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Abstract
Recent research has demonstrated the effectiveness
of knowledge distillation in Domain Generaliza-
tion. However, existing approaches often overlook
domain-specific knowledge and rely on an offline
distillation strategy, limiting the effectiveness of
knowledge transfer. To address these limitations,
we propose Balanced Online knowLedge Distilla-
tion (BOLD). BOLD leverages a multi-domain ex-
pert teacher model, with each expert specializing in
a specific source domain, enabling the student to
distill both domain-invariant and domain-specific
knowledge. We incorporate the Pareto optimiza-
tion principle and uncertainty weighting to balance
these two types of knowledge, ensuring simulta-
neous optimization without compromising either.
Additionally, BOLD employs an online knowledge
distillation strategy, allowing the teacher and stu-
dent to learn concurrently. This dynamic inter-
action enables the teacher to adapt based on stu-
dent feedback, facilitating more effective knowl-
edge transfer. Extensive experiments demonstrate
that BOLD outperforms state-of-the-art methods.
Furthermore, we provide theoretical insights that
highlight the importance of domain-specific knowl-
edge and the advantages of uncertainty weighting.

1 Introduction
The success of deep neural networks largely depends on the
assumption that training (source domain) and testing (target
domain) data are independently and identically distributed
(i.i.d.). However, this assumption is often violated in real-
world scenarios due to discrepancies between training and
testing data, known as the domain shift problem, leading to
significant performance degradation [Wang et al., 2022]. To
address this problem, domain adaptation has been explored to
transfer knowledge from source to target domains [Pan and
Yang, 2009]. Unsupervised domain adaptation, in particu-
lar, leverages unlabelled data from target domains, thereby
eliminating the need for target domain annotations [Xu et
al., 2019]. Despite their effectiveness, unsupervised domain

Figure 1: Illustration of the significance of domain-specific
knowledge in domain generalization. Source domains contain
domain-invariant features, common across all domains, and domain-
specific features, unique to individual domains, e.g. edge features
from the Art domain, and color features from the Photo domain.
The target domain (Cartoon) shares domain-invariant features with
all source domains and domain-specific features with some domains.
Therefore, domain-specific features may enhance the model’s gen-
eralization performance in addition to domain-invariant features.

adaptation methods necessitate data collection and model tun-
ing for each target domain, making them impractical in many
situations [Yue et al., 2019]. Consequently, domain gener-
alization (DG) has emerged as a prominent alternative. DG
aims to learn a universal representation from multiple labelled
source domains, enabling robust generalization to unseen do-
mains [Wang et al., 2022]. Existing approaches typically fall
into three categories: data augmentation [Zhou et al., 2020],
domain-invariant representation [Wang et al., 2022], and spe-
cialized training strategies [Zhao et al., 2024].

Knowledge distillation is a training strategy that has
demonstrated effectiveness in DG [Wang et al., 2021; Huang
et al., 2023]. However, most DG methods based on knowl-
edge distillation focus on extracting domain-invariant knowl-
edge, assuming that domain-specific knowledge impedes
generalization [Lee et al., 2022]. This assumption does not
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always hold, as domain-invariant knowledge derived from a
limited number of source domains may not generalize well to
unseen domains [Zhang et al., 2023b]. Conversely, domain-
specific knowledge from source domains is able to enhance
DG performance when target domains share characteristics
with particular sources (Figure 1). Nonetheless, simultane-
ously distilling invariant and specific knowledge presents two
key challenges. First, the teacher must ensure that learning
specific knowledge does not compromise the invariant knowl-
edge it has already obtained. Existing approaches that rely
on ensembles [Zhou et al., 2021] or batch normalization lay-
ers [Seo et al., 2020; Zhang et al., 2023b] without an inde-
pendent extractor for invariant knowledge risk distorting the
invariant knowledge while incorporating specific knowledge.
Second, it is essential to balance distilled invariant and spe-
cific knowledge to prevent the distilled specific knowledge
from undermining the distilled invariant knowledge, thereby
ensuring the student’s generalization performance when the
source and target domains do not share characteristics. Ad-
ditionally, current methods typically employ an offline dis-
tillation strategy, where the teacher remains fixed during the
distillation process. This approach restricts the teacher from
adapting to the student’s evolving requirements during train-
ing, potentially resulting in suboptimal knowledge transfer.

To address these challenges, we propose Balanced Online
knowLedge Distillation (BOLD), which distills both invariant
and specific knowledge from a multi-domain expert teacher
to a student, dynamically balancing their contributions us-
ing uncertainty weighting within an online distillation strat-
egy. BOLD leverages adapter [Gao et al., 2024] techniques to
construct a multi-domain expert teacher. Specifically, it inte-
grates multiple adapters into a pretrained backbone, with each
adapter specializing in capturing knowledge for a specific do-
main. This design separates invariant knowledge within the
backbone from specific knowledge in the adapters, allow-
ing the student to distill invariant knowledge from the back-
bone and specific knowledge from the corresponding expert
adapter. To tackle the second challenge, BOLD incorporates
Pareto optimization principles [Lin et al., 2019] and uncer-
tainty weighting [Kendall et al., 2018] to ensure that both
types of knowledge are optimized simultaneously without
compromising either. Furthermore, BOLD employs an on-
line distillation strategy, enabling domain experts to train con-
currently with the student. During this process, the domain
experts minimize the discrepancy between their and student
outputs. This online approach enables the domain experts to
dynamically adapt based on the student feedback throughout
training, facilitating more effective knowledge transfer.

Our contributions are as follows: (1) We demonstrate that
leveraging an appropriate optimization strategy effectively
enhances the model’s generalizability by distilling both in-
variant and specific knowledge. (2) We illustrate that adapt-
ing the teacher in response to student feedback using an
online distillation strategy improves knowledge transfer and
strengthens the student’s generalizability. (3) We provide the
theoretical insights that underline the importance of domain-
specific knowledge and establish the rationale for utilizing
uncertainty weighting. Experiments against state-of-the-art
baselines validate the effectiveness of the BOLD framework.

2 Related Work

Domain Shift refers to the degradation in performance
caused by discrepancies between the source (training) and
target (testing) domains [Pan and Yang, 2009]. Domain adap-
tation has been proposed to address this issue by aligning the
marginal [Baktashmotlagh et al., 2013] or conditional [Luo
et al., 2020] distributions of the source and target domains or
by fine-tuning models trained on source domains to adapt to
the target domain [Long et al., 2015]. To reduce the cost as-
sociated with annotating target domain data, domain adapta-
tion has been explored in semi-supervised [Saito et al., 2019]
and unsupervised [Long et al., 2017] scenarios, utilizing par-
tially labelled or unlabelled target domain data during train-
ing. However, these methods still rely on pre-collected target
domain data, which presents a practical limitation, as obtain-
ing such data is not always feasible [Yue et al., 2019]. This
limitation highlights the need for approaches that are able to
generalize to unseen domains without requiring target domain
data collection in advance [Wang et al., 2022].
Domain Generalization (DG) was first introduced by [Blan-
chard et al., 2011] and later formalized by [Muandet et al.,
2013]. Existing DG approaches primarily fall into three
categories: data augmentation [Zhou et al., 2020], domain-
invariant representation learning [Wang et al., 2022], and
specialized learning strategies [Zhao et al., 2024; Pang et
al., 2025]. Recently, knowledge distillation has attracted
attention in the context of DG. [Wang et al., 2021] first
proposed a gradient regularization method to regularize the
domain-invariant knowledge distilled from the teacher. [Lee
et al., 2022] introduced a self-distillation framework where
a group of students collectively form a teacher, with each
student distilling domain-invariant knowledge from the en-
semble teacher. [Huang et al., 2023] leverages the text en-
coder of a Vision-Language model to distil domain-invariant
knowledge. [Zhang et al., 2023b] suggested distilling
domain-aware knowledge from a large pre-trained teacher
model. Most existing methods focus exclusively on dis-
tilling domain-invariant knowledge, overlooking the signifi-
cance of domain-specific knowledge [Seo et al., 2020; Bui et
al., 2021]. Additionally, these methods typically employ an
offline distillation strategy, where the teacher remains fixed
after initial training. In contrast, our framework distills both
invariant and specific knowledge using an online distillation
strategy, allowing the teacher to adapt based on feedback
from the student.
Knowledge Distillation was initially developed for model
compression, with the goal of making the output of a smaller
student model similar to that of a larger, existing teacher
model [Hinton et al., 2014]. [Luo et al., 2016] demon-
strated that training a student model using knowledge from
a teacher via knowledge distillation can lead to better per-
formance than direct training with one-hot ground truth la-
bels. Knowledge distillation methods can be categorized
into offline and online approaches, depending on whether the
teacher is updated concurrently with the student [Gou et al.,
2021]. In offline distillation, knowledge is transferred from a
pre-trained teacher to a student, typically following a two-
stage training process [Zagoruyko and Komodakis, 2017;

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Mirzadeh et al., 2020; Li et al., 2020]. Conversely, online dis-
tillation allows for the simultaneous updating of both teacher
and student and supports an end-to-end trainable knowledge
distillation framework [Anil et al., 2018; Zhang et al., 2018;
Chen et al., 2020; Wu and Gong, 2021]. While offline
distillation has proven effective in DG [Wang et al., 2021;
Lee et al., 2022; Huang et al., 2023], the potential of online
distillation remains unexplored. To our knowledge, this work
is the first to explore how online distillation enhances DG.

3 Balanced Online Knowledge Distillation
This section begins with an overview of domain generaliza-
tion and knowledge distillation. We then present Balanced
Online Knowledge Distillation (BOLD) in three parts: 1) We
describe how the teacher acquires specific knowledge and
how the student distills invariant and specific knowledge from
the teacher; 2) We explain how BOLD incorporates the Pareto
optimization principle and uncertainty weighting to balance
the distilled invariant and specific knowledge; 3) We discuss
how the teacher dynamically adapts to student feedback, en-
hancing the knowledge transfer. Additionally, we provide
theoretical insights that highlight the importance of domain-
specific knowledge and justify the use of uncertainty weight-
ing. Figure 2 illustrates the BOLD framework.

3.1 Preliminary
Notation. Let X denote an input feature space, with dimen-
sion d, and Y a target class label space. A domain, D, is
composed of data sampled from a joint distribution P(X,Y )
on X ×Y , where D = (xi, yi)

n
i=1 ∼ P(X,Y ), x ∈ X ⊂ Rd,

y ∈ Y ⊂ R and n is the number of data in the domain. Here,
X and Y denote the corresponding random variables [Zhou
et al., 2022; Wang et al., 2022].
Domain Generalization. For the task of domain generaliza-
tion, the input is N source domains (training set), S = {Dj |
j = 1, · · · , N}, where Dj = {(xj

i , y
j
i )}

nj

i=1 denotes the j-th
domain and nj denotes the number of examples in j-th do-
main. The joint distributions between each pair of domains
are different: P(X,Y )(j) ̸= P(X,Y )(k), j ̸= k. The goal of
domain generalization is to learn a robust and generalizable
predictive function f : X → Y from the N source domains
to achieve a minimum prediction error on an unseen target
domain T , where T cannot be accessed during training and
P(X,Y )(T ) ̸= P(X,Y )(j) for j ∈ {1, · · · , N}.
Knowledge Distillation. Let T (x) and S(x) denote the out-
puts of the teacher and student models for a given input x.
The knowledge distillation loss LKD is typically defined as
the Kullback-Leibler (KL) divergence between the outputs of
the teacher and student models: LKD = KL (T (x) ∥ S(x)).

3.2 Distilling Invariant and Specific Knowledge
Teacher Model. We adopt Contrastive Language-Image Pre-
training (CLIP) [Radford et al., 2021] as the backbone for
the teacher model, which includes both an image encoder
and a text encoder. CLIP was selected for its strong gener-
alization ability in associating images with their correspond-
ing textual descriptions. For extracting invariant knowledge,
the teacher leverages the pretrained image encoder without

additional fine-tuning. To capture specific knowledge, we
integrate adapters [Gao et al., 2024], a parameter-efficient
tuning method, where each adapter specializes in a specific
domain. Figure 2 illustrates that multiple domain-specific
adapters are appended to the image encoder, with the number
of adapters corresponding to the number of source domains.
This design segregates invariant knowledge within the back-
bone and specific knowledge within the adapters. By ensur-
ing the teacher preserves invariant knowledge while acquiring
specific knowledge, the student is able to effectively distill in-
variant knowledge from the backbone and specific knowledge
from the corresponding expert adapter.

We employ cross-entropy loss, Lce, for each expert adapter
E. Unlike approaches that rely solely on maximizing simi-
larity, cross-entropy allows us to maximize the similarity be-
tween an image and its ground-truth prompt while minimiz-
ing the similarity with unmatched prompts, ensuring compre-
hensive optimization [Radford et al., 2021]. For each class
c, we generate m × N prompts in the format: “a picture of
a {Dj}{ck}.”, where m is the number of classes, Dj repre-
sents the j-th domain and ck represents the k-th class. The
text encoder of the teacher model converts these prompts into
text embeddings, yielding m text embeddings per domain,
corresponding to the m classes. When processing an im-
age from domain Di, the corresponding expert adapter Ei

calculates the cross-entropy loss LE for each domain, as de-
fined in Equation 1. Here, Timg denotes the image encoder
of the teacher model, Ej and T j represent the expert and
text embeddings for the j-th domain, respectively, where
j ∈ {1, · · · , N}. The similarity measurement, sim(·, ·), eval-
uates the similarity of image-text pairs, and we adopt cosine
similarity following prior works [Radford et al., 2021].

Lj
E = Lce(sim(Ej(Timg(x)), T

j), y) (1)

After calculating LE for each domain, BOLD computes the
domain loss Li

domain for expert adapter i by minimizing the
loss for its corresponding domain while maximizing the loss
for other domains, as outlined in Equation 2.

Li
domain = Li

E − 1

N − 1

N∑
j=1,j ̸=i

Lj
E (2)

Student Model. To distill both invariant and specific knowl-
edge from the teacher, we introduce two distillation losses:
Invariant Distillation Loss (Linv) and Student-Specific Dis-
tillation Loss (Lsspc), as defined in Equations 3 and 4. The
loss Linv minimizes the KL divergence between the outputs of
the student and the image encoder of the teacher, while Li

sspc
minimizes the KL divergence between the student’s outputs
and the outputs of the relevant domain expert Ei correspond-
ing to the domain of the input data. Since KL divergence is
an asymmetric distance measure, the direction of distribution
guidance is crucial. In our approach, the distribution of the
teacher’s output is used to guide the student’s output when
distilling knowledge from the teacher to the student.

Linv = KL(Timg(x) ∥ S(x)) (3)

Li
sspc = KL(Ei(Timg(x)) ∥ S(x)) (4)
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Figure 2: Overview of BOLD. BOLD employs a teacher-student architecture, where the teacher is based on Contrastive Language-Image
Pretraining (CLIP) and consists of an image encoder and a text encoder. The image encoder is augmented with multiple domain expert
adapters, each designed to retain domain-specific knowledge for a particular source domain. The student distills invariant knowledge by
minimizing the KL divergence between its output and the invariant embeddings produced by the image encoder (Linv) and distills specific
knowledge by minimizing the KL divergence between its output and the specific embeddings produced by the adapters (Lsspc). These two
losses are balanced using two learnable weights, σinv and σsspc. The domain expert adapters capture specific knowledge by minimizing
the image-to-text loss for matched domains while maximizing it for unmatched domains. Additionally, they minimize the teacher-specific
distillation loss (Ltspc) to incorporate student feedback, further enhancing the effectiveness of knowledge transfer.

Additionally, the student model learns independently by min-
imizing the cross-entropy of the given input. Equation 5 out-
lines the complete loss function.

LS = Linv + Lsspc + Lce(S(x), y) (5)

The combination of Linv and Lsspc enables the student to cap-
ture both shared and unique features across domains, which
is essential for enhancing the model’s ability to generalize to
unseen domains when the target domain shares features with
some source domains. Furthermore, minimizing the diver-
gence between student and teacher outputs acts as regulariza-
tion, mitigating the risk of overfitting to the source domain
data. Since the teacher’s output represents a full probability
distribution over all classes, the student learns to not only pre-
dict the correct label but also to approximate this distribution,
thereby accounting for uncertainty. Additionally, reducing
the divergence between student and teacher outputs enables
the student to capture implicit information embedded in the
teacher’s soft outputs regarding inter-class relationships. This
includes subtle correlations and patterns that are not evident
through hard labels [Wang et al., 2021].

3.3 Balancing Invariant and Specific Knowledge
Simultaneously distilling invariant and specific knowledge
into a single model presents a critical challenge: balancing
the contributions of potentially conflicting losses. To address
this, we leverage the principles of Pareto optimization [Lin et
al., 2019], which suggest that when conflicts arise between
multiple optimization objectives, a well-designed weight-
ing strategy can optimize one objective without compromis-
ing the others. Specifically, we adopt uncertainty weight-
ing [Kendall et al., 2018], introducing two learnable parame-

ters, σinv and σsspc, to dynamically adjust the contributions of
the invariant and specific distillation losses.

We begin by recalling the key definitions of Pareto opti-
mality [Liang et al., 2021]. Let θ ∈ Θ represent the model
parameters and consider n loss functions. Generally, it is in-
feasible to find a single θ that minimizes all losses simulta-
neously due to inherent conflicts among them. However, it is
possible to identify a set of solutions known as Pareto optimal
solutions, which balance these competing losses effectively.
Definition 1 (Pareto Dominance). Let θA, θB ∈ Θ represent
two parameter vectors. We say that θA Pareto dominates θB
(denoted as θA ≺ θB) if li(θA) ≤ li(θ

B), ∀i ∈ {1, 2, · · · , n}
and li(θ

A) < li(θ
B), ∃i ∈ {1, 2, · · · , n}.

Definition 2 (Pareto Optimality). A parameter vector θ∗ is
Pareto optimality if there is no other parameter vector θ that
dominates it. Formally, θ∗ is Pareto optimal if there does not
exist θ such that θ ≺ θ∗.
Definition 3 (Pareto Front). The Pareto front is the set of
all Pareto optimal parameter vectors in the loss space, where
each point corresponds to a unique parameter vector.

We address the simultaneous learning of invariant and
specific knowledge within a Pareto optimization framework.
Traditional Pareto-based methods, such as weighted sums,
the ϵ-constraint technique, Chebyshev distance minimiza-
tion, and evolutionary algorithms, can approximate the Pareto
front but only rely on static or manually tuned weight assign-
ments [Miettinen, 1999], which are difficulty to calibrate. To
overcome this limitation, we employ uncertainty weighting
to dynamically adjust the contributions of each loss function.
This approach eliminates the need for repeated hyperparam-
eter tuning and ensures robustness against gradient fluctua-
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tions. The updated loss function for the student is defined in
Equation 6. Compared to directly learning the weights using
a simple linear combination of losses, uncertainty weighting
offers a significant advantage by preventing the weights from
converging to zero [Kendall et al., 2018].

LS =
1

σ2
inv

Linv +
1

σ2
sspc

Lsspc + log(σinv ·σsspc)+Lce(S(x), y)

(6)
To justify our approach in relation to uncertainty weight-

ing, we demonstrate that minimizing the KL divergence be-
tween student features and both invariant and specific fea-
tures, corresponding to the invariant and specific distillation
losses, is equivalent to maximizing a multi-task likelihood for
these two objectives (Equation 7). This probabilistic inter-
pretation aligns seamlessly with the uncertainty framework,
providing a robust theoretical foundation. Here, zinv denotes
the invariant features output by the teacher’s backbone, zspc

denotes the specific features output by the domain expert
adapter, and zstudent denote the features output by the student.

L = min
(
KL

(
zinv ∥ zstudent)+ KL

(
zspc ∥ zstudent))

= min

(
Ezinv

[
log

(
zinv

zstudent

)]
+ Ezspc

[
log

(
zspc

zstudent

)])
∝ min

(
−Ezinv

[
log zstudent]− Ezspc

[
log zstudent])

⇔ max
(
Ezinv,zspc

[
log

(
zstudent(zinv) · zstudent(zspc)

)])
(7)

3.4 Online Knowledge Distillation
In contrast to existing DG methods based on knowledge dis-
tillation that utilize a fixed teacher model, we implement
an online distillation strategy, enabling the teacher to adapt
to student feedback. To accomplish this, we introduce the
Teacher-Specific Distillation Loss, Ltspc, defined in Equation
8 and integrate it into the teacher’s learning objective, as il-
lustrated in Equation 9. Unlike the Student-Specific Distilla-
tion Loss, the Teacher-Specific Distillation Loss leverages the
student’s output to guide the teacher’s output. During train-
ing, only the domain expert corresponding to the input data’s
domain is updated, while the teacher’s image encoder and do-
main experts for unrelated domains remain unaffected. Here,
Li
T denotes the loss for the domain expert associated with

the i-th domain while Li
domain and Li

tspc are the domain and
teacher-specific distillation losses for the i-th domain.

Li
tspc = KL(S(x) ∥ Ei(Timg(x))) (8)

Li
T = Li

domain + Li
tspc (9)

The online distillation strategy enables the teacher to adapt in
real-time based on feedback from the student. Unlike fixed
teacher models, which may become outdated as the student
evolves, this dynamic adaptation ensures that the transferred
knowledge remains relevant and continuously refined, result-
ing in more effective knowledge transfer. Moreover, the on-
line distillation approach supports an end-to-end training pro-
cess, eliminating the need for a separate training phase.

4 Experiments
We evaluate our approach using the DomainBed [Gulra-
jani and Lopez-Paz, 2021] benchmark across five datasets:
PACS [Li et al., 2017], OfficeHome [Venkateswara et al.,
2017], VLCS [Fang et al., 2013], Terra Incognita [Beery et
al., 2018], and DomainNet [Peng et al., 2019]. Additionally,
we assess performance on Digits [Zhou et al., 2020] and on
NICO++ [Zhang et al., 2023a].

4.1 Experimental Results
Table 1 reports the average accuracy for all baselines across
all benchmarks. The best performance is highlighted in bold,
while the second-best performance is underlined.
Overall Average Accuracy Across Benchmarks. Table 1
highlights three key findings: (1) BOLD consistently out-
performs state-of-the-art approaches, achieving the highest
accuracy on the PACS, OfficeHome, VLCS, DomainNet,
and NICO++ datasets, demonstrating its effectiveness in im-
proving model generalizability to unseen domains. No-
tably, BOLD’s strong performance on large-scale datasets
such as DomainNet and NICO++ underscores its scalabil-
ity. (2) Knowledge distillation-based methods (NKD, RISE,
and BOLD) show weaker performance on the Terra and Dig-
its datasets. This underperformance is attributed to limita-
tions of the teacher model, CLIP, which performs poorly on
these datasets. Consequently, students trained to mimic the
teacher’s outputs inherit these limitations. (3). Despite over-
all lower performance on Terra and Digits, BOLD surpasses
NKD and RISE by a clear margin, achieving an improvement
of approximately 5% on the Terra dataset.
Effectiveness Across Different Backbones. Table 2 presents
evaluation results of BOLD, NKD, and RISE using different
backbones across all benchmarks. The table includes evalua-
tions of knowledge distillation from ResNet-50 and ViT-B/32
to ResNet-18 and from ResNet-50 to ResNet-50. Results for
distilling knowledge from ViT-B/32 to ResNet-50 are shown
in Table 1. These results demonstrate that BOLD consistently
outperforms NKD and RISE across all backbones, highlight-
ing its effectiveness in domain generalization.

4.2 Ablation Study
Effectiveness of Domain-Specific Knowledge and Online
Distillation Strategy. Table 3 presents the ablation study re-
sults, validating the effectiveness of distilling domain-specific
knowledge and employing the online distillation strategy.
Here, Invariant represents the setup where the student dis-
tills only domain-invariant knowledge. Spcoffline refers to the
setup where the student distills both types of knowledge but
offline, meaning the teacher does not adapt to feedback from
the student. Spconline refers to the setup where the student dis-
tills both types of knowledge online, allowing the teacher to
adapt dynamically based on student feedback during training.

Based on the results in Table 3, we make three key obser-
vations: (1) When invariant knowledge is highly represen-
tative, the benefits of distilling specific knowledge are rela-
tively minor. (2) When the target domain shares knowledge
with the source domains, distilling specific knowledge re-
sults in substantial improvements, as observed in PACS and
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PACS OfficeHome VLCS Terra DomainNet Digits NICO++

ERM [Vapnik, 1999] 83.0 ± .4 68.2 ± .6 77.2 ± .5 41.7 ± .6 40.7 ± .4 79.4 ± .3 79.8 ± .3
CrossGrad [Shankar et al., 2018] 81.7 ± .3 69.8 ± .3 76.1 ± .3 44.7 ± .3 38.5 ± .2 79.5 ± .4 80.6 ± .3
MLDG [Li et al., 2018a] 82.8 ± .3 68.6 ± .4 77.2 ± .4 46.2 ± .5 41.0 ± .4 79.7 ± .4 79.7 ± .4
MMD [Li et al., 2018b] 83.2 ± .7 67.7 ± .6 77.2 ± .4 46.6 ± .6 31.7 ± .5 79.9 ± .4 80.2 ± .4
IRM [Arjovsky et al., 2019] 81.5 ± .3 66.9 ± .4 76.4 ± .4 43.1 ± .6 36.0 ± .4 79.2 ± .4 79.3 ± .4
DDAIG [Zhou et al., 2020] 83.2 ± .3 69.9 ± .3 76.7 ± .3 45.2 ± .2 41.5 ± .3 80.2 ± .3 81.4 ± .2
RSC [Huang et al., 2020] 82.7 ± .5 68.4 ± .6 77.5 ± .4 40.6 ± .3 39.0 ± .4 79.9 ± .4 82.1 ± .4
MixStyle [Zhou et al., 2021] 82.3 ± .3 70.5 ± .3 77.5 ± .3 49.0 ± .3 42.8 ± .3 81.4 ± .3 82.3 ± .3
MTL [Blanchard et al., 2021] 83.6 ± .5 68.1 ± .5 76.6 ± .4 46.2 ± .6 40.5 ± .3 80.3 ± .4 82.0 ± .4
DomainMix [Sun et al., 2022] 82.2 ± .3 69.8 ± .3 76.1 ± .3 48.1 ± .3 42.3 ± .2 80.0 ± .4 82.7 ± .3
EFDMix [Zhang et al., 2022] 84.6 ± .4 71.2 ± .2 78.3 ± .3 49.9 ± .3 44.2 ± .3 82.1 ± .3 82.6 ± .3
SSPL [Zhao et al., 2024] 84.0 ± .3 71.2 ± .2 77.9 ± .4 48.5 ± .3 42.8 ± .3 81.1 ± .3 82.3 ± .3

NKD [Wang et al., 2021] 84.7 ± .2 70.5 ± .2 80.3 ± .3 32.7 ± .3 44.5 ± .3 49.9 ± .3 81.7 ± .4
RISE [Huang et al., 2023] 86.3 ± .4 71.1 ± .2 80.6 ± .3 34.4 ± .3 45.4 ± .2 51.6 ± .3 82.9 ± .4

BOLD (Our method) 88.7 ± .3 72.8 ± .3 81.7 ± .4 39.6 ± .3 48.1 ± .3 53.7 ± .2 84.7 ± .4

Table 1: Comparison with the state-of-the-art methods on PACS, OfficeHome, VLCS, Terra, DomainNet, Digits, and NICO++.

ResNet50 → ResNet18 ViT-B/32 → ResNet18 ResNet50 → ResNet50
NKD RISE BOLD NKD RISE BOLD NKD RISE BOLD

PACS 79.7 ± .3 80.9 ± .2 82.0 ± .2 81.2 ± .3 82.3 ± .2 83.9 ± .2 83.3 ± .4 85.0 ± .3 85.7 ± .2
OfficeHome 63.4 ± .2 64.1 ± .2 66.2 ± .2 64.0 ± .2 65.0 ± .2 66.9 ± .2 71.1 ± .3 71.5 ± .2 72.6 ± .2
VLCS 75.7 ± .4 76.2 ± .5 76.9 ± .3 76.0 ± .2 76.9 ± .3 77.7 ± .3 77.1 ± .3 77.6 ± .2 78.7 ± .2
Terra 22.1 ± .4 23.4 ± .3 29.4 ± .3 21.4 ± .3 22.4 ± .4 28.6 ± .3 37.2 ± .3 39.0 ± .3 44.3 ± .3
DomainNet 35.8 ± .2 38.4 ± .2 39.5 ± .2 39.4 ± .2 41.9 ± .3 43.2 ± .2 42.4 ± .2 45.2 ± .2 46.9 ± .2
Digits 47.9 ± .3 49.7 ± .4 51.6 ± .2 41.2 ± .3 43.7 ± .4 46.3 ± .3 49.9 ± .4 52.0 ± .3 54.4 ± .2
NICO++ 76.3 ± .3 77.5 ± .3 78.1 ± .2 77.5 ± .3 78.8 ± .3 79.4 ± .2 80.8 ± .3 81.8 ± .3 83.3 ± .3

Table 2: Comparison with various knowledge distillation-based domain generalization approaches using different backbones.

DomainNet. (3) The online distillation strategy effectively
enhances knowledge transfer, particularly when the original
teacher demonstrates limited capability, as observed in Terra.

Invariant Spcoffline Spconline

PACS 84.7 ± .2 87.2 ± .2 88.7 ± .3
OfficeHome 70.5 ± .2 72.0 ± .2 72.8 ± .3
VLCS 80.3 ± .3 80.9 ± .2 81.7 ± .4
Terra 32.7 ± .3 33.9 ± .3 39.6 ± .3
DomainNet 44.5 ± .3 47.0 ± .4 48.1 ± .3
Digits 49.9 ± .3 51.7 ± .3 53.7 ± .2
NICO++ 81.7 ± .4 83.9 ± .2 84.7 ± .4

Table 3: Ablation Study of Domain-Specific Knowledge and Online
Distillation Strategy.

Effectiveness of Uncertainty Weighting. Table 4 presents
an ablation study evaluating the uncertainty weighting for
balancing invariant and specific distillation losses. We com-
pare it with three alternatives: static weighting (fixed weight
of 0.5 for each loss), GradNorm [Chen et al., 2018], and
ParetoMTL [Lin et al., 2019]. The results show that while
GradNorm and ParetoMTL outperform Uncertainty Weight-
ing in specific domains, Uncertainty Weighting consistently
achieves either the best or second-best performance across all
domains, leading to the highest overall performance. These
findings underscore its robustness and effectiveness.

Static GradNorm ParetoMTL Uncertainty

PACS 87.2 ± .3 87.4 ± .3 87.9 ± .3 88.7 ± .3
OfficeHome 71.3 ± .4 71.8 ± .3 71.9 ± .5 72.8 ± .3
VLCS 79.9 ± .3 80.9 ± .5 80.6 ± .4 81.7 ± .4
Terra 37.6 ± .3 38.5 ± .3 37.4 ± .4 39.6 ± .3
DomainNet 46.3 ± .3 47.1 ± .4 47.5 ± .3 48.1 ± .3
Digits 51.8 ± .4 52.6 ± .2 52.0 ± .5 53.7 ± .2
NICO++ 82.5 ± .3 83.5 ± .3 83.0 ± .4 84.7 ± .4

Table 4: Ablation Study of Different Weighting Strategy.

4.3 Further Analysis
Varying of σInv and σsspc. Figure 3 illustrates changes in σinv,
σsspc, and their ratio σsspc/σinv. From these results, we make
three key observations: (1) The optimal values of σinv and
σsspc vary across datasets, making manual weight tuning im-
practical and highlighting the necessity for a dynamic weight-
ing strategy. (2) A higher ratio of σsspc/σinv in datasets such
as DomainNet and OfficeHome suggests that specific knowl-
edge is more important in these contexts than in datasets like
Terra, Digits, and VLCS. This observation aligns with Figure
4, where Terra is the only dataset exhibiting gradient conflict
between invariant and specific distillation losses, while Digits
and VLCS exhibit low gradient similarity. (3) The values of
σinv consistently exceed those of σsspc, indicating that the in-
variant distillation loss contributes more to learning than the
specific distillation loss. This finding supports the intuition
that specific knowledge complements rather than dominates
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(a) σinv (b) σsspc (c) σsspc/σinv

Figure 3: Varying of σinv, σsspc and σsspc/σinv

invariant knowledge during training.
Knowledge Conflict. Figure 4 illustrates how cosine simi-
larity between the gradients of invariant and specific distilla-
tion losses evolves over 50 epochs across all benchmarks. As
training progresses, the gradient similarity converges. For the
Terra dataset, the similarity converges to approximately -0.2,
indicating a gradient conflict between invariant and specific
distillation losses. In contrast, for the remaining benchmarks,
the similarity converges to a positive value. These findings
suggest that invariant and specific knowledge are not inher-
ently conflicting; rather, their conflict is dataset-dependent,
reinforcing the need for an appropriate balancing strategy.

Figure 4: Knowledge Conflict Validation.

T-SNE Visualization. Figure 5 presents the T-SNE visualiza-
tion for ERM, NKD, RISE, and BOLD on PACS. As shown,
distilling knowledge from a large teacher allows NKD, RISE,
and BOLD to produce a more separable embedding space
than ERM, highlighting the effectiveness of knowledge dis-
tillation. Furthermore, by incorporating specific knowledge,
BOLD achieves an even more distinct and well-separated em-
bedding space than NKD and RISE, demonstrating the poten-
tial of domain-specific knowledge for effective DG.
Imbalanced Dataset & Scalability. Imbalanced dataset dis-
tribution poses a practical challenge in providing sufficient
training for domain experts. However, our framework em-
ploys lightweight adapters as domain experts instead of large-
scale neural networks. This design enables effective training
even in domains with only a few hundred images. We also
compare the parameter count across different backbones and
expert adapters relative to the number of source domains.

(a) ERM (b) NKD

(c) RISE (d) BOLD

Figure 5: T-SNE visualization. Art, Cartoon, and Sketch.

5 Conclusion
Our Balanced Online Knowledge Distillation (BOLD) frame-
work leverages both domain-invariant and domain-specific
knowledge through an online distillation strategy to improve
domain generalization. BOLD employs uncertainty weight-
ing to dynamically balance loss contributions, eliminating
the need for manual tuning and enhancing robustness across
diverse datasets. The framework is supported by theoret-
ical insights, providing a theoretical foundation for its de-
sign. Experiments and ablation studies validate the effective-
ness of BOLD. Future work will explore developing more
advanced distillation strategies to address limitations in the
teacher model’s capabilities and extend BOLD to more com-
plex tasks, such as object detection and re-identification.
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Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization. ArXiv:1907.02893, 2019.

[Baktashmotlagh et al., 2013] Mahsa Baktashmotlagh,
Mehrtash T Harandi, Brian C Lovell, and Mathieu
Salzmann. Unsupervised domain adaptation by domain
invariant projection. In ICCV, pages 769–776, 2013.

[Beery et al., 2018] Sara Beery, Grant Van Horn, and Pietro
Perona. Recognition in terra incognita. In ECCV, pages
456–473, 2018.

[Blanchard et al., 2011] Gilles Blanchard, Gyemin Lee, and
Clayton Scott. Generalizing from several related classi-
fication tasks to a new unlabeled sample. NeurIPS, 24,
2011.

[Blanchard et al., 2021] Gilles Blanchard, Aniket Anand
Deshmukh, Urun Dogan, Gyemin Lee, and Clayton
Scott. Domain generalization by marginal transfer learn-
ing. PMLR, 22(2):1–55, 2021.

[Bui et al., 2021] Manh-Ha Bui, Toan Tran, Anh Tran, and
Dinh Phung. Exploiting domain-specific features to en-
hance domain generalization. NeurIPS, 34:21189–21201,
2021.

[Chen et al., 2018] Zhao Chen, Vijay Badrinarayanan,
Chen-Yu Lee, and Andrew Rabinovich. Gradnorm:
Gradient normalization for adaptive loss balancing in deep
multitask networks. In ICML, pages 794–803. PMLR,
2018.

[Chen et al., 2020] Defang Chen, Jian-Ping Mei, Can Wang,
Yan Feng, and Chun Chen. Online knowledge distillation
with diverse peers. In AAAI, volume 34, pages 3430–3437,
2020.

[Fang et al., 2013] Chen Fang, Ye Xu, and Daniel N Rock-
more. Unbiased metric learning: On the utilization of mul-
tiple datasets and web images for softening bias. In ICCV,
pages 1657–1664, 2013.

[Gao et al., 2024] Peng Gao, Shijie Geng, Renrui Zhang,
Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models
with feature adapters. IJCV, 132(2):581–595, 2024.

[Gou et al., 2021] Jianping Gou, Baosheng Yu, Stephen J
Maybank, and Dacheng Tao. Knowledge distillation: A
survey. IJCV, 129(6):1789–1819, 2021.

[Gulrajani and Lopez-Paz, 2021] Ishaan Gulrajani and
David Lopez-Paz. In search of lost domain generalization.
In ICLR, 2021.

[Hinton et al., 2014] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
NeurIPS, 2014.

[Huang et al., 2020] Zeyi Huang, Haohan Wang, Eric P
Xing, and Dong Huang. Self-challenging improves
cross-domain generalization. In ECCV, pages 124–140.
Springer, 2020.

[Huang et al., 2023] Zeyi Huang, Andy Zhou, Zijian Ling,
Mu Cai, Haohan Wang, and Yong Jae Lee. A sentence
speaks a thousand images: Domain generalization through
distilling clip with language guidance. In ICCV, pages
11685–11695, 2023.

[Kendall et al., 2018] Alex Kendall, Yarin Gal, and Roberto
Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In CVPR, pages
7482–7491, 2018.

[Lee et al., 2022] Kyungmoon Lee, Sungyeon Kim, and
Suha Kwak. Cross-domain ensemble distillation for do-
main generalization. In ECCV, pages 1–20. Springer,
2022.

[Li et al., 2017] Da Li, Yongxin Yang, Yi-Zhe Song, and
Timothy M Hospedales. Deeper, broader and artier do-
main generalization. In ICCV, pages 5542–5550, 2017.

[Li et al., 2018a] Da Li, Yongxin Yang, Yi-Zhe Song, and
Timothy Hospedales. Learning to generalize: Meta-
learning for domain generalization. In AAAI, volume 32,
2018.

[Li et al., 2018b] Haoliang Li, Sinno Jialin Pan, Shiqi Wang,
and Alex C Kot. Domain generalization with adversarial
feature learning. In CVPR, pages 5400–5409, 2018.

[Li et al., 2020] Tianhong Li, Jianguo Li, Zhuang Liu, and
Changshui Zhang. Few sample knowledge distillation for
efficient network compression. In CVPR, pages 14639–
14647, 2020.

[Liang et al., 2021] Jian Liang, Kaixiong Gong, Shuang Li,
Chi Harold Liu, Han Li, Di Liu, Guoren Wang, et al.
Pareto domain adaptation. NeurIPS, 34:12917–12929,
2021.

[Lin et al., 2019] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-
Fu Zhang, and Sam Kwong. Pareto multi-task learning.
NeurIPS, 32, 2019.

[Long et al., 2015] Mingsheng Long, Yue Cao, Jianmin
Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In ICML, pages 97–105,
2015.

[Long et al., 2017] Mingsheng Long, Han Zhu, Jianmin
Wang, and Michael I Jordan. Deep transfer learning with
joint adaptation networks. In ICML, pages 2208–2217.
PMLR, 2017.

[Luo et al., 2016] Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiao-
gang Wang, and Xiaoou Tang. Face model compression by
distilling knowledge from neurons. In AAAI, volume 30,
2016.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Luo et al., 2020] Yadan Luo, Zijian Wang, Zi Huang, and
Mahsa Baktashmotlagh. Progressive graph learning for
open-set domain adaptation. In ICML, pages 6468–6478.
PMLR, 2020.

[Miettinen, 1999] Kaisa Miettinen. Nonlinear multiobjective
optimization, volume 12. Springer Science & Business
Media, 1999.

[Mirzadeh et al., 2020] Seyed Iman Mirzadeh, Mehrdad
Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and
Hassan Ghasemzadeh. Improved knowledge distillation
via teacher assistant. In AAAI, volume 34, pages 5191–
5198, 2020.

[Muandet et al., 2013] Krikamol Muandet, David Balduzzi,
and Bernhard Schölkopf. Domain generalization via in-
variant feature representation. In ICML, pages 10–18.
PMLR, 2013.

[Pan and Yang, 2009] Sinno Jialin Pan and Qiang Yang. A
survey on transfer learning. TKDE, pages 1345–1359,
2009.

[Pang et al., 2025] Bo Pang, Tingrui Qiao, Caroline Walker,
Chris Cunningham, and Yun Sing Koh. Libra: Measur-
ing bias of large language model from a local context. In
ECIR, pages 1–16. Springer, 2025.

[Peng et al., 2019] Xingchao Peng, Qinxun Bai, Xide Xia,
Zijun Huang, Kate Saenko, and Bo Wang. Moment match-
ing for multi-source domain adaptation. In ICCV, pages
1406–1415, 2019.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In ICML, pages 8748–8763.
PMLR, 2021.

[Saito et al., 2019] Kuniaki Saito, Donghyun Kim, Stan
Sclaroff, Trevor Darrell, and Kate Saenko. Semi-
supervised domain adaptation via minimax entropy. In
ICCV, pages 8050–8058, 2019.

[Seo et al., 2020] Seonguk Seo, Yumin Suh, Dongwan Kim,
Geeho Kim, Jongwoo Han, and Bohyung Han. Learning
to optimize domain specific normalization for domain gen-
eralization. In ECCV, pages 68–83. Springer, 2020.

[Shankar et al., 2018] Shiv Shankar, Vihari Piratla, Soumen
Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and
Sunita Sarawagi. Generalizing across domains via cross-
gradient training. ICLR, 2018.

[Sun et al., 2022] Zhishu Sun, Zhifeng Shen, Luojun Lin,
Yuanlong Yu, Zhifeng Yang, Shicai Yang, and Weijie
Chen. Dynamic domain generalization. IJCAI, 2022.

[Vapnik, 1999] Vladimir N Vapnik. An overview of statisti-
cal learning theory. TNN, 10(5):988–999, 1999.

[Venkateswara et al., 2017] Hemanth Venkateswara, Jose
Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised do-
main adaptation. In CVPR, pages 5018–5027, 2017.

[Wang et al., 2021] Yufei Wang, Haoliang Li, Lap-pui Chau,
and Alex C Kot. Embracing the dark knowledge: Domain
generalization using regularized knowledge distillation. In
ACM MM, pages 2595–2604, 2021.

[Wang et al., 2022] Jindong Wang, Cuiling Lan, Chang Liu,
Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wen-
jun Zeng, and Philip Yu. Generalizing to unseen domains:
A survey on domain generalization. TKDE, 2022.

[Wu and Gong, 2021] Guile Wu and Shaogang Gong. Peer
collaborative learning for online knowledge distillation. In
AAAI, volume 35, pages 10302–10310, 2021.

[Xu et al., 2019] Ruijia Xu, Guanbin Li, Jihan Yang, and
Liang Lin. Larger norm more transferable: An adaptive
feature norm approach for unsupervised domain adapta-
tion. In ICCV, pages 1426–1435, 2019.

[Yue et al., 2019] Xiangyu Yue, Yang Zhang, Sicheng Zhao,
Alberto Sangiovanni-Vincentelli, Kurt Keutzer, and Bo-
qing Gong. Domain randomization and pyramid consis-
tency: Simulation-to-real generalization without accessing
target domain data. In ICCV, pages 2100–2110, 2019.

[Zagoruyko and Komodakis, 2017] Sergey Zagoruyko and
Nikos Komodakis. Paying more attention to attention: Im-
proving the performance of convolutional neural networks
via attention transfer. In ICLR, 2017.

[Zhang et al., 2018] Ying Zhang, Tao Xiang, Timothy M
Hospedales, and Huchuan Lu. Deep mutual learning. In
CVPR, pages 4320–4328, 2018.

[Zhang et al., 2022] Yabin Zhang, Minghan Li, Ruihuang Li,
Kui Jia, and Lei Zhang. Exact feature distribution match-
ing for arbitrary style transfer and domain generalization.
In CVPR, pages 8035–8045, 2022.

[Zhang et al., 2023a] Xingxuan Zhang, Yue He, Renzhe Xu,
Han Yu, Zheyan Shen, and Peng Cui. Nico++: Towards
better benchmarking for domain generalization. In CVPR,
pages 16036–16047, 2023.

[Zhang et al., 2023b] Zhongqiang Zhang, Ge Liu, Fuhan
Cai, Duo Liu, and Xiangzhong Fang. Boosting domain
generalization by domain-aware knowledge distillation.
KBS, 280:111021, 2023.

[Zhao et al., 2024] Di Zhao, Yun Sing Koh, Gillian Dobbie,
Hongsheng Hu, and Philippe Fournier-Viger. Symmetric
self-paced learning for domain generalization. In AAAI,
volume 38, pages 16961–16969, 2024.

[Zhou et al., 2020] Kaiyang Zhou, Yongxin Yang, Timothy
Hospedales, and Tao Xiang. Deep domain-adversarial im-
age generation for domain generalisation. In AAAI, pages
13025–13032, 2020.

[Zhou et al., 2021] Kaiyang Zhou, Yongxin Yang, Yu Qiao,
and Tao Xiang. Domain generalization with mixstyle.
ICLR, 2021.

[Zhou et al., 2022] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao
Xiang, and Chen Change Loy. Domain generalization: A
survey. TPAMI, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


