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Abstract

Multimodal remote sensing image classification
(RSIC) has emerged as a key focus in Earth ob-
servation, driven by its capacity to extract comple-
mentary information from diverse sources. Exist-
ing methods struggle with modality absence caused
by weather or equipment failures, leading to per-
formance degradation. As a solution, knowledge
distillation-based methods train student networks
(SN) using a full-modality teacher, but they usually
require training separate SN for each modality ab-
sence scenario, increasing complexity. To this end,
we propose a unified Distillation Prompt Mamba
(DPMamba) framework for multimodal RSIC with
missing modalities. DPMamba leverages knowl-
edge distillation in a shared text semantic space
to optimize learnable prompts, transforming them
from “placeholder” to “adaptation” states by en-
riching missing modality information with full-
modality knowledge. To achieve this, we focus
on two main aspects: first, we propose a new
modality-aware Mamba for dynamically and hier-
archically extracting cross-modality interactive fea-
tures, providing richer, contextually relevant repre-
sentations for backpropagation-based optimization
of prompts; and second, we introduce a novel text-
bridging distillation method to efficiently transfer
full-modality knowledge, guiding the inclusion of
missing modality information into prompts. Exten-
sive evaluations demonstrate the effectiveness and
robustness of the proposed DPMamba.

1 Introduction

Remote sensing image classification (RSIC) plays a vital
role in earth observation, including applications such as ur-
ban planning [Quan erf al., 2018], environmental monitoring
[Nguyen and Liou, 2019] and more. With the advancement
of image sensor technology, remote sensing images tend to be
diversified. Numerous methods for multimodal RSIC [Yang
et al., 2024; Roy et al., 2024] have emerged within the com-
munity, all of which have demonstrated promising results.
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Figure 1: Illustration of multimodal RSIC with missing
modalities.

Note that these methods are based on an assumption that the
input multimodal data is consistent in both the training and
inference. However, in practical applications, due to limi-
tations such as harsh shooting environment or low sampling
frequency of certain sensors [Huang et al., 2024], the issue
of missing modalities may arise during the inference. Exist-
ing multimodal classification methods are not designed and
optimized for scenarios of missing modalities. The perfor-
mance of these methods deteriorates significantly when cer-
tain modalities of the input data are missing during the infer-
ence.

Existing methods for addressing the problem of missing
modalities can be categorized into three main approaches.
The first approach utilizes generative models to synthesize
missing modalities from the available modalities [Woo et
al., 2023; Liu er al, 2023]. This approach requires ini-
tially training a generative model, followed by fine-tuning
for scenarios with missing modalities. The classification
performance largely depends on the quality of the synthe-
sized modality. The second approach aims to learn a shared
space that captures invariant information across the acces-
sible modalities [Zhou er al., 2021; Zhang et al., 2022],
which have demonstrated strong performance. Neverthe-
less, their effectiveness drastically decreases when only sin-
gle modality data is available [Wang er al., 2023b]. To ad-
dress this issue, the community has developed various knowl-
edge distillation-based methods [Li et al., 2022; Wei et al.,
2023al, which transfer the full-modality information from a
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teacher network (TN) (pre-trained with full-modality data)
to a student network (SN) (input incomplete or even single-
modality data), as shown in Fig. 1. Due to the significant
differences in inputs between the TN and the SN, existing
knowledge distillation-based methods may encounter ineffi-
ciency and even overfitting issues during knowledge trans-
fer. Furthermore, these methods often require training differ-
ent models through knowledge distillation for various miss-
ing cases, which greatly increases computational costs. Re-
cently, prompt learning has demonstrated potential in ad-
dressing the challenge of modality absence by designing task-
aware prompts, which can significantly enhance the adapt-
ability of multimodal tasks[Lee et al., 2023]. However, the
optimization of prompts is typically confined to task-specific
loss functions, failing to specifically optimize for missing
modality information and thereby hindering the full potential
of prompts in complex scenarios with missing modalities.

Based on the above observations, we propose a Distilla-
tion Prompt Mamba (DPMamba) framework for multimodal
RSIC with missing modalities, as shown in Fig. 2. The core
idea of DPMamba is to utilize a knowledge distillation tech-
nique based on shared text semantic space to guide the opti-
mization of missing-modality aware prompts (MMAPs), ef-
fectively leveraging full-modality knowledge to supplement
and enrich the missing modality information in MMAPs,
thereby transforming them from “placeholder” to “adapta-
tion” states. Specifically, to effectively enable the transi-
tion of MMAPs, we focus on two critical components. First,
we introduce a novel modality-aware Mamba backbone for
both the TN and the SN, which is designed to capture dy-
namic cross-modal interactions at both global and local lev-
els, providing essential feature representations for optimiz-
ing MMAPs via backpropagation. Second, we propose a
new teacher-student paradigm called text bridging distilla-
tion (TBD) to enable efficient transfer of full-modality knowl-
edge. By projecting the features of TN and SN into a shared
semantic space, TBD facilitates knowledge transfer through
feature alignment and inter-class relational constraints, offer-
ing robust guidance for optimization of MMAPs. In sum-
mary, our main contributions are threefold:

* We propose a unified DPMamba framework for multi-
modal RSIC with missing modalities, leveraging TBD
for optimizing MMAPs from “placeholder” to “adapta-
tion” states by enriching missing modality information
within MMAPs with full-modality knowledge.

* We design a modality-aware Mamba as the back-
bone for extracting dynamic and multi-level feature,
providing critical representations that facilitate the
backpropagation-based optimization of MMAPs.

* We design a text bridging distillation (TBD) to facilitate
the efficient transfer of full-modality knowledge, provid-
ing robust guidance for the optimization of MMAPs.

2 Related Work

2.1 Multimodal RSIC with Missing Modalities

Multimodal RSIC enables high-precision classification of
complex scenes by integrating complementary information

from multiple modalities [Qu et al., 2024; Wang et al., 2024].
However, most existing methods are not optimized for miss-
ing modality scenarios. Recent approaches address this by
using autoencoders to impute missing modalities [Hafner and
Ban, 2023; Chen et al., 2024b] or transferring knowledge
from teacher models trained on complete modalities to stu-
dent models with partial data [Wei et al., 2023c; Liu ef al.,
2024a]. However, these methods encounter notable limi-
tations when addressing complex scenarios, such as ensur-
ing high-quality generation by generative models on large-
scale datasets and the dependency of knowledge distillation-
based approaches on training separate models for each miss-
ing modality case. This reliance significantly complicates the
overall model design and training process.

2.2 Knowledge Distillation

Knowledge distillation (KD) is a deep learning technique for
compressing large models into smaller, more efficient ones.
In incomplete multimodal learning, KD enables the transfer
of full-modality knowledge from a TN to a SN. KD methods
fall into three categories: response-based, feature-based, and
relationship-based. Response-based distillation [Wang er al.,
2023c] uses the soft target output of TN as the training target
for SN but lacks internal knowledge transfer. Feature-based
distillation [Li et al., 2022] minimizes discrepancies between
TN and SN hidden features, though mismatched features in
incomplete multimodal data can cause overfitting [Garcia et
al., 2019]. Relationship-based distillation [Xin et al., 2024]
addresses this by leveraging inter-layer or inter-sample rela-
tionships for more effective knowledge transfer. Inspired by
CLIP [Radford et al., 2021] and DIST [Huang er al., 2022],
this paper introduces a new TBD that maps the representa-
tions of TN and SN into a shared text semantic space and
utilizes feature constraints and inter-class relationship con-
straints to collaboratively guide the efficient transfer of full-
modality information.

2.3 State Space Models

State Space Models (SSMs) [Gu et al., 2021] are effec-
tive in capturing global context in deep learning due to
their scalability. Gu et al.[Gu and Dao, 2023] introduced
Mamba, an SSM-based model that even outperforms the
Transformer [Vaswani, 2017] across multiple modalities. Re-
cently, VMamba [Liu et al., 2024b] extends the Mamba archi-
tecture to 2D images, achieving strong performance in com-
puter vision. The Mamba architecture is now being applied
to remote sensing tasks like change detection [Chen et al.,
2024a] and image classification [Yao et al., 2024]. However,
most of these works only utilize single-modality remote sens-
ing image data, and are not optimized for scenarios of miss-
ing modalities. The potential of the Mamba architecture in
the multimodal RSIC with missing modalities remains to be
explored.

3 Method

3.1 Problem Definition

In this paper, we focus on the task of multimodal RSIC with
missing modalities that generates a classification map catego-
rizing each pixel into one of the C classes. For simplicity and
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Figure 2: Overview of our proposed DPMamba.

without loss of generality, we consider a multimodal dataset
D = {X", X7, y; }Ne,, where X" and X7'* denote the
i-th pair of multimodal patches from m; and mo, respec-
tively, y; represents the label, IV, is the number of patches.
There is a nonlinear mapping M : {X"*, X"?} — y; from
image patches to labels. Since certain modalities may be
absent during inference, the mapping could be rephrased as
M {X;nl,X?w} — Y; Oor M,y {X?“,XTQ} — Yi,
where X" and X['? denote dummy inputs that keep the
input structure consistent. Our goal is to optimize a unified
and robust M that performs well regardless of whether the
input data is complete or has missing certain modalities by
fully exploiting the privileged modality information available
only during training. The subscript ¢ will be omitted in the
following for brevity.

3.2 Overall Design

To achieve the above goal, we propose a unified framework
DPMamba (Fig. 2), which leverages a knowledge distillation
algorithm based on a shared semantic space to guide the opti-
mization of missing-modality aware prompts (MMAPs) from
“placeholder” to “adaptation” states, thereby enabling robust
multimodal RSIC with missing modalities. To effectively fa-
cilitate the transition of MMAPs, we focus on two key as-
pects: first, we propose a novel modality-aware Mamba as
the backbone of TN and SN to capture cross-modal dynamic
interaction information at the global and local levels, which is
important for backpropagation optimization of MMAPs. Sec-
ond, we propose a novel teacher-student paradigm, termed
text bridging distillation (TBD), for the efficient transfer of
full-modality knowledge. TBD projects the features of the

TN and the SN into a shared text semantic space and achieves
knowledge transfer through feature alignment and inter-class
relational constraints.

3.3 Modality-Aware Mamba

Multimodal remote sensing images typically contain rich in-
formation from different perspectives, and effectively ex-
tracting their complementary features remains a core re-
search challenge. Inspired by the Mamba structure, which
achieves global modeling with linear complexity, we pro-
pose a modality-aware Mamba that enables dynamic and
multi-level visual feature extraction, based on the DWConv,
a novel attention fusion (AF) and modality information scan-
ning mechanism (MISM), as shown in Fig. 3. Different
modality data are processed in separate branches, with in-
jected fusion information enhancing cross-modal collabora-
tion. The AF enables dynamic fusion, and the MISM col-
laborates with DWConv to capture multi-level features. Sub-
sequently, we establish semantic associations through text-
visual features alignment to achieve classification.

Attention Fusion

Due to the dynamic changes in the redundancy and comple-
mentarity of information between modalities in the case of
missing data, a fixed fusion strategy is insufficient to adapt to
these variations. To address this, we introduce a simple atten-
tion fusion (AF) mechanism that enables dynamic integration
of information, thereby enhancing the network’s robustness
to modality missing scenarios. Formally, let {zy,22} rep-
resent the collection of input feature tensors. The attention
mechanism computes attention scores for each input feature
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Figure 3: Ilustration of our proposed modality-aware Mamba.

tensor. Specifically, the attention score score;, i € {1,2} for
each input tensor x; is derived through a linear transforma-
tion, followed by a scalar output:

score; = attention layer(xz;) = Wax; +b (1)

where W and b are the learnable parameters of the attention
layer. Then, to transform the scores into attention weights, the
attention scores are normalized using the softmax function,
thereby ensuring that the weights are non-negative and sum
to one:

exp(score; — max({x1,x2})) @
oy = 3
>_j—1 exp(score; — max({z1,22}))

where «; is the attention weight for z;, and subtracting the
maximum score ensures numerical stability during the soft-
max operation. The final fused output &, is obtained by com-
puting the weighted sum of the input tensors, with the weights
determined by the attention scores:

hg = a1 + Qoxs 3)

Modality Information Scanning Mechanism

SSMs process input sequences in a causal manner, but sim-
ply flattening the non-causal image patch into sequential in-
put fails to fully capture modal information. To this end,
we introduce a modality information scanning mechanism
(MISM), which models the context by interacting each pixel
with its neighboring pixels through SSMs. The combination
of MISM and DWConv enables efficient multi-level feature
extraction while maintaining relatively low computational
complexity. Specifically, as shown in Fig. 3, we follow four
zigzag paths to scan the patch pixel by pixel, i.e., top left to
bottom right (width-priority scan and height-priority scan) ,
and their respective reversals. Given the output h, of AF, we
flatten the p x p feature patches into a sequence according
to the scan path, and then calculate each element of the se-
quence Heeq = {[hi,1, iz, s hipxp) |t € {1,2,3,4} } by
iteratively using the equation:

{h;l = Ah)_, +Bh;;

" ; “
Yij = Ch;

where A, B, and C are trainable parameters of MISM. After
rearranging to a consistent order, the outputs of each path are
fused for comprehensive contextual information.

Text-Visual Features Alignment

For remote sensing image classification tasks, annotation in-
formation typically includes class labels and corresponding
class names. Class text information has also been demon-
strated as an effective form of supervisory signal for training,
e.g., CLIP[Radford et al., 2021]. To be exact, class text de-
scriptions provide additional semantic constraints, enabling
the model to better capture inter-class relationships and im-
prove discriminative capability in complex scenarios. Techni-
cally speaking, we utilize a large language model to generate
text based on the class intrinsic attributes and inter-class re-
lationships. The text is subsequently tokenized and encoded
into text features using a frozen text encoder, with its parame-
ters initialized from CLIP’s text encoder. Then, the projected
visual features are aligned with the text features in the seman-
tic space, thereby establishing deep semantic associations and
enhancing classification robustness.

3.4 Text Bridging Distillation

To take full advantage of the privileged modal informa-
tion available only during training, we design a text bridg-
ing distillation (TBD). Specifically, we employ contrast con-
straints to align the visual features of both the TN and SN
with shared text features, mapping the visual features to a
shared text semantic space. Subsequently, feature constraints
and inter-class relationship constraints are utilized to collec-
tively optimize the SN and MMAPs. The shared seman-
tic space provides a unified context, ensuring semantic con-
sistency between the TN and SN, thereby reducing infor-
mation loss during the distillation process. Unlike directly
imitating the prediction output of TN, TBD allows the SN
to acquire a more generalized full-modality representations
from TN. TBD guides the optimization of prompts, while
the prompts alleviate distillation overfitting caused by sig-
nificant input disparities due to modality absence, with both
elements supporting and enhancing each other. Given the vi-
sual output features of the TN and SN as V; € R¢*P1 and
V, € RE*D1 and the text features as T € RE*P1 | where C
and D; denotes the number of class and channel, respectively.
In more detail, we employ the feature constraint loss Lgc to
distill fine-grained full-modality information as follows:

_ 159 vy 2
Lyc = azizl (Vi) = v (5)

Furthermore, to capture the inherent inter-class relation-
ship from the TN and enhance the classification performance
of the SN, we initially derive the similarity matrices St =
cos(Vy, T) and S® = cos(V,, T), where cos (-, -) represents
the cosine similarity between two features. Following [Huang
et al., 20221, we then utilize the following inter-class relation-
ship constraint loss Licrc to facilitate the transfer of inter-
class information:

Licre = é {Zil dP(Sﬁ,n Si.)+ Z],C:I dP(S:t,jy Sb])} (6)

where dp(-, -) is a function for calculating Pearson’s distance
between column vectors or row vectors of S and S®.
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In conclusion, the text bridging distillation loss Lygp can
be expressed as follows:

L1pp = Lrc + Licre @)

3.5 Prompt Injection

To handle classification tasks involving missing modalities,
we integrate trainable MMAPs into modality-aware Mamba
seamlessly, enabling the learning of modality-specific in-
formation and mitigating the issue of distillation overfit-
ting caused by input inconsistencies by dynamically optimiz-
ing. Specifically, we define two modality-specific prompts,
Dm, and p,,,, which are collaboratively optimized by task-
specified criterion and distillation constraints. Given the com-
plete input modalities {1, 22}, if modality m; is missing
during inference, the prompt p,,, is introduced to replace the
missing modality, resulting in the input {p,,, , 2 }. This mod-
ified input is then fed into the backbone network, where p,,,,
serves as a surrogate to guide feature extraction for the miss-
ing modality. By dynamically updating modality-specific
prompts, the model can effectively leverage prior knowledge
to mitigate the performance degradation caused by missing
modalities.

3.6 Training Objective
The total loss L during the training stage is defined as follows:

L = Ltgp + Lca (8)

where Ltgp has been described above, and Lcp is the con-
trastive alignment loss. In both the pre-training stage of the
TN and the training of the SN, we utilize the following Lcx as
a task-specific criterion to establish the association between
visual and text features for classification and map the visual
features into a shared semantic space for distillation:

(Lt + Lv_1)

Lea=c——75— (€]

which is composed of a text-to-vison contrastive loss defined
as:

1S exp (7 - cos(T™, Vi),)
LT—»V:_CEIOg< p( . k) )))

n=1 S exp (T ~cos(T™, Vy

(10)
and a vison-to-text contrastive loss defined as:

C n n
1 -cos(VP,,, T
LM_—CZbg( exp (1 - cos(Vi)., T") )))
n=1

¢ exp (T - cos(VE, Tn

t/s?
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4 Experiments

4.1 Datasets

We conducted experiments on three public multimodal re-
mote sensing datasets: 1) Houston dataset [Debes et al.,
20141, obtained in 2012, includes hyperspectral images (HSI)
and LiDAR-derived digital surface model (DSM) data of the
University of Houston campus and surrounding urban areas.
It contains 15 object categories and 15,029 labeled samples.
2) Trento dataset [Rasti et al., 2017], captured in a rural area

h) Sal2RN (HSI & LiDAR

(i) Cross-HL (HSI & LiDAR) (i) DPMamba (HSI & LIDAR)

[l Health grass [MSynthetic grass[]] Residential [llParking lot 1 [ Soil

[ Stressed grass IMTennis court [l Commercial [ll Parking lot 2 [ll Road
[ Trees M Railway [l Water [0 Running track [l Highway

Figure 4: Classification maps of the Houston dataset.

near Trento, Italy, includes HSI and LiDAR-derived DSM
data with 6 object categories and 30,214 samples. 3) Augs-
burg dataset [Baumgartner et al., 20121, captured over Augs-
burg, Germany, contains HSI, LIDAR-derived DSM data and
a dual-polarized SAR image with 4 feature channels. This
dataset includes 7 object categories and 78,294 samples.

4.2 Implementation Details

All experiments are conducted on Ubuntu 18.04 with an
NVIDIA GeForce RTX 3090 GPU, using the PyTorch frame-
work for model building, training, and evaluation. The train-
ing process of DPMamba consists of pre-training and training
stages, with the AdamW optimizer used in both stages. The
batch sizes for the Houston, Trento, and Augsburg datasets
are 150, 120, and 140, respectively, and the optimal patch
sizes are 11, 15, and 9. Pre-trained text encoder parameters
from CLIP are loaded and fixed. During pre-training, the ini-
tial learning rate is set to 3e-4 for 500 epochs. In the training
stage, the model parameters from pre-training are used for
both TN and SN, with the learning rate maintained at 3e-4
for training the SN over 500 epochs. Code is available at
https://github.com/Jiahuiqu/DPMamba.

4.3 Performance Comparison

In this section, we conduct a comprehensive comparison with
concurrent baselines. We set up three different experimental
configurations: 1) Training and testing are conducted within
a single modality in the proposed method. “HSI-Net” refers
to the model trained and tested using only the HSI modal-
ity, with other modalities following the same naming con-
vention. 2) Advanced methods for joint classification in sce-
narios with modality absence, including ShaSpec [Wang et
al., 2023al, DGDNet [Wei et al., 2023b] and MSH-Net [Wei
et al., 2023d]. 3) Advanced methods for joint classification
with complete modalities, including HCT [Zhao et al., 2023],
Sal2RN [Li et al., 2023] and Cross-HL [Roy et al., 2024].
All methods are trained using 40 samples per class, with all
samples used for testing. As for evaluation metrics, we report
overall accuracy (OA), average accuracy (AA), and the kappa
coefficient (x), with x values scaled by a factor of 100.
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Houston Trento Augsburg
Method Traini'n-g Testifig OA(%) AA%) K Train'%n.g Tesli?g OA(%) AA%) K Traini'n-g Testifqg OA(%) AA%) K
Modalities ~ Modalities Modalities ~ Modalities Modalities Modalities
single modality single modality single modality
HSI-Net HSI HSI 96.80 97.41 96.54 HSI HSI 9797 97.67 97.30 HSI HSI 8740 8297 8272
LiDAR/SAR-Net LiDAR LiDAR 60.24 63.51 57.17| LiDAR LiDAR 92.87 93.24 90.63 SAR SAR 7537 6234 67.25
‘W/o HSI modality W/o HSI modality ‘W/o HSI modality
ShaSpec HSI, LiDAR  LiDAR 49.44 5043 45.62 |HSI, LiDAR  LiDAR 87.85 87.85 84.04| HSI, SAR SAR 48.01 32.62 33.12
DGDNet HSL LiDAR  LiDAR 59.07 60.39 55.92|HSI LiDAR  LiDAR 93.46 91.71 91.37 | HSI, SAR SAR 5192 30.66 31.71
MSH-Net HSI, LiDAR  LiDAR 60.50 62.19 57.50|HSI LiDAR  LiDAR 92.24 88.93 89.74 | HSI, SAR SAR 66.59 5277 56.42
DPMamba (Ours) | HSI, LIDAR  LiDAR 61.45 64.74 58.55|HSI,LiDAR  LiDAR 94.40 9330 92.60 | HSI, SAR SAR 79.65 62.47 7248
W/o LiDAR modality W/o LiDAR modality W/o SAR modality
ShaSpec HSI, LiDAR HSI 94.24  95.18 93.78 | HSI, LiDAR HSI 96.08  96.03 94.79 | HSI, SAR HSI 8642 7397 80.93
DGDNet HSI, LiDAR HSI 93.51 94.53 92.98 |HSI, LiDAR HSI 97.60 96.88 96.80 | HSI, SAR HSI 78.40 74.69 71.06
MSH-Net HSI, LiDAR HSI 96.50 97.00 96.22 | HSI, LiDAR HSI 98.41 97.59 97.88 | HSI, SAR HSI 88.04 78.82 83.42
DPMamba (Ours) | HSI, LiDAR HSI 97.04 97.62 96.80 | HSI, LiDAR HSI 98.35 97.13 97.79 | HSL, SAR HSI 88.35 84.44 83.92
Complete modalties Complete modalities Complete modalities
HCT HSL LiDAR HSL LiDAR 97.32 97.57 97.10 | HSL, LIDAR HSI LiDAR 99.07 98.44 98.76 | HSI, SAR HSI, SAR 89.11 8192 84.82
Sal2RN HSI, LiDAR HSIL LiDAR 97.68 98.01 97.49 |HSI, LiDAR HSL LiDAR 99.14 98.64 98.86 | HSI, SAR HSL SAR 91.18 82.05 87.63
Cross-HL HSL LiDAR HSL LiDAR 97.01 97.59 96.77 | HSL, LiDAR HSI, LiDAR 98.44 98.14 97.93| HSI, SAR HSI, SAR 89.14 81.03 84.82
DPMamba (Ours) | HSL, LIDAR HSI, LiDAR 9827 98.60 98.13| HSIL, LiDAR HSI LiDAR 99.40 98.90 99.21| HSI, SAR HSI, SAR 9229 85.06 89.17

Table 1: Classification accuracy of different methods on

Houston, Trento and Augsburg HSI-SAR datasets. “W/o” denotes the missing

modality in inference. “HSI/LiDAR/SAR-Net” indicates the proposed method trained and tested with only HSI/LiDAR/SAR data.

Method Training Modalities Testing Modalities OA(%) AA(%) &
Baseline HSI,SAR,LiDAR HSI 5875 42.52 39.67
DPMamba (Ours) HSLSAR,LiDAR HSI 89.47 8398 85.26
Baseline HSL,SAR,LiDAR LiDAR 47.82  18.59 16.96
DPMamba (Ours) HSLSAR,LiDAR LiDAR 4535 45770 32.76
Baseline HSLSAR,LiDAR SAR 3430 14.29 0.00
DPMamba (Ours) HSISAR,LiDAR SAR 68.39 61.24 59.07
Baseline HSISAR,LiDAR HSLLiDAR 8432 61.01 77.00
DPMamba (Ours) HSLSAR,LiDAR HSLLiDAR 90.18 85.15 86.26
Baseline HSL,SAR,LiDAR HSI,SAR 57.15 45.76 384l
DPMamba (Ours) HSLSAR,LiDAR HSLSAR 91.42 85.10 87.96
Baseline HSLSAR,LiDAR SAR.LiDAR 59.57 23.46 36.22
DPMamba (Ours) HSISAR,LiDAR SAR,LiDAR 69.59 67.21 60.61

Table 2: Classification accuracy of different methods.

Performance Analysis of HSI-LiDAR Classification

We conducted experiments on the Houston and Trento HSI-
LiDAR datasets. As shown in Table 1, the proposed method
achieves an OA of 98.27% on the Houston dataset with the
complete modality, compared to 97.68% from baseline meth-
ods. In the W/o HSI scenario on the Trento dataset, the
OA is 94.40%, and in the W/o LiDAR scenario, the OA is
98.35%, demonstrating robustness in scenarios with missing
modalities. Due to its limited capacity, the unified DPMamba
may perform slightly worse in certain scenarios compared to
scenario-specific baseline methods. Additionally, visualiza-
tions in Fig. 4 and Fig. 5 show that the method accurately
captures complex boundaries and heterogeneous regions, par-
ticularly in areas with high spectral variability, such as urban
and vegetation zones. This highlights the effective use of the
modality-aware Mamba to explore the consistency of spectral
features, spatial structures and elevation information. The en-
riched text contextual semantics improve the recognition of
subtle data distributions, thereby enhancing classification ac-
curacy and reliability.
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Figure 5: Classification maps of the Trento dataset.

Performance Analysis of HSI-SAR Classification

Comparative experiments on the Augsburg HSI-SAR dataset
are summarized in Table 1. The heterogeneity between HSI
and SAR data, stemming from their distinct imaging mecha-
nisms, challenges information fusion. The proposed method
achieves an OA of 92.29% with complete modality, exceed-
ing Sal2RN by 1.11%, and demonstrates notable improve-
ments over MSH-Net in the W/o HSI (+13.06%) and W/o
SAR (+0.31%) scenarios. This is attributed to the proposed
backbone’s effective fusion of heterogeneous information and
highlights DPMamba’s ability to efficiently transfer knowl-
edge from the complete modality and accurately optimize SN
and MMAPs. Visualization in Fig. 6 further confirms the ro-
bustness of DPMamba, even in complex urban distributions.
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Figure 6: Classification maps of the Augsburg HSI-SAR dataset.

‘W/o LiDAR/SAR W/o HSI

OA (%) AA (%) k |OA (%) AA (%) «
Variant-1 (TBD replaced) 96.74 97.30 96.48| 57.75 62.04 54.61
Variant-2a (Backbone replaced)| 94.70  95.32 94.27| 50.60 52.68 46.93
Variant-2b (AF replaced) 96.83 97.43 96.57| 52.20 53.07 48.52
Variant-2c (MISM replaced) | 96.52 97.21 96.24| 59.47 64.55 56.48
Variant-3 (W/o MMAPs) 9525 9520 94.86| 53.46 54.93 49.79
DPMamba (ours) 97.04 97.62 96.80| 61.45 64.74 58.55
Variant-1 (TBD replaced) 88.29 84.32 83.85| 71.22 59.88 62.79
Variant-2a (Backbone replaced)| 87.08 80.77 82.24| 71.01 52.12 61.84
Variant-2b (AF replaced) 88.19 8443 83.73| 75.16 59.02 66.67
Variant-2c (MISM replaced) | 87.25 84.13 82.48| 76.65 55.25 68.44
Variant-3 (W/o MMAPs) 86.01 81.33 80.80| 74.66 53.40 65.31
DPMamba (ours) 88.35 84.44 83.92| 79.65 62.47 72.48

Datasets Methods

Houston

Augsburg

Table 3: Results of ablation experiments.

Performance Analysis of HSI-LiDAR-SAR Classification
This section presents experiments on the Augsburg HSI-
LiDAR-SAR dataset to assess the scalability of DPMamba
in scenarios with multiple missing modalities. The results are
shown in Table 2, where the baseline models are trained on
the complete modality and evaluated under missing modal-
ity conditions, without optimizing for scenarios of missing
modalities. We observe that DPMamba consistently outper-
forms the baseline models, with the OA showing a maxi-
mum increase of 34.27% (HSI & SAR). These results demon-
strate that when multiple modalities are missing, the opti-
mized MMAPs effectively alleviate the performance degra-
dation caused by modality absence.

4.4 Ablation Study

Effectiveness of TBD

To assess the effectiveness of TBD, we conduct an abla-
tion experiment by replacing Ltgp with KL Divergence in
Variant-1. TBD enables full-modality information transfer
through feature alignment and inter-class relation constraints
based on a shared text semantic space. As shown in Table 3,
in the W/o HSI scenario, DPMamba outperforms Variant-1 by
3.70% and 8.43% in OA on the Houston and Augsburg HSI-
SAR datasets, respectively, demonstrating the advantages of
TBD over KL Divergence replacement.

Effectiveness of Modality-Aware Mamba
To evaluate the modality-aware Mamba backbone and its
components, we design three variants: Variant-2a (modality-

aware Mamba replaced with ViT [Dosovitskiy, 2020]),
Variant-2b (AF replaced with Add Fusion), and Variant-2c
(MISM replaced with DWConv). Table 3 shows that DP-
Mamba outperforms all variants, achieving average OA im-
provements of 6.60%, 4.73%, and 1.25% on the Houston
dataset, and 4.96%, 2.33%, and 2.05% on the Augsburg HSI-
SAR dataset across all scenarios of missing modalities. The
performance drops in the Variants highlight the importance
of dynamic, multi-level feature extraction, enabled by the AF
and MISM, for robust multimodal fusion and handling miss-
ing modalities.

Effectiveness of Prompt Injection

The MMAPs are seamlessly integrated into the modality-
aware Mamba, enabling the acquisition of missing modality
information and mitigating performance degradation caused
by modality absence. To further validate the effectiveness of
prompt injection, we design Variant-3, which omits MMAPs
and focuses solely on optimizing the SN for different scenar-
ios of missing modalities. As shown in Table 3, DPMamba
achieves average OA improvements of 4.89% and 3.67% over
Variant-3 across all scenarios of missing modalities on the
Houston and Augsburg HSI-SAR datasets, respectively.

5 Conclusion

We propose DPMamba, a unified framework for RSIC with
missing modalities. By leveraging knowledge distillation in
a shared text semantic space, DPMamba optimizes MMAPs
with full-modality knowledge for enriching missing modality
information, transforming them from “placeholder” to “adap-
tation” states. To enable the transition of MMAPs, we focus
on two key elements. First, we introduce a novel modality-
aware Mamba backbone for both TN and SN, designed to
capture dynamic cross-modal interactions at global and local
levels. Second, we propose a new TBD to efficiently trans-
fer full-modality knowledge for optimizing MMAPs. Ex-
perimental results show that DPMamba outperforms base-
line methods on the Houston, Trento, and Augsburg datasets,
underscoring its effectiveness in multimodal fusion and han-
dling missing modalities. Ablation studies further validate the
contributions of TBD, modality-aware Mamba and prompt
injection.
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