in Figure 4, focusing on the top 20 companies by
market capitalization and 10 hyperedges. To enhance visu-
alization, values are scaled within the corresponding period,
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Model Phase #1 Phase #2 Phase #3 Phase #4 Phase #5 Phase #6 Phase #7 Phase #8 Phase #9 Phase #10 Mean

IC

Transformer DTML 0.003 0.013 0.018 0.025 -0.003 -0.010 0.012 0.028 0.010 -0.021 0.008
MASTER 0.029 0.005 0.018 0.006 -0.005 0.038 0.038 0.010 -0.032 0.022 0.013

Graph
RSR-E 0.003 0.013 0.008 0.022 0.012 0.040 0.005 0.031 0.004 -0.004 0.013
RSR-I 0.025 0.014 0.025 0.020 0.025 0.041 0.031 0.004 0.008 0.028 0.022
RT-GCN 0.030 0.021 0.016 -0.014 0.019 0.004 0.024 0.054 -0.005 -0.013 0.014

Hypergraph

STHAN-SR -0.003 -0.002 0.019 -0.001 0.009 0.011 0.015 0.021 0.023 0.022 0.011
ESTIMATE 0.040 0.072 -0.030 0.053 -0.009 0.032 0.051 -0.002 -0.003 0.025 0.023

Ours 0.057 0.087 0.001 0.037 0.033 0.035 0.102 -0.005 0.052 -0.028 0.037

RankIC

Transformer DTML 0.014 0.022 0.028 0.034 -0.003 -0.021 0.020 0.030 0.021 -0.017 0.013
MASTER 0.031 0.020 0.025 0.001 -0.003 0.037 0.036 0.007 -0.038 0.027 0.014

Graph
RSR-E 0.016 0.016 0.024 -0.004 0.008 0.033 0.013 0.015 0.016 -0.01 0.013
RSR-I 0.029 0.021 0.038 0.027 0.030 0.030 0.025 0.001 0.013 0.031 0.024
RT-GCN 0.027 -0.005 0.001 0.005 0.033 -0.018 0.025 0.005 -0.039 0.025 0.006

Hypergraph

STHAN-SR 0.003 -0.007 0.008 -0.009 0.026 0.016 0.018 0.027 0.029 -0.010 0.010
ESTIMATE 0.044 0.079 -0.014 0.045 0.002 0.028 0.070 -0.015 0.003 0.035 0.028

Ours 0.045 0.077 -0.001 0.041 0.055 0.030 0.114 -0.005 0.060 -0.027 0.039

Prec@K

Transformer DTML 0.533 0.562 0.491 0.582 0.521 0.602 0.620 0.549 0.569 0.605 0.563
MASTER 0.537 0.528 0.588 0.527 0.547 0.590 0.643 0.544 0.548 0.610 0.568

Graph
RSR-E 0.577 0.564 0.494 0.480 0.574 0.569 0.588 0.571 0.559 0.554 0.553
RSR-I 0.568 0.568 0.550 0.604 0.545 0.514 0.565 0.501 0.544 0.518 0.545
RT-GCN 0.529 0.529 0.592 0.551 0.600 0.548 0.660 0.576 0.534 0.571 0.569

Hypergraph

STHAN-SR 0.572 0.525 0.504 0.499 0.510 0.517 0.566 0.562 0.562 0.496 0.531
ESTIMATE 0.565 0.537 0.543 0.595 0.630 0.589 0.685 0.587 0.548 0.484 0.576

Ours 0.555 0.582 0.581 0.604 0.643 0.614 0.720 0.616 0.562 0.544 0.602

Table 1: Predictive performance results. Bold and underlines show the best and second best results, respectively.

Model Return↑ SR↑ MDD↓
DTML 0.794 3.167 0.571
MASTER 0.726 2.695 0.594

RSR-E 0.573 2.633 0.537
RSR-I 0.771 3.006 0.639
RT-GCN 0.796 3.121 0.492

STHAN-SR 0.648 2.951 0.478
ESTIMATE 0.723 2.905 0.613

Ours 0.798 3.391 0.474

Table 2: Portfolio performance results. Bold and underlines show
the best and second best results, respectively.

with blue indicating weaker connections and red stronger
connections. Note that these colors represent relative edge
strength, not full connectivity or disconnection.

We focus our analysis on AAPL and MSFT, both of which
are global leaders driving market trends. In October 2020,
both were relatively strongly connected to Hyperedge 2 and
10, but after the U.S. presidential election on November 3,
2020, their connections to other hyperedges weakened, while
their connection to Hyperedge 2 strengthened significantly.
Similar patterns were observed for other major companies
such as AMZN, BRK-B, UNH, and JPM. These observa-
tions demonstrate the dynamic hypergraph’s ability to effec-
tively capture evolving inter-stock relationships across differ-
ent time steps. Additionally, companies like GOOG-GOOGL
and V-MA remain consistently connected to the same hyper-
edge across multiple time steps, showing that dynamic hy-
pergraph captures temporal dynamics while still preserving
domain knowledge by similar companies.

Figure 4: Visualization of submatrices of the dynamic hypergraph
incidence matrix A.

6 Conclusions
In this paper, we proposed a novel model for accurate stock
price forecasting by capturing the dynamic and higher-order
relationships. The model incorporates a Hawkes process
layer to identify shared movement patterns and enhance tem-
poral representations. Furthermore, by both predefined and
dynamic hypergraphs, the model effectively captures higher-
order relationships among stocks. Extensive experiments
conducted on real-world US market data demonstrated the
model’s superiority over state-of-the-art approaches in terms
of predictive performance and portfolio stability. Addition-
ally, the effectiveness of the proposed components was val-
idated through detailed analyses. In future works, we will
focus on enhancing the robustness of the model, particularly
during periods of unstable performance, to achieve consistent
reliability across diverse market conditions.
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