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Abstract

Spatio-temporal data mining is crucial for decision-
making and planning in diverse domains. How-
ever, in real-world scenarios, training and testing
data are often not independent or identically dis-
tributed due to rapid changes in data distributions
over time and space, resulting in spatio-temporal
out-of-distribution (OOD) challenges. This non-
stationarity complicates accurate predictions and
has motivated research efforts focused on mitigat-
ing non-stationarity through normalization opera-
tions. Existing methods, nonetheless, often ad-
dress individual time series in isolation, neglect-
ing correlations across locations, which limits their
capacity to handle complex spatio-temporal distri-
bution shifts and results in suboptimal solutions.
To overcome these challenges, we propose Clus-
tering Adaptive Normalization (CAN-ST), a gen-
eral and model-agnostic method that mitigates non-
stationarity by capturing shared distributional pat-
terns evolution across nodes via adaptive cluster-
ing and a parameter register. As a plugin, CAN-
ST can be easily integrated into various spatio-
temporal prediction models. Extensive experi-
ments on multiple datasets with diverse forecasting
models demonstrate that CAN-ST consistently im-
proves performance by over 20% on average and
outperforms SOTA normalization methods.

1 Introduction

The rise of sensor networks has led to the widespread col-
lection of spatio-temporal time series in urban environments.
As these datasets expand rapidly, accurate spatio-temporal
time series forecasting becomes increasingly crucial for var-
ious real-world applications, including transportation [Jiang
et al., 2021; Jin et al., 2023], weather [Angryk et al., 2020;
Gong et al., 2024], and economics [Lai er al, 2018;
Dong et al., 2024]. Given the significance and urgency
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Figure 1: An example of spatio-temporal Out-of-Distribution
(OOD).

of urban spatio-temporal prediction, recent advancements in
deep learning techniques [Li er al., 2024; Qu et al., 2022;
An et al., 2024; Deng et al., 2024a; Deng et al., 2022;
Deng et al., 2024b] have accelerated research in this domain.

However, accurately predicting spatio-temporal patterns
remains a challenge due to the rapid evolution of distri-
butions over time, which results in spatio-temporal out-of-
distribution (OOD) scenarios [Liu et al., 2024]. One such
example is illustrated in Figure 1, showing the dynamic evo-
lution of urban areas. Several months ago during 7', subway
construction disrupted the road between Ny and Ny, alter-
ing spatial dependencies by weakening the Ny-NN, correla-
tion and strengthening the N5-N; correlation. These changes
reverted after the project was completed during 72. Addi-
tionally, the relocation of the entertainment mall at N3 to N5,
expansion of the N,- N, road for the subway station, and con-
struction of a new residential building at N3 led to further
shifts in spatial relations.

These changes altered the spatio-temporal joint distribu-
tion, rendering previous deep learning models ineffective. A
decade ago, research showed that machine learning systems
could fail significantly when evaluated on data outside the
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domain of their training examples, mainly due to their depen-
dence on the training distribution [Dai and Van Gool, 2018;
Wang et al., 2024b]. To alleviate the impact of distribution
shifts, normalization methods have been proposed as a viable
solution [Passalis et al., 2019; Liu et al., 2024]. These meth-
ods aim to remove non-stationary factors, infer output statis-
tics from input statistics, and estimate the output distribution
via de-normalization. However, these methods learn statistics
evolution patterns for each location time series independently,
overlooking potential shared patterns across spatial dimen-
sions. As a result, when correlations between spatial nodes
change, suboptimal solutions can arise.

For instance, in urban traffic flow prediction, changes at
specific spatio-temporal nodes can lead to significant shifts in
distribution patterns. As shown in Figure 1, the demolition
of the entertainment mall at N3 and its replacement with a
residential area during 7 caused a dramatic shift in observed
patterns. Previous methods, which focused solely on individ-
ual locations, experienced notable performance degradation
at this node during T5. In fact, the behavior at N3 during 75
could be inferred from data at other nodes, such as N and
Ny during 77, as these locations exhibit similar trends to res-
idential areas. In practice, this provided valuable insights,
revealing shared patterns critical for understanding dy-
namics in spatio-temporal OOD learning.

This observation suggests the use of clustering to extract
representative spatio-temporal patterns. When distribution
shifts occur at a specific spatio-temporal node, these cluster-
level patterns can be leveraged to infer the new distribution,
mitigating the impact of such changes. Motivated by this,
we propose Clustering Adaptive Normalization (CAN-ST), a
model-agnostic framework for spatio-temporal OOD learn-
ing. CAN-ST operates in three steps: (1) it normalizes input
data using statistics to remove non-stationary factors, ensur-
ing more reliable predictions; (2) it applies adaptive cluster-
ing to group spatio-temporal nodes with similar patterns, fa-
cilitating the extraction of representative spatio-temporal se-
mantics and reducing reliance on individual historical time
series; (3) it uses a parameter register to capture distributional
evolution patterns specific to each cluster, enabling flexible
and accurate de-normalization and distribution transforma-
tions, even under severe spatio-temporal OOD conditions.

Unlike existing methods that focus on individual nodes or
time series, CAN-ST captures both localized distributional
changes at each node and shared distributional evolution pat-
terns among nodes within the same cluster. By integrating
these features, CAN-ST ensures robust normalization and de-
normalization in spatio-temporal OOD scenarios. Extensive
experiments conducted on widely used datasets demonstrate
that CAN-ST significantly improves the performance of var-
ious mainstream prediction models, consistently outperform-
ing state-of-the-art normalization approaches. In summary,
our work makes the following key contributions:

¢ We introduce CAN-ST, a general normalization frame-
work specifically designed for spatio-temporal OOD
learning tasks. As a plugin, CAN-ST can be easily inte-
grated into various spatio-temporal prediction models.

* We propose an adaptive spatio-temporal clustering

method to capture shared distributional evolution pat-
terns, along with a parameter register that ensures sta-
ble and flexible distribution transformations, even under
spatio-temporal distribution shifts.

We validate CAN-ST through extensive experiments on
four real-world datasets. The results demonstrate that
it consistently enhances predictive performance across
mainstream models and surpasses state-of-the-art nor-
malization methods, showcasing its effectiveness in
tackling spatio-temporal OOD challenges.

2 Related Work
2.1 Spatio-temporal Out-of-Distribution Learning

Previous studies in spatio-temporal data mining have exten-
sively explored out-of-distribution (OOD) challenges [Wang
et al., 2024a; Du et al., 2021; Yao et al., 2022; Deng et
al., 2023], laying the groundwork for understanding distri-
butional shifts in real-world applications. Recent focus has
shifted to OOD issues in spatio-temporal urban prediction,
where urbanization and evolving mobility patterns introduce
significant temporal and spatial discrepancies. Infrastructure
changes, seasonal variations, and unforeseen events further
exacerbate non-stationarity in urban data. Recent works [Xia
et al., 2024; Zhou et al., 20231, address OOD scenarios us-
ing causal inference within spatio-temporal frameworks. Xia
[2024] proposed a hybrid approach combining disentangle-
ment blocks for backdoor adjustment and frontdoor adjust-
ment with edge-level convolution. Zhou [2023] reformulated
invariant learning to identify stable parameters robust under
varying distributions. These methods highlight the potential
of causal inference to mitigate OOD effects.

However, causality-based methods often require complex
training, significant computational resources, and expertise,
limiting scalability and real-time use. CAN-ST offers a prac-
tical and model-agnostic alternative. By tackling OOD chal-
lenges through a lightweight framework, CAN-ST balances
computational efficiency with predictive accuracy, making it
ideal for dynamic, non-stationary environments.

2.2 Normalization Methods for Non-stationary
Time Series Forecasting

Approaches to normalization have been devised to address
the challenges posed by non-stationarity. To account for
instance-specific variations, [Ogasawara et al., 2010] pro-
pose leveraging normalization techniques that rely on local
characteristics rather than global statistics. Passalis [2019]
advance this instance-wise normalization framework by in-
troducing an adaptive and learnable approach. While these
methods effectively eliminate non-stationary elements from
inputs, predicting non-stationary time series in the outputs re-
mains a significant challenge.

To address this, reversible instance normalization [Kim
et al., 2021] was introduced, allowing the removed non-
stationary components to be reintroduced for output recon-
struction. However, it presumes consistent trends between in-
puts and outputs. Kim [2021] further refine this idea through
RevIN, focusing on evolving trends within input sequences.
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Figure 2: The framework of our CAN-ST. CAN-ST first normalizes the input data to eliminate non-stationary factors. It then applies adaptive
clustering to group spatio-temporal nodes with similar patterns. Subsequently, a parameter register captures the transformation coefficients
for the statistics of each specific cluster. Finally, CAN-ST utilizes these transformation coefficients to infer the output statistics, which are

then used to generate the output distribution through de-normalization.

Recent studies [Fan er al., 2023; Ogasawara et al., 2010]
delve into trend modeling at finer granularities, such as at
the segment level. Additionally, Ye [2024] and Dai [2024]
extended normalization using Fourier Transform to capture
frequency-domain information.

These works focus on independent time series, ignoring
spatio-temporal dependencies. In contrast, CAN-ST employs
adaptive clustering to capture shared patterns and a parameter
register to dynamically model local and global relationships.

3 Problem Definition

Let G = (V, E, A) represent a spatial network, where V' and
E denote the sets of vertices and edges, respectively. The ad-
jacency matrix of G is denoted as A. Furthermore, we define
the graph signal matrix z; € RV*P for G, where D repre-
sents the feature dimension, N = |V/| is the number of ver-
tices, and z; represents the observations of G at time step ¢.
Overall, the goal of spatio-temporal tasks is to learn a multi-
step prediction function f based on historical observations:

f((xthw-‘a uxt+7')7 (1)

where T is the input length of past time step observations,
and 7 is the number of future steps we aim to predict.

Unlike traditional spatio-temporal learning tasks, spatio-
temporal OOD learning allows the graph relationships to dif-
fer between training and testing phases and to evolve over
time during training. Specifically, following the setup of
previous works, we assume that the graph G, represent-
ing spatial relationships, and the spatio-temporal distribution
p™(X) in the test set differ from those in the training set,
such that:

‘thl)ag) — (UCt7iL"t+1> e

GTest # GTrain, Test( ) # Train ( ) (2)

4 Methodology

We propose a general, model-agnostic normalization frame-
work for spatio-temporal OOD learning, termed Clustering
Adaptive Normalization (CAN-ST), to address the aforemen-
tioned spatio-temporal distribution shift challenges. In this
section, we provide a detailed explanation of the framework
of CAN-ST and illustrate how it handles data affected by
spatio-temporal distribution shifts. The whole framework
CAN-ST be referred to in Figure 2.

4.1 Normalization

Given a spatio-temporal input denoted as X € RTXNxD
which represents { x;_7,...,24—1 }, CAN-ST normalizes
the input to remove the non-stationary factors. Specifically,
we normalize the input data X’ using its instance-specific
mean and standard deviation, which is widely accepted as
instance normalization [Kim et al., 2021]. The mean and
standard deviation are computed for every spatio-temporal in-
stance:

T N

ZZ » €RP, 3)
_
ZZ L= n) eRD, (4)
o X

X' = (&)

Vi 01-2 + €
where € is a small positive constant, typically set to 1 x 1075.
Finally, the transformed X¢, with non-stationary factors re-
moved, is used as the new input for the prediction model.
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4.2 Adaptive Spatio-temporal Clustering

Unlike existing methods, which normalize and de-normalize
only the time series of individual spatial nodes, CAN-ST ad-
dresses a natural challenge: how to estimate future evo-
lution distributions without solely relying on historical
time series in the presence of spatio-temporal distribution
shifts?

In scenarios where such shifts occur, using the mean and
variance of a single historical time series for de-normalization
can lead to significant performance degradation, as the out-
put statistics deviate from p; and o;. Additionally, for nodes
introducing new spatio-temporal relationships (such as N3 at
future temporal node in Figure 1), sharp changes in the spatio-
temporal distribution create an urgent need for interactions
with nodes that exhibit similar trends. To address these is-
sues, it is essential to extract shared knowledge from similar
spatio-temporal nodes as a reserve. During distribution shifts,
the model can bypass sole reliance on the historical data of
individual nodes for de-normalization by leveraging shared
knowledge from all nodes. This shared knowledge is used to
infer the required statistical properties for de-normalization,
enabling a more robust transformation.

Motivated by this, CAN-ST clusters all spatio-temporal
nodes to identify representative spatio-temporal patterns
within the dataset. First, CAN-ST performs adaptive spatio-
temporal clustering based on the input data. Unlike tasks in
NLP and CV, where features generally correspond to similar
types of information, each feature in urban spatio-temporal
computing often conveys distinct meanings, such as vehicle
speed and traffic volume. Therefore, we model each feature
separately, as outlined below:

S[d,:] = softmax(X'[d,:] - W[d,:,:]),d =1,...,D, (6)

where W € RPXTNXC g the clustering matrix. X €
RPXTN is the reshaping of X?. C is the predefined number
of spatio-temporal clusters. Each row of S[d, :] represents the
probability of the spatio-temporal sample belonging to each
cluster for feature d.

4.3 Statistics Residual Affine & Denormalization

Then, we performs match-based de-normalization accord-
ing to the clustering results. To achieve more accurate de-
normalization, CAN-ST learns to infer the statistics of out-
put.

To leverage the patterns of typical spatio-temporal clusters
and eliminate reliance on the historical sequences of individ-
ual nodes, CAN-ST is equipped with transformation parame-
ter registers. These registers store the statistics transforma-
tion patterns from input’s distribution space to output’s of
each cluster. For given spatio-temporal nodes, the register
is matched based on there clustering scores, producing affine
coefficients that integrate global spatio-temporal dependen-
cies. We assigns separate transformation parameter regis-
ters for the mean and variance, which are learned end-to-end
alongside the prediction model. These registers are randomly
initialized as R, € RPXCXC" and R, € RP*C*C" Next,

we match the spatio-temporal nodes with the parameter reg-
isters based on the clustering results to obtain transformation
coefficients:

W,ld,:| = relu(relu(S[d,:] - R.[d,:,:]) - W1), (7)

Wold,:] = relu(relu(S[d,:] - Ry[d,:,:]) - Wa), (8)

where W, € RO %! and W, € R %! are learnable pooling
weights used to reduce the dimension from C’ to 1. Then
W, € RP*1 and W, € RP*! are used to infer the statis-
tics of the output. We incorporate the residual learning tech-
nique [He et al., 2016] into our method, enabling the mod-
ule to learn the difference between the statistics of the future
output and the input, rather than directly predicting the exact
value. This approach reduces the difficulty of mean modeling
by leveraging prior knowledge of future trends:

iy = g © Wy + pg, &)

6i=0; © Wy + 0y, (10)
where ® denotes element-wise multiplication. While pre-
dicting the statistics, CAN-ST feeds the normalized spatio-
temporal data into the prediction model f(x), which gen-
erates the internal output Y. Finally, CAN-ST applies de-
normalization to the output from the prediction model f(x),
inferring the distribution of output to produce accurate pre-

dictions: yi— f(Xi% (11

Yi=Yi\/6;2 + e+ i (12)

5 Experiment

In this section, we conduct sufficient experiments within a
widely used benchmark dataset compared to state-of-the-art
methods to evidence the effectiveness of our proposed CAN-
ST framework.

5.1 Experimental Setup

All experiments followed strict fairness protocols in a bench-
mark [Wang et al., 2024b].

Datasets: We conduct our experiments on four real-world
datasets: BikeCHI', TaxiCHI?, PEMS08 3 and SpeedNYC
4. The details about these datasets are listed in the Table 1.
We adhere to the in-distribution and out-of-distribution test-
ing protocols outlined in to rigorously evaluate model perfor-
mance. Specifically, models are trained on data from year
A and subsequently evaluated on datasets from both year A
(in-distribution) and year A + 1 (out-of-distribution), which
has been proven to be reasonable [Wang et al., 2024b]. It
should be noted that using data from year A for testing cor-
responds to the conventional experimental setup in spatio-
temporal learning. We adopted the data partitioning strategy
established in prior work [Jiang ef al., 2021], which chrono-
logically divides the data into training, validation, and testing
subsets with a 6:2:2 ratio [Wang et al., 2024b].

"https://www.divvybikes.com/system-Data
“https://data.cityofchicago.org/
3https://pems.dot.ca.gov/
*https://www.nyc.gov/html/dot/html/motorist/atis.shtml
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Dataset Application  City/State Train Year  Train Span  Test Year Test Span Nodes Interval
BikeCHI Bike-sharing Chicago 2019 01.01 -10.19 2019/2020 10.20-12.31 609 60 mins
TaxiCHI Ride-sharing Chicago 2013 01.01 - 10.19 2013/2014 10.20-12.31 77 60 mins
SpeedNYC  Vehicle Speed NYC 2019 03.01 - 05.12 2019/2020 05.13 -05.31 139 5 mins
PEMSO08 Traffic Flow  California 2016 07.01 —08.18 2017/2018 08.19 - 08.31 170 5 mins
Table 1: Datasets Details
TaxiCHI TaxiCHI BikeCHI BikeCHI PEMSO08 PEMSO08 SpeedNYC SpeedNYC
Model 1 hour 3 hours 1 hour 3 hours 5 mins 15 mins 5 mins 15 mins
RMSE MAE |[RMSE MAE |[RMSE MAE |RMSE MAE RMSE MAE RMSE MAE [RMSE MAE |[RMSE MAE
STAEformer| 33.07 10.31 | 4494 1335 | 2.10 1.15 | 243 1.26 |19.69 11.92|21.66 12.74| 483 2.78 | 7.00 4.21
+CAN-ST | 24.28 8.24 | 34.83 10.73 | 2.06 1.14 | 2.27 1.22 |19.54 11.82|21.56 12.67| 490 2.89 | 685 4.15
A 26.58% 20.08%22.50% 19.63%| 1.90% 0.87% | 6.58% 3.17%|0.76% 0.84%|0.46% 0.55%|-1.45% -3.96%|2.14% 1.43%
STGCN | 38.54 11.89 | 47.84 1423 | 2.19 1.21 | 244 1.27 |22.66 15.17|24.30 1597 551 345 | 7.04 444
+CAN-ST | 27.32 9.51 | 3593 11.44 | 2.08 1.19 | 2.28 1.26 |21.34 14.14|23.27 15.22| 523 3.13 | 6.96 4.29
A 29.11% 20.02%|24.90% 19.61%| 5.02% 1.65% | 6.56% 0.79%|5.83% 6.79%|4.24% 4.70%|5.08% 9.28% |1.14% 3.38%
GWNET | 29.19 9.30 |44.39 13.78 | 2.78 1.31 | 278 1.24 |19.91 12.60|22.24 13.63| 4.85 2.77 | 6.82 4.20
+CAN-ST | 22.32 836 | 3495 11.25| 2.09 1.16 | 2.32 1.21 [19.67 12.49|21.89 13.57| 481 2.76 | 6.86 4.19
A 23.54% 10.11%|21.27% 18.36%|24.82% 11.45%|16.55% 0.83%|1.21% 0.87%|1.57% 0.44%)|0.82% 0.36% |-0.59% 0.24%
AGCRN | 33.83 9.94 | 46.06 13.85| 2.06 1.14 | 232 1232091 13.49|22.61 14.33| 541 3.17 | 7.13 541
+CAN-ST | 2420 8.35 | 3455 1085 | 2.06 1.14 | 230 1.22 |{20.43 13.14|22.32 14.17| 5.04 298 | 6.89 4.32
A 28.47% 16.00%|24.99% 21.66%| 0.00% 0.00% | 0.86% 0.81%2.30% 2.59%|1.28% 1.12%|6.84% 5.99% |3.37% 25.23%

Table 2: Forecasting errors (RMSE/MAE) across datasets and models under in-distribution test setting.

Backbone models: CAN-ST is a model-agnostic framework
applicable to any spatio-temporal forecasting model f(x). To
demonstrate the effectiveness of the framework, we select
several mainstream models based on different architectures
and evaluate their performance under both in-distribution and
out-of-distribution conditions: the dilated convolution and
graph convolution based Graph WaveNet [Wu ef al., 2019],
the Transformer-based STAEformer [Liu et al., 2023], the re-
current neural network and graph convolution based AGCRN
[Bai er al., 2020], and the temporal convolution and graph
convolution based STGCN [Yu ez al., 2017]. We follow the
implementation and settings provided in the official code of
the spatio-temporal OOD learning benchmark [Wang et al.,
2024b].

Experiments details: We use ADAM [Kingma, 2014] as
the default optimizer across all the experiments and report
the root mean squared error (RMSE) and mean absolute error
(MAE) as the evaluation metrics.

5.2 Main Results

We present the spatio-temporal prediction results in Table 2
and Table 3. For the TaxiCHI and BikeCHI datasets, the pre-
diction horizons are set to {1 hour, 3 hours}, while for other
datasets, the horizons are {5 minutes, 15 minutes}. Regard-
ing the input sequence length, we follow standard protocols,
fixing the input window length to 12 hours for the TaxiCHI
and BikeCHI datasets and 1 hour for the remaining datasets.
From these results, we derive several key observations as fol-
lows:

(1) CAN-ST consistently delivers substantial performance
gains across multiple datasets and testing scenarios. Both
RMSE and MAE metrics show that models equipped with
CAN-ST outperform their baseline counterparts in most
cases. This demonstrates the adaptability of CAN-ST in vary-
ing testing environments, including both In-Distribution (IN)
and Out-of-Distribution (OUT) settings.

(2) CAN-ST effectively enhances both Transformer-based
models (e.g., STAEformer) and GCN-based models (e.g.,
STGCN, GWNET, and AGCRN). Specifically, CAN-ST
achieves an average relative performance improvement of
22.32%, 22.24%, 19.33%, and 24.24% over STAEformer,
STGCN, GWNET, and AGCRN, respectively.

(3) Under out-of-distribution testing, CAN-augmented
models show substantial improvements. For instance, inte-
grating CAN-ST reduces STAEformer’s RMSE on TaxiCHI
by 46.5% (1-hour: 63.08—31.50; 3-hour: 83.38—44.63).
Consistent gains across other models highlight CAN’s effi-
cacy in adapting to distribution shifts.

(4) The observed performance gains are consistent across
different baseline architectures, including STAEformer,
STGCN, GWNET, and AGCRN. This underlines the gener-
alizability and compatibility of CAN-ST as a plug-in module
for spatio-temporal prediction tasks.

5.3 Comparison with Advanced Normalization

Methods

In this section, we compare CAN-ST with state-of-the-art
normalization methods, including SAN [Liu et al., 2024]
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TaxiCHI TaxiCHI BikeCHI BikeCHI PEMSO08 PEMSO08 SpeedNYC | SpeedNYC
Model 1 hour 3 hours 1 hour 3 hours 5 mins 15 mins 5 mins 15 mins
RMSE MAE |[RMSE MAE |RMSE MAE RMSE MAE |[RMSE MAE |[RMSE MAE |[RMSE MAE [RMSE MAE
STAEformer| 63.08 16.15 | 83.38 22.01 | 3.59 1.88 | 4.10 2.06 | 29.49 19.75 | 37.76 25.04 | 6.57 3.82 | 834 5.09
+CAN-ST | 31.50 10.12 | 44.63 13.64 | 3.40 1.85| 4.03 2.05|27.62 17.86 | 3526 22.50 | 6.70 3.85 | 8.18 4.94
A 50.06% 37.34%|46.47% 38.03%| 5.29% 1.60%|1.71% 0.49%)| 6.34% 9.57% | 6.62% 10.14%|-1.98% -0.79%|1.92% 2.95%
STGCN | 73.85 20.34 | 86.47 2357 | 372 197 | 410 2.10|93.57 62.64 |99.70 6736 | 831 541 | 930 6.17
+CAN-ST | 35.19 11.85| 4595 1442 | 3.27 1.86| 3.74 2.00 | 81.25 5534 | 85.02 58.48 | 8.12 510 | 946 6.10
A 52.35% 41.74%|46.86% 38.82%|12.10% 5.58%|8.78% 4.76%|13.17% 11.65%|14.72% 13.18%|2.29% 5.73% |-1.72% 1.13%
GWNET | 48.69 13.21 | 76.17 21.03 | 3.18 1.75| 3.58 1.95|24.60 1591 | 30.89 19.61 | 6.14 3.42 | 742 4.53
+CAN-ST | 26.63 9.48 | 43.47 13.67 | 3.01 1.74 | 3.56 193 | 2399 1555 |29.76 1894 | 6.27 337 | 7.27 4.21
A 45.31% 28.24%|42.93% 35.00%| 5.35% 0.57%|0.56% 1.03%|2.48% 2.26% |3.66% 3.42% |-2.12% 1.46% |2.02% 7.06%
AGCRN | 60.60 15.56 | 80.63 22.29 | 3.25 1.81 | 3.87 2.04 | 4539 3245|5507 3930 | 742 4.64 | 8.68 5.62
+CAN-ST | 29.67 9.81 | 4340 13.53 | 3.18 1.81 | 3.69 2.01 | 37.74 2547 | 44.69 3093 | 7.83 4.62 | 926 5.80
A 51.04% 36.95%|46.17% 39.30%| 2.15% 0.00%|4.65% 1.47%|16.85% 21.51%|18.85% 21.30%|-5.53% 0.43% |-6.68% -3.20%

Table 3: Forecasting errors (RMSE/MAE) across datasets and models under out-of-distribution test setting.

and Dish-TS [Fan er al., 2023] for non-stationary time series
forecasting, ST-Norm [Deng er al., 2021] for non-stationary
spatio-temporal forecasting, and Z-score normalization. For
the TaxiCHI and BikeCHI datasets, the prediction horizons
are set to {1 hour, 2 hours, ..., 12 hours}. Regarding the in-
put sequence length, we follow the same experimental set-
tings outlined in Section 5.2. We report the average re-
sults across all prediction horizons for STAEformer, STGCN,
GWNET, and AGCRN, as well as the relative improvements
in Table 4, revealing CAN-ST demonstrates superior perfor-
mance compared to existing normalization methods across all
evaluated scenarios and models. The experimental results
validate the effectiveness of CAN-ST and highlight its key
design advantages, which can be attributed to following pri-
mary factors:

(1) Unlike traditional normalization methods, such as Z-
Score, which apply static transformations based on fixed sta-
tistical metrics calculated from the entire dataset, CAN-ST
introduces a dynamic mechanism that adapts to evolving dis-
tributional patterns. This adaptability ensures that the nor-
malization process remains aligned with the underlying data
distribution, effectively mitigating the impact of distribution
shifts and enhancing the robustness and accuracy of down-
stream predictive models.

(2) Compared to SAN and DishST, which focus on single
time series for the specific spatial node, CAN-ST provides a
more comprehensive solution by simultaneously addressing
localized and shared distributional changes through cluster
spatio-temporal nodes. This holistic approach makes it more
robust in diverse scenarios.

(3) STNorm’s dependence on global statistics limits its
effectiveness under spatio-temporal distribution shifts (e.g.,
emerging nodes or dynamic node behaviors). In contrast,
CAN-ST dynamically clusters similar nodes and adapts trans-
formation parameters, maintaining robust performance de-
spite severe shifts.

Methods ‘
\ BikeCHI

IN

\ ouT

TaxiCHI \ BikeCHI

TaxiCHI

‘RMSE MAE RMSE

MAE ‘RMSE MAE

RMSE MAE

STAEformer

2.64
2.48
2.75
3.23
2.35

Z-Score
ST-Norm
SAN
DishST
CAN-ST

46.64
53.95
55.50
41.95
38.87

1.32
1.26
1.40
1.73
1.25

13.83
17.04
16.57
12.57
11.70

4.48
4.38
4.10
4.01
3.88

2.14
2.14
2.16
2.29
2.05

80.78
91.31
67.70
50.89
49.22

21.78
25.76
19.52
14.81
14.68

STGCN

2.64
2.55
3.26
2.79
2.45

Z-Score
ST-Norm
SAN
DishST
CAN-ST

49.71
52.34
85.82
66.08
39.73

1.34
1.33
1.57
1.88
1.31

21

14.74
15.77
26.82
19
12.22

432
4.46
4.18
3.75
3.69

2.15
2.17
2.22
232
2.00

87.83 23.94
89.66 25.44
105.07 31.21
79.26 24.52
50.42 15.41

GWNET

2.51
2.96
3.40
3.35
243

Z-Score
ST-Norm
SAN
DishST
CAN-ST

1.29
1.47
1.61
1.69
1.28

48.57
49.22
41.25
44.57
39.26

14.96
14.62
12.56
13.39
12.34

3.99
4.44
4.19 222
3.82 2.15
3.68 2.01

2.04
221

76.51
83.06
51.22
53.73
49.37

20.97
22.28
14.99
15.46
14.97

AGCRN

2.47
2.54
3.37
3.38
240

Z-Score
ST-Norm
SAN
DishST
CAN-ST

51.95
133.83
59.50
50.32
39.33

1.27
1.28
1.62
1.70
1.26

15.35
30.85
18.36
16.37
11.95

3.99
4.06
4.15
4.67
3.75

2.08
2.15
221
2.34
2.04

90.20 24.93
178.02 41.14
74.28 22.00
58.52 18.71
48.59 14.61

Table 4:

Forecasting errors under in-distribution and

out-of-

distribution test setting compared to other normalization methods.
The bold values indicate the best performance.
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Figure 3: Performance comparison of different clustering approaches.

5.4 Investigation of Clustering Approaches

In this section, we investigate the impact of different clus-
tering methods on experimental results. We examined three
approaches ann presented the results in Figure 3.

* Naive: Do not utilize clustering approaches.

¢ CAN-ST: Our method clusters both temporal and spatial
nodes of the input space simultaneously.

* ST-parallel: This approach clusters temporal and spa-
tial nodes separately in parallel, matches them with the
parameter register, and then fuses the results to obtain
the affine coefficients.

e ST-sequential: This method clusters using the entire
temporal sequence of spatial nodes, directly matching
them with the parameter register to derive the affine co-
efficients.

CAN-ST consistently achieves the lowest RMSE and MAE
by effectively modeling spatio-temporal patterns, outper-
forming other methods in both stable and shifting data dis-
tributions. While ST-sequential shows moderate robustness,
and ST-parallel offers limited flexibility, both occasionally
underperform baseline methods. In contrast, CAN-ST main-
tains robust superiority, demonstrating that simple parallel or
sequential feature processing fails to capture complex spatio-
temporal dynamics effectively.

5.5 Hyperparameters Analysis

CAN-ST clusters spatio-temporal nodes into C' classes based
on their spatio-temporal distributions, where C'is the size of
W, in Section 4.2. We analyze the influence of different C'
values on prediction accuracy in Figure 4. When C' = 16, the
model consistently achieves optimal performance. Although
the RMSE under the Out-of-Distribution testing setting is
minimized when C' = 20, other metrics are not consistently
optimal in this configuration. Consequently, it is evident that
performance significantly outperforms other variants in most
cases when using the most appropriate C', highlighting the
effectiveness of clustering.
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138
1.35 2.16
213 Zon
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Figure 4: Hyperparameter study on BikeCHI dataset.

5.6 Discussion of Complexity and Runtime

We analyze the computational overhead of CAN-ST through
theoretical complexity analysis and empirical runtime mea-
surements. The framework introduces three main lightweight
components: Normalization: Instance-wise statistics calcula-
tion (Egs. 1-3) requires O(T N D) operations; Adaptive Clus-
tering: Feature-specific clustering (Eq. 6) has O(DTNC)
complexity, where C (default 16) denotes cluster count.
This scales linearly with T, N, and D; Parameter Regis-
ter: Transformation coefficient derivation (Eqgs. 7-8) involves
O(DCC") operations. On TaxiCHI (N = 77, T = 12),
CAN-ST adds only 0.59s/epoch to STAEformer’s training
time (16.24s vs. 16.83s), demonstrating efficient computa-
tion while improving OOD performance. Similar observa-
tions were made on other datasets and backbone models.

6 Conclusion

In this study, we propose CAN-ST, a model-agnostic
framework for spatio-temporal OOD learning. Its three-
step approach—normalization, adaptive clustering, and
cluster-aware denormalization—effectively handles distribu-
tion shifts by jointly modeling local variations and global pat-
terns. Experiments validate CAN-ST’s superior performance
over SOTA methods across diverse models and datasets.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (62476154, 62202270), and
Major Basic Research Project of Shandong Provincial Nat-
ural Science Foundation (ZR2024ZD03) and the Shandong
Excellent Young Scientists Fund (Oversea) (2022HWYQ-
044), and the Taishan Scholar Project of Shandong Province
(tsqn202306066), and Shandong University Qilu Young
Scholars Program.

References

[An eral.,2024] Yang An, Zhibin Li, Wei Liu, Haoliang
Sun, Meng Chen, Wenpeng Lu, and Yongshun Gong.
Spatio-temporal graph normalizing flow for probabilistic
traffic prediction. In Proceedings of the 33rd ACM Inter-
national Conference on Information and Knowledge Man-
agement, page 45-55, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery.

[Angryk er al., 2020] Rafal A Angryk, Petrus C Martens,
Berkay Aydin, Dustin Kempton, Sushant S Mahajan,
Sunitha Basodi, Azim Ahmadzadeh, Xumin Cai, Soukaina
Filali Boubrahimi, Shah Muhammad Hamdi, et al. Multi-
variate time series dataset for space weather data analytics.
Scientific data, 7(1):227, 2020.

[Bai et al., 2020] Lei Bai, Lina Yao, Can Li, Xianzhi Wang,
and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in neural infor-
mation processing systems, 33:17804—-17815, 2020.

[Dai and Van Gool, 2018] Dengxin Dai and Luc Van Gool.
Dark model adaptation: Semantic image segmentation
from daytime to nighttime. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC),
pages 3819-3824. IEEE, 2018.

[Dai et al., 2024] Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi
Li, Xue Yuerong, Shu-Tao Xia, and Zexuan Zhu. Ddn:
Dual-domain dynamic normalization for non-stationary
time series forecasting. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024.

[Deng er al., 2021] Jinliang Deng, Xiusi Chen, Renhe Jiang,
Xuan Song, and Ivor W Tsang. St-norm: Spatial and tem-
poral normalization for multi-variate time series forecast-
ing. In Proceedings of the 27th ACM SIGKDD conference
on knowledge discovery & data mining, pages 269-278,
2021.

[Deng er al., 2022] Jinliang Deng, Xiusi Chen, Renhe Jiang,
Xuan Song, and Ivor W Tsang. A multi-view multi-task
learning framework for multi-variate time series forecast-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing, 35(8):7665-7680, 2022.

[Deng et al., 2023] Pan Deng, Yu Zhao, Junting Liu, Xi-
aofeng Jia, and Mulan Wang. Spatio-temporal neural
structural causal models for bike flow prediction. In Pro-

ceedings of the AAAI conference on artificial intelligence,
volume 37, pages 4242-4249, 2023.

[Deng et al., 2024a] Jinliang Deng, Xiusi Chen, Renhe
Jiang, Du Yin, Yi Yang, Xuan Song, and Ivor W Tsang.
Disentangling structured components: Towards adaptive,
interpretable and scalable time series forecasting. IEEE
Transactions on Knowledge and Data Engineering, 2024.

[Deng et al., 2024b] Jinliang Deng, Feiyang Ye, Du Yin,
Xuan Song, Ivor Tsang, and Hui Xiong. Parsimony or
capability? decomposition delivers both in long-term time
series forecasting. Advances in Neural Information Pro-
cessing Systems, 37:66687-66712, 2024.

[Dong et al., 2024] Zheng Dong, Renhe Jiang, Haotian Gao,
Hangchen Liu, Jinliang Deng, Qingsong Wen, and Xuan
Song. Heterogeneity-informed meta-parameter learning
for spatiotemporal time series forecasting. In Proceedings
of the 30th ACM SIGKDD conference on knowledge dis-
covery and data mining, pages 631-641, 2024.

[Du et al., 2021] Yuntao Du, Jindong Wang, Wenjie Feng,
Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang.
Adarnn: Adaptive learning and forecasting of time se-
ries. In Proceedings of the 30th ACM international con-
ference on information & knowledge management, pages
402-411, 2021.

[Fan et al., 2023] Wei Fan, Pengyang Wang, Dongkun
Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu.
Dish-ts: a general paradigm for alleviating distribution
shift in time series forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 37, pages
75227529, 2023.

[Gong er al., 2024] Yongshun Gong, Tiantian He, Meng
Chen, Bin Wang, Ligiang Nie, and Yilong Yin. Spatio-
temporal enhanced contrastive and contextual learning for
weather forecasting. IEEE Transactions on Knowledge
and Data Engineering, 2024.

[He er al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770-778, 2016.

[Jiang e al., 2021] Renhe Jiang, Du Yin, Zhaonan Wang,
Yizhuo Wang, Jiewen Deng, Hangchen Liu, Zekun Cai,
Jinliang Deng, Xuan Song, and Ryosuke Shibasaki. DI-
traff: Survey and benchmark of deep learning models
for urban traffic prediction. In Proceedings of the 30th
ACM international conference on information & knowl-
edge management, pages 4515-4525, 2021.

[Jin er al., 2023] Yilun Jin, Kai Chen, and Qiang Yang.
Transferable graph structure learning for graph-based traf-
fic forecasting across cities. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1032—-1043, 2023.

[Kim er al., 2021] Taesung Kim, Jinhee Kim, Yunwon Tae,
Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series
forecasting against distribution shift. In International Con-
ference on Learning Representations, 2021.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Kingma, 2014] Diederik P Kingma. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[Lai et al., 2018] Guokun Lai, Wei-Cheng Chang, Yiming
Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st
international ACM SIGIR conference on research & devel-
opment in information retrieval, pages 95-104, 2018.

[Li et al., 2024] Xiaoyu Li, Yongshun Gong, Wei Liu, Yi-
long Yin, Yu Zheng, and Ligiang Nie. Dual-track spatio-
temporal learning for urban flow prediction with adaptive
normalization. Artificial Intelligence, 328:104065, 2024.

[Liu et al., 2023] Hangchen Liu, Zheng Dong, Renhe Jiang,
Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan
Song. Spatio-temporal adaptive embedding makes vanilla
transformer sota for traffic forecasting. In Proceedings
of the 32nd ACM international conference on information
and knowledge management, pages 4125-4129, 2023.

[Liu et al., 2024] Zhiding Liu, Mingyue Cheng, Zhi Li,
Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen.
Adaptive normalization for non-stationary time series
forecasting: A temporal slice perspective. Advances in
Neural Information Processing Systems, 36, 2024.

[Ogasawara erf al., 2010] Eduardo Ogasawara, Leonardo C
Martinez, Daniel De Oliveira, Geraldo Zimbrio, Gisele L
Pappa, and Marta Mattoso. Adaptive normalization: A
novel data normalization approach for non-stationary time
series. In The 2010 International Joint Conference on Neu-
ral Networks (IJCNN), pages 1-8. IEEE, 2010.

[Passalis et al., 2019] Nikolaos Passalis, Anastasios Tefas,
Juho Kanniainen, Moncef Gabbouj, and Alexandros losi-
fidis. Deep adaptive input normalization for time series
forecasting. IEEE transactions on neural networks and
learning systems, 31(9):3760-3765, 2019.

[Qu et al., 2022] Hao Qu, Yongshun Gong, Meng Chen,
Junbo Zhang, Yu Zheng, and Yilong Yin. Forecasting fine-
grained urban flows via spatio-temporal contrastive self-

supervision. [EEE Transactions on Knowledge and Data
Engineering, 35(8):8008-8023, 2022.

[Wang et al., 2024a] Binwu Wang, Jiaming Ma, Pengkun
Wang, Xu Wang, Yudong Zhang, Zhengyang Zhou, and
Yang Wang. Stone: A spatio-temporal ood learning frame-
work kills both spatial and temporal shifts. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 2948-2959, 2024.

[Wang et al., 2024b] Hongjun Wang, Jiyuan Chen, Tong
Pan, Zheng Dong, Lingyu Zhang, Renhe Jiang, and
Xuan Song. Evaluating the generalization ability of spa-
tiotemporal model in urban scenario. arXiv preprint
arXiv:2410.04740, 2024.

[Wu et al., 2019] Zonghan Wu, Shirui Pan, Guodong Long,
Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. arXiv preprint
arXiv:1906.00121, 2019.

[Xia er al., 2024] Yutong Xia, Yuxuan Liang, Haomin Wen,
Xu Liu, Kun Wang, Zhengyang Zhou, and Roger Zimmer-
mann. Deciphering spatio-temporal graph forecasting: A
causal lens and treatment. Advances in Neural Information
Processing Systems, 36, 2024.

[Yao et al., 2022] Huaxiu Yao, Caroline Choi, Bochuan Cao,
Yoonho Lee, Pang Wei W Koh, and Chelsea Finn. Wild-
time: A benchmark of in-the-wild distribution shift over

time. Advances in Neural Information Processing Systems,
35:10309-10324, 2022.

[Ye et al., 2024] Weiwei Ye, Songgaojun Deng, Qiaosha
Zou, and Ning Gui. Frequency adaptive normalization
for non-stationary time series forecasting. arXiv preprint
arXiv:2409.20371, 2024.

[Yu et al., 2017] Bing Yu, Haoteng Yin, and Zhanxing Zhu.
Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint
arXiv:1709.04875, 2017.

[Zhou et al., 2023] Zhengyang Zhou, Qihe Huang, Kuo
Yang, Kun Wang, Xu Wang, Yudong Zhang, Yuxuan
Liang, and Yang Wang. Maintaining the status quo: Cap-
turing invariant relations for ood spatiotemporal learning.
In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 3603—
3614, 2023.



