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2D Gaussian Splatting for Outdoor Scene Decomposition and Relighting
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Abstract
Gaussian splatting techniques have recently revolu-
tionized outdoor scene decomposition and relight-
ing through multi-view images. However, achiev-
ing high rendering quality still requires a fixed
lighting condition among all input views, which
is costly or even impractical to capture in outdoor
scenes. In this paper, we propose outdoor scene de-
composition and relighting with 2D Gaussian splat-
ting (OSDR-GS), a novel inverse rendering strategy
under outdoor changing and unknown lighting con-
ditions. Firstly, we present a lighting-based group
learning framework that categorizes input images
into multiple lighting groups, to learn the separate
lighting from each group individually. Secondly,
OSDR-GS introduces a fine-grained outdoor light-
ing component to represent sun-light and sky-light,
respectively, which are also adjusted via the correl-
ative exposure factors adaptively. Finally, we con-
struct a visibility-driven shadow module to charac-
terize the nuanced interplay of light and occlusion
realistically, for eliminating the uncertainty of dark
pixels on lighting-based group learning. Exten-
sive experiments on multiple challenging outdoor
datasets validate the effectiveness of OSDR-GS,
which achieves the state-of-the-art performance in
changing lighting scene inverse rendering.

1 Introduction
Inverse rendering is a fundamental task in computer vision
and graphics. It aims to decompose the 3D scene into intrinsic
properties (e.g., material, geometry, and environment light-
ing) only from multi-view images, then allowing all proper-
ties can be manipulated independently.

Recently, advanced novel view synthesis techniques like
neural radiance field (NeRF) [Mildenhall et al., 2021] provide
a new approach for inverse rendering. Several NeRF-derived
researches decompose scenes by multiple multi-layer percep-
tions (MLP) to learn intrinsic properties separately [Srini-
vasan et al., 2021; Zhang et al., 2021b; Rudnev et al.,
2022]. However, the execution of MLP networks leads to

∗Corresponding author.

(a) Outdoor Images Inputs

(c) Scene Properties Learning 

(b) Lighting-based Grouping

…

(d) Decomposition and Relighting

Lighting 
Groups

Scene

…

Lighting

Exposure Albedo Normal Visibility Relighting

Figure 1: (a) OSDR-GS takes multi-view outdoor images with
changing lighting conditions as input. (b) It clusters images into
several groups by their lighting cues, and (c) learns scene properties
(e.g., geometry, material, and lighting) within lighting groups, (d)
enabling the scene decomposition and relighting.

high computation, which significantly suffers from render-
ing efficiency. Recent 3D Gaussian splatting (3DGS) [Kerbl
et al., 2023] has exhibited outstanding efficient performance
for novel view synthesis. It utilizes a set of Gaussian primi-
tives (e.g., position and covariance) to represent scene explic-
itly and employs GPU-accelerated rasterization for real-time
rendering. Several GS-derived researches attempt to extend
Gaussian primitives with normal, material, or other proper-
ties, which play the same role as multi-MLPs of NeRF and
fulfill the scene efficient inverse rendering [Liang et al., 2024;
Gao et al., 2023; Bi et al., 2024]. However, these methods are
required to receive multi-view images with the fixed lighting
conditions. Notably, it is costly and even impractical to con-
trol a fixed lighting in outdoor scenes (i.e., the changing sun
or weather) during the dense view inputs capturing.

The main challenges of outdoor scene decomposition and
relighting with Gaussian splatting are: (1) Images are cap-
tured under changing lighting conditions, causing the incon-
sistency performance of scene’s visual appearance; (2) Light-
ing outdoors is highly complex and changing, leading to the
wide variety of cast shadows. The first challenge causes the
same coordinate of the scene to exhibit different pixel colors
in the same viewpoints. It induces the uncertainty of spheri-
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cal harmonic (SH) coefficients for each Gaussian to perform
varying colors, which causes inaccurate scene inverse render-
ing ultimately. The second challenge is the sophisticated mix
of multiple light sources in outdoor scene, adding to the com-
plexity of lighting conditions. The relative positions of ob-
jects within the scene produce intricate cast shadows, making
it more difficult to simulate scene details precisely. Specif-
ically, the mentioned challenges are common and inevitable
during the input views capturing in outdoor scenes.

In this work, we propose OSDR-GS, a novel method for
Outdoor Scene Decomposition and Relighting leveraging 2D
Gaussian Splatting. OSDR-GS consists of three key com-
ponents: Lighting-based Group Learning, Fine-grained Out-
door Lighting Modeling, and Visibility-driven Shadow Mod-
ule, to decompose the 3D scene into geometry, material,
and lighting from multi-view images captured under chang-
ing and unknown lighting conditions. For the lighting-
based group learning, we cluster images into multiple lighting
groups by the elaborately distilled lighting cues, where each
image within the same group is considered to have similar
lighting and share the same lighting parameters. Specifically,
the misgrouped images will be updated regularly according to
the presented groups refinement strategy. For outdoor light-
ing modeling, we adopt a fine-grained parameterized scheme
to simulate sun-light and sky-light separately. Then we as-
sign the exposure factors to the input images for compensat-
ing the discrepancies adaptively of exposure settings for each
capture. For visibility-driven shadow module, we measure
the visibility of incident light in the scene to synthesize re-
alistic cast shadows, and formulate an efficient regularization
scheme based on the physical of light propagation to optimize
more generalized scene shadows.

Extensive experiments on various challenging outdoor
scenes, including NeRF-OSR [Rudnev et al., 2022] and Mip-
NeRF 360 datasets [Barron et al., 2022] with several state-of-
the-art baselines, demonstrate the effectiveness of OSDR-GS.
The main contributions are summarized as follows:

• We propose OSDR-GS, a novel scene decomposition
and relighting method with Gaussian splatting from
multi-view images captured in changing lighting.

• We present a lighting-based group learning framework
that clusters input images into multiple lighting groups,
and performs group-specific learning to optimize the
lighting from each group.

• We introduce a fine-grained lighting scheme with a
visibility-based shadow synthesis to measure the visibil-
ity of incident light, from arbitrary directions for simu-
lating nuanced interplay of light and shadow.

2 Related Work
3D Scene Representation. In recent years, 3D scene rep-
resentation technology advanced rapidly [Gao et al., 2022].
Several methods shown impressive performance in high-
quality novel view synthesis [Barron et al., 2021; Barron
et al., 2022; Chen et al., 2022]. NeRF [Mildenhall et
al., 2021] utilizes Multi Layer Perceptron (MLP) to model
color and density of sampled 3D coordinates to represent

scene implicitly. A number of researchers have endeavored
to improve the performance of original NeRF in numerous
dimensions. Several approaches work towards improving
the quality of image rendering using enhanced neural net-
work architectures [Zhang et al., 2020; Barron et al., 2021].
Some researchers seek to reconstruct scenes without the spe-
cific initialized camera pose prior by optimizing poses and
MLP simultaneously [Lin et al., 2021; Bian et al., 2023;
Zhang et al., 2024]. However, the execution of MLP net-
works lead to high computation, which significantly suffers
from efficiency in rendering [Chen and Wang, 2024]. Re-
cently, 3D Gaussian Splatting [Kerbl et al., 2023] signifi-
cantly reduce rendering time while maintaining quality com-
parable to NeRF. It utilize a set of learnable 3D Gaussian
primitive to explicitly model scene’s color and render im-
ages. 3DGS employ a unique tile-based rasterizer tailored
for Gaussian splatting, which facilitates real-time rendering
for novel view synthesis [Yu et al., 2024; Sun et al., 2024;
Xie et al., 2024; Lin et al., 2024]. While the volumetric
radiance representation of 3D Gaussians conflicts with the
thin nature of surfaces in most scenes. 2D Gaussian Splat-
ting (2DGS) [Huang et al., 2024] propose to utilize a set of
plane 2D Gaussian disks to represent surface of scene, which
is benefit for high-quality surface reconstruction.

Different from the above methods, we represent the 3D
scene by material, visibility and lighting rather than just color,
which enables scene decomposition and relighting.
Scene Inverse Rendering. Scene inverse rendering is a
fundamental task in computer vision and graphics, which
aims to separate scene’s geometry, material and lighting from
multi-view images. Previous methods [Yu and Smith, 2019;
Yu et al., 2020; Xu et al., 2018] utilize several convolu-
tion neural networks (CNN) to predict normal, albedo and
lighting of an input image. With the rapid development of
NeRF, some methods take as input multi-view images cap-
tured under known lighting condition and model scene us-
ing additional MLPs [Bi et al., 2020; Srinivasan et al., 2021;
Xu et al., 2023; Li et al., 2023]. While these methods
rely on known lighting, they can not work in most natural
scenes. To deal with this, several methods model environ-
mental illumination to decompose and relighting scene under
unknown lighting [Zhang et al., 2021b; Zhang et al., 2022;
Zhang et al., 2021a; Wu et al., 2023; Boss et al., 2021;
Yang et al., 2022]. Other methods attempt to relight out-
door scene by modeling scene properties and learning irrel-
ative environmental light in each views [Rudnev et al., 2022;
Sun et al., 2023; Gardner et al., 2024]. Although these NeRF-
based methods show infusive performance in outdoor scene
inverse rendering, they still suffer from terrible efficient dur-
ing training and rendering. Recently, 3D Gaussian splatting
based method provide novel approach for inverse rendering
[Guo et al., 2024; Chen et al., 2024]. GS-IR [Liang et al.,
2024] proposes a 3DGS-based inverse rendering framework
to deduce the physical attributes of scene. GS3 [Bi et al.,
2024] presents a spatial and angular Gaussian based represen-
tation and a triple splatting process for indoor scene relight-
ing. R3DG [Gao et al., 2023] proposes a material and lighting
decomposition scheme by introducing additional components
for each 3D Gaussian. However, these methods struggle with
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outdoor scenes especially those under changing and unknown
lighting conditions.

In this work, we propose OSDR-GS that clusters input im-
ages into multiple lighting groups to learn lighting within
groups, enabling the relighting of outdoor scene.

3 Preliminaries
2D Gaussian Splatting. 2D Gaussian Splatting [Huang et
al., 2024] represents the scene by directly modeling the ob-
ject’s surface using 2D planar Gaussians, in contrast to 3DGS
[Kerbl et al., 2023], which employs anisotropic 3D Gaussian
primitives. The 2D Gaussian disk defined on a local tangent
plane is parameterized by its center p, two orthogonal tan-
gent vectors tu and tv , and a scaling vector S = (su, sv).
The normal vector of Gaussian disk is natively represented as
the cross product tw = tu × tv . The orientation is arranged
into a rotation matrix R = [tu, tv, tw], and the scaling fac-
tors are encoded in a 3 × 3 diagonal matrix S = [su, sv, 0].
The parameterization of a 2D Gaussian is as follows:

P (u, v) = p+ sutuu+ svtvv = H(u, v, 1, 1)⊤, (1)

where H ∈ 4 × 4 is a homogeneous transformation matrix
representing the geometry of the 2D Gaussian, uniquely de-
termining a 2D Gaussian in space. Its inhomogeneous form
is given by Ĥ = [RS p], where RS = [sutu svtv 0].
The 2D Gaussian value at the point u = (u, v) in the uv space
can be computed by standard 2D Gaussian function G(u, v).

The center p, scaling (su, sv), and rotation (tu, tv) are
learnable parameters. Similar to 3DGS, each 2D Gaussian
primitive has opacity α and viewpoint-dependent color c
parameterized by spherical harmonic coefficients. During
rendering, it employs volume rendering to integrate alpha-
weighted color from near to far:

c(x) =
∑
i=1

ciαiGi(u(x))

i−1∏
j=1

(1− αjGj(u(x))), (2)

where x represents a ray emitted from the camera, u(x) de-
notes the uv space coordinates of the intersection point where
ray x passes through the plane of the Gaussian.
Lambertian Reflectance. Lambertian reflectance model is
a classic and widely used model for approximating diffuse
reflection on surfaces [Kajiya, 1986]. It uses diffuse albedo
as the key parameter of the bidirectional reflectance distribu-
tion function (BRDF), with the assumption that the reflected
radiance is proportional to the cosine of the angle between in-
cident light direction and surface normal. The outgoing light
Lo at surface point x is formulated as:

Lo(x) =

∫
Ω

a

π
Li(x, ωi)(n · ωi) dωi, (3)

where Li(x, ωi) refers to the incident light arriving at surface
point x from the direction ωi. a is the albedo at point x,
and (n · ωi) is the cosine of the angle between incident light
direction ωi and the surface normal n at point x.

4 Method
In this section, we introduce OSDR-GS, which is comprised
of lighting-based group learning framework (Sec. 4.1), fine-
grained outdoor lighting modeling (Sec. 4.2), and visibility-
driven shadow module (Sec. 4.3). Eventually, we describe
the rendering process and training framework (Sec. 4.4).

4.1 Lighting-based Group Learning
Different lighting conditions can result in varying appear-
ances of multi-view images captured in outdoor scenes. Pre-
vious approaches [Rudnev et al., 2022; Sun et al., 2023] as-
sume that these images have totally inconsistent and unrelated
lighting conditions, processing each one independently. This
will introduce additional lighting uncertainty of the scene
since the lighting in different views may be related, which
hinders the learning of accurate lighting. In this part, we aim
to fully utilize the relationship among multi-view images. As
shown in Fig. 2(a), we propose a lighting-based group learn-
ing framework that first cluster them into multiple lighting
groups with similar lighting conditions, and then assign light-
ing parameters to each group to learn changing lighting.
Lighting Cues Acquisition. To cluster multi-view im-
ages with changing lighting conditions into different lighting
groups, we propose an elaborately distilled approach to ac-
quire the lighting cues from each image. The lighting cues is
considered to represent lighting condition, and demonstrate a
certain level of robustness to changes in viewpoint [Tian et
al., 2018]. We start the acquisition by a preprocessing that
use pre-trained semantic segmentation model to filter out the
background elements (e.g., sky). Next, we convert the image
to the HSV (i.e., Hue, Saturation, and Value) color space, and
extract the Hue channel. After that, we divide the Hue chan-
nel image into k equally spaced bins based on pixels’ value,
and calculate the frequency of pixels within each bin:

hi =
∑
p∈P

IB(p), B :=
255

k
(i− 1) ≤ p <

255

k
(i), (4)

where hi denotes the frequency of the ith bin (i =
1, 2, . . . , k). P is the set of all pixel values in Hue channel
image. IB(p) is an indicator function that equals 1 when the
pixel’s value p satisfies condition B, and 0 otherwise. Subse-
quently, we normalize all h and concatenate them into:

flight = [h′
1, h

′
2, . . . h

′
k] , h′

i =
hi∑k
j=1 hj

, (5)

where h′ is the normalized frequency. Vector flight ∈ R1×k

is the lighting cues of an input image. Since it is a statisti-
cal vector, flight demonstrates a certain level of robustness to
changes in camera viewpoint, as shown in the left of Fig. 3.
This enables it is applicable to images with different views.
Lighting Group Learning. Following the acquisition of
lighting cues from each image, we apply the simple K-
means clustering algorithm [MacQueen, 1967] using the
Bhattacharyya distance [Bhattacharyya, 1943] as the metric
to obtain several clusters, which represent lighting groups.
Images within the same lighting group have similar lighting
conditions, while those in different lighting groups exhibit
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Figure 2: Our OSDR-GS pipeline for outdoor scene decomposition and relighting. Given a collection of outdoor images with changing and
unknown lighting conditions, (a) we first cluster them into several lighting groups by elaborately distilled lighting cues, and (b) initialize
lighting parameters for each group and each image to learn lighting condition of scene. (c) We also measure visibility in the scene for
occluding incident light to produce realistic cast shadows. After that, (d) we perform physically based rendering to obtain render image.
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Figure 3: The visualization of lighting cues. We randomly select
two sets of images with same lighting conditions from NeRF-OSR
dataset. The left pair with different viewpoints exhibit nearly iden-
tical lighting cues. The right pair with similar views are different in
exposure settings, which also exhibit highly consistent lighting cues.
This shows that our lighting cues effectively reflect the lighting con-
ditions in outdoor multi-view images.

significantly different lighting conditions. Next, we assign
a set of learnable lighting parameters (detailed in Sec. 4.2) to
each lighting group, which means images in the same group
share the same lighting parameters. This provides the light-
ing consistency across different viewpoints. These lighting
parameters are jointly optimized with scene’s geometry and
material through backpropagation via our carefully designed
loss function (detailed in Sec. 4.4).
Refining Lighting Groups. Although our lighting group-
ing strategy is applicable to most situations, there are sev-
eral misgrouped images inevitably. These misgrouped im-
ages will contribute distorted gradients to the current light-
ing group during optimizing, which disturbs the optimization

process and results in inaccurate lighting learning. Inspired
by [Feng et al., 2015; Zhang et al., 2018], we assess the de-
viation between image rendered under particular lighting and
the ground truth by the structural similarity item str(I1, I2)
from structural similarity index (SSIM) [Wang et al., 2004]
to solve this problem. We regularly iterate through all light-
ing groups for each image to find the group with the highest
structural similarity str(I1, I2) as the optimal lighting group.
This achieves the refinement of lighting groups.

4.2 Fine-grained Outdoor Lighting Modeling
Lighting Representation. Outdoor scenes are primarily il-
luminated by two types of light: direct sun-light and dif-
fuse sky-light. The sun-light comes from the sun itself has
strong directional quality. While the sky-light originates from
the scattered light in atmosphere and diffuses across the en-
tire sky. Inspired by [Sun et al., 2023], we adopt a fine-
grained approach to separately model these two light sources,
as shown in Fig. 2(b). For the sun-light, we simply model it
as a directional light source, parameterized by a learnable di-
rection ωsun ∈ R3 and a learnable color-intensity Lsun

i ∈ R3

For sky-light, we parameterize by first-order spherical har-
monic (SH). It describes the global lighting distribution on
the sphere by a set of basis functions Yl,m and correspond-
ing learnable coefficients yskyl,m ∈ R, where l ∈ {0, 1},
−l ≤ m ≤ l, and l ∈ Z. The incident sky-light Lsky

i ∈ R3

from direction ωi ∈ R3 can be described as:

Lsky
i (ωi) =

deg∑
l=0

l∑
m=−l

yskyl,mYl,m(ωi), (6)
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where deg is the degree of SH that equals 1 here. Notably,
as we described in Sec. 4.1, we assign lighting parameters to
each lighting group, including both sky-light and sun-light.
Adaptive Exposure Compensation. Since the lighting cues
is performed in the HSV color space, it is also robust to
brightness (typically due to differences in camera exposure
settings), as shown in the right of Fig. 3. This causes that
within one lighting group, there can be images with the same
lighting condition but different brightness. To adaptively
compensate each image brightness in the same lighting group,
we employ an exposure compensation strategy as follows:

C(x) = exp(γ)Lo(x), (7)

where Lo(x) represents the outgoing light which comes from
3D point x in scene and arrives at the camera. γ ∈ R is a
learnable exposure factors assigned to each image. C(x) is
the color of pixel that corresponding to point x.

4.3 Visibility-driven Shadow Module
Shadow Modeling. Synthesizing cast shadows is crucial for
high-quality outdoor scene rendering, which not only deter-
mines the realism of rendering, but also impacts the accuracy
of lighting groups refinement. In the real world, shadows are
primarily caused by the occlusion of sun-light. To simulate
this effect, we introduce a second-order learnable spherical
harmonics (SH) coefficients yvisl,m ∈ R into each Gaussian
primitive that measure the visibility of incident light (i.e., sun-
light) and block it. The formula is shown as follows:

V(x, ωi) =

deg∑
l=0

l∑
m=−l

Y vis
l,mYl,m(ωi), (8)

where V(x, ωi) ∈ R is the visibility that represents whether
the light from direction ωi is visible at surface point x. It
equals 0 if invisible (i.e., the light is occluded) and 1 if visi-
ble. deg is the degree of SH that equals 2 here. Y vis

l,m ∈ R3 is
the spherical harmonic coefficient at surface point x, which
obtained by volume rendering using Eq. (2). Then, the oc-
cluded incident sun-light L̂sun

i can be formulated as:

L̂sun
i = Lsun

i V(x, ωsun), (9)

where ωsun is the direction of incident sun-light Lsun
i .

Visibility Regularization. In order to improve the general-
ization of the visibility, we introduce a negative normal loss
function based on a physical light propagation: the lower
hemisphere of the object surface normal is occluded. Thus
we formulate the negative normal Lnn as below:

Lnn =
1

p

p∑
i=1

∥V(xi,−Ni + ϵ)∥22, (10)

where p is the number of pixels in an image. Ni represent the
surface normal of 3D point xi corresponding to the i-th pixel,
which is obtained by volume rendering from 2D Gaussians.
ϵ ∈ R3 is a random noise that added in negative normal to
represent the direction of negative normal hemisphere.

Practically, the realistic cast shadow will accompany by the
binary visibility V . We present a binarization loss function

𝐱 Surface Point
𝐍 Surface Normal
𝒱 Visibility

𝐋i
sky

𝒱(𝐱, 𝜔sun)

𝐱

𝐍

𝜔sun

𝐋i
sun

መ𝐋i
sun

𝐋o
sun

𝐋o
sky

Figure 4: The illustration of rendering process. Our method renders
by simulating the propagation of sun-light and sky-light.

Lbin to enforce a binary visibility pattern, as shown in below:

Lbin =
1

p

p∑
i=1

min (F(V(xi, ωsun)),F(V(xi, ωsun)− 1)) ,

(11)
where F(x) = 1 − exp(−mx2) is an empirical exponential-
based function that use to adjust the strength of binarization.
The other variables follow the explanation given in Eq. (10).

4.4 Rendering and Training
Physically Based Rendering. In order to decompose the
scene, we introduce albedo a ∈ R3 into each Gaussian to
render albedo image A by volume rendering, so that we can
employ physically based rendering model to synthesize im-
age. We define the outgoing light Lo at point x as follows:

Lo(x) = Lsun
o (x) + Lsky

o (x), (12)
where Lsun

o and Lsky
o represent the outgoing sun-light and

outgoing sky-light, respectively. For the outgoing sky-light,
we assume that it exclusively comes from the direction of sur-
face normal N, which we formulate it as:

Lsky
o (x) =

A

π
Lsky
i (ωi) (N · ωi), (13)

where Lsky
i (ωi) is the incident sky-light from Eq. (6). ωi is

aligned with normal, which means the cosine item (N ·ωi) is
equal to 1. For outgoing sun-light Lsun

o , it is formulated as:

Lsun
o (x) =

A

π
L̂sun
i (N · ωsun), (14)

where L̂sun
i is the occluded sun-light from Eq. (9).

Overall, the aforementioned rendering process is illustrated
in Fig. 4. After that, we extend Eq. (7) to adjust the exposure
and obtain pixel color C using outgoing light Lsun

o and Lsky
o :

C
(
x) = exp(γ)(Lsky

o (x) + Lsun
o (x)

)
. (15)

Training Framework. We follow 2DGS [Huang et al., 2024]
to mainly employ color loss Lc and normal loss Ln to drive
the training. To summarize, our loss function is formulated
by combining several components, as expressed below:

L = Lc + λ1Ln + λ2Lnn + λ3Lbin, (16)
where λ1 = 0.05, λ2 = 0.01 and λ3 = 0.001 are predefined
weighting hyperparameters for each loss terms. By minimiz-
ing Eq. (16), our approach returns the 3D scene representa-
tion and the optimized lighting parameters.
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Method Ludwigskirche Staatstheater Landwehrplatz
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

R3DG [Gao et al., 2023] 18.11 0.600 0.430 15.37 0.632 0.412 15.60 0.650 0.378
NeRF-OSR [Rudnev et al., 2022] 19.19 0.690 0.428 18.91 0.705 0.337 18.70 0.720 0.310
GS-IR [Liang et al., 2024] 19.74 0.689 0.301 18.96 0.733 0.270 18.62 0.757 0.228
OSDR-GS (ours) 21.27 0.723 0.296 19.51 0.759 0.263 19.62 0.795 0.216

Table 1: Relighting Quantitative Comparison on NeRF-OSR Dataset.

Method Bicycle Garden Stump
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

R3DG [Gao et al., 2023] 13.80 0.255 0.735 13.67 0.272 0.755 16.09 0.299 0.701
NeRF-OSR [Rudnev et al., 2022] 16.70 0.303 0.666 16.90 0.355 0.603 17.02 0.315 0.697
GS-IR [Liang et al., 2024] 23.69 0.698 0.267 25.79 0.806 0.158 25.48 0.720 0.255
OSDR-GS (ours) 24.18 0.723 0.267 25.80 0.824 0.158 25.99 0.748 0.254

Table 2: Novel View Synthesis Quantitative Comparison on Mip-NeRF 360 Dataset.
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Figure 5: The visualization results of relighting on NeRF-OSR
dataset. Scene 1, Scene 2, and Scene 3 represent Ludwigskirche,
Staatstheater, and Landwehrplatz, respectively.

5 Experiments
5.1 Experimental Settings
Datasets. We evaluate our OSDR-GS with SOTA baselines
on both NeRF-OSR [Rudnev et al., 2022] and Mip-NeRF 360
[Barron et al., 2022] dataset. NeRF-OSR dataset consists of
8 outdoor scenes. Each scene includes multi-view images un-
der multiple lighting conditions, with no overlap in lighting
between the training and testing sets. Mip-NeRF 360 dataset
consists of 5 outdoor scenes with fixed lighting conditions.
Following GS-IR [Liang et al., 2024], we use images down-
sampled by a factor of 4, and pick every eighth image as a
test image for dataset splitting.
Baselines and Metrics. We compare our OSDR-GS with
three SOTA baselines: NeRF-OSR [Rudnev et al., 2022], GS-
IR [Liang et al., 2024], and R3DG [Gao et al., 2023]. In
order to measure the quality of rendered images, we adopt
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity In-
dex Measure (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) as our evaluation metrics.
Implementation Details. To adapt the changing lighting
conditions for GS-IR and R3DG, we revise them that assign
lighting parameters individually to each image rather than to
the entire scene. Moreover, due to the different lighting mod-

G
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GT OSDR-GS GS-IR NeRF-OSR

B
ic

yc
le

St
um

p

Figure 6: The visualization results of NVS on Mip-NeRF 360
dataset demonstrate that our method synthesizes more realistic col-
ors through fine-grained lighting modeling.

eling among these methods, ground truth environment maps
in NeRF-OSR dataset are not suitable for all of them. Thus,
we obtain the necessary lighting parameters of test set by op-
timizing them exclusively under fixed geometry and material
of scene. For each scene, training for 30k iterations on a sin-
gle NVIDIA RTX 4090 GPU takes approximately 30 min-
utes. The test-time optimization requires around 5 minutes.

5.2 Comparing with SOTA Methods
In this part, we perform relighting evaluation on NeRF-OSR
dataset and novel view sythesis on Mip-NeRF 360 dataset.
Comparison on NeRF-OSR Dataset. We report the relight-
ing performance of our OSDR-GS compared with other base-
lines. As shown in Tab. 1, our method exhibits outstand-
ing performance in novel view synthesis under novel lighting
conditions. Specifically, compared with the best baseline GS-
IR [Liang et al., 2024], our method increases by 1.53, 0.55,
and 1 on PSNR in all three scenes.

This demonstrates our method achieves more accurate de-
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Variants PSNR ↑ SSIM ↑ LPIPS ↓
w/o LBGL 19.19 0.782 0.234
w/o FGLM 19.12 0.780 0.230
w/o VDSM 18.32 0.778 0.229
w/o RoV 19.37 0.790 0.228
OSDR-GS 19.62 0.795 0.216

Table 3: The ablation study for the proposed components, specifi-
cally including lighting-based group learning, fine-grained outdoor
lighting modeling, and visibility-driven shadow module.

Grouping Refinement PSNR↑ SSIM↑ LPIPS↓
18.64 0.775 0.234

✓ 19.24 0.789 0.221
✓ ✓ 19.62 0.795 0.216

Table 4: The ablation study for lighting-based group learning.

composition of intrinsic components, resulting in more re-
alistic images rendered under novel lighting condition. We
also perform qualitative comparison. As shown in Fig. 5,
our method produces more natural relighting effect and more
clear image compared with other baselines. Moreover, unlike
GS-IR or R3DG that requires multiple stages optimization,
our method uses only one-stage optimization process, which
significantly reduces the time cost of training.
Comparison on Mip-NeRF 360 Dataset. We report the
novel view synthesis (NVS) performance of OSDR-GS on
Mip-NeRF 360 dataset. As shown in Tab. 2, we demon-
strate results on three outdoor scenes (i.e., Bicycle, Garden,
and Stump). Our method achieves slight improvements over
GS-IR in terms of PSNR and SSIM, and results comparable
performance in LPIPS.

Note that the images in Mip-NeRF 360 dataset are cap-
tured under fixed lighting condition. This demonstrates the
efficiency of proposed fine-grained lighting modeling and
visibility-based shadow module, which are particularly suit-
able for inverse rendering of outdoor scenes. Moreover, we
also conduct qualitative comparison. As shown in Fig. 6, we
can observe that our method produces more refined surface
details of Garden scene and more realistic colors in Bicycle
scene. This indicates the capability of OSDR-GS to decom-
pose scene into precise geometry and lighting.

5.3 Method Analysis
In this part, we conduct elaborate experiments on NeRF-OSR
dataset to evaluate the efficacy of our proposed components.
Effect of Proposed Components. We ablate the pro-
posed components of our OSDR-GS, including lighting-
based group learning (w/o LBGL), fine-grained lighting mod-
eling (w/o FGLM), visibility-driven shadow module (w/o
VDSM), and regularization of visibility (w/o RoV).

As illustrated in Tab. 3, we observe that the last row
achieves remarkable performance, which demonstrates that
the proposed group learning framework and shadow module
are effective for modeling outdoor scene accurately. More-
over, the variant without shadow modeling result in inferior
performance. This indicates that our visibility-driven shadow

Variants PSNR↑ SSIM↑ LPIPS↓
w/o VDSM 18.32 0.778 0.229
w/o Lbin 19.44 0.793 0.218
w/o Lnn 19.48 0.792 0.218
OSDR-GS 19.62 0.795 0.216

Table 5: The ablation study for visibility-driven shadow module.

module effectively responds to the changing lighting condi-
tions in the scene and produces realistic shadow effects.
Impact of Lighting-based Group Learning Framework.
As summarized in Tab. 4, the first row of the table shows
the baseline performance when neither the lighting grouping
strategy nor the group refinement approach is applied. The
second row indicates the performance improvement when
only the lighting grouping strategy is used, and the third row
presents the results when both the lighting grouping strategy
and the group refinement approach are employed.

These results suggest that both the proposed lighting
grouping strategy and the group refinement approach con-
tribute significantly to enhancing the model’s performance.
Notably, we can observe that variant of only grouping demon-
strates results almost as good as the best. This indicates the
initialization of lighting groups using lighting cues is quite
precise, nearly eliminating the necessity of lighting groups
refinement process.
Impact of Visibility-driven Shadow Module. We remove
the visibility-driven shadow modeling (w/o VDSM), negative
normal regularization (w/o Lnn), and visibility binaryzation
regularization (w/o Lbin) from OSDR-GS to evaluate the ef-
ficiency of these presented components.

The results are illustrated in Tab. 5. We can observe that
the variant of last raw achieves the best results. This demon-
strates the outstanding performance of our visibility-driven
shadow module in rendering photorealistic images. Both the
variant of w/o Lnn and the variant of w/o Lbin show slightly
worse results, which indicates that both of them play impor-
tant roles in high-quality visibility modeling.

6 Conclusion
This paper proposes outdoor scene decomposition and re-
lighting with 2D Gaussian splatting (OSDR-GS), a novel in-
verse rendering strategy under outdoor scenes with changing
and unknown lighting conditions. The presented OSDR-GS
consists of lighting-based group learning framework, fined-
grained outdoor lighting modeling component and visibility-
driven shadow module. We conduct extensive experiments
to evaluate our method with several state-of-the-art baselines
on multiple challenging outdoor datasets. The results demon-
strate the effectiveness of OSDR-GS for outdoor decomposi-
tion and relighting. Since it is challenging to accurately ob-
tain camera poses in outdoor scene with changing lighting
conditions, We plan to consider camera-pose-free decompo-
sition and relighting of outdoor scenes in future research.
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