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Abstract

Ensemble clustering learns a consensus result by
integrating a set of base clustering results. Re-
cently, anchor-based methods construct an anchor
similarity matrix to represent the affinity relation-
ships among samples, significantly improving com-
putational efficiency. However, these methods
struggle with fixed anchors generated by static an-
chor learning strategies, which lead to low-quality
anchor similarity matrix and poor clustering ac-
curacy. To address this issue, we propose a
novel method named dYnamic Anchor-based en-
semble Clustering via Hypergraph reconstrucTion
(YACHT). Specifically, YACHT first transforms
the base clustering results into a hypergraph and
designs a novel hypergraph enhancement strategy
to improve the reliability of the initial hypergraph.
YACHT reconstructs the hypergraph through ma-
trix factorization and introduces a mapping ma-
trix to filter out redundant information, captur-
ing a high-quality anchor similarity matrix. Then,
YACHT attempts to incorporate the hypergraph
into the optimization objective to achieve hyper-
graph updates. To ensure the accuracy of hyper-
graph updates, we impose a hypergraph regularizer
and a local consensus information alignment term.
The alignment term is implemented by minimizing
the discrepancy between the label partition derived
from the hypergraph regularizer and the local con-
sensus information indicator matrix extracted from
the base clustering results. Extensive experimen-
tal results demonstrate the outstanding performance
of the proposed YACHT. The code is available at
https://github.com/scu-kdde/YACHT.

1 Introduction

Ensemble clustering integrates multiple base clustering re-
sults to capture a more robust consensus result [Chen er al.,
2023; Shi et al., 2021; Li et al., 2021; Bai et al., 2020].
Without accessing the data features, the range and level of
effective information that ensemble clustering can utilize are
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quite limited, which also gives it the characteristic of protect-
ing data privacy [Zhou et al., 2024]. Most existing ensem-
ble clustering methods focus on converting base clustering
results into a Co-association (CA) matrix. The CA matrix de-
scribes the frequency with which samples belong to the same
cluster and characterizes the cluster structure at the sample
level. These methods incorporate various learning paradigms
or graph-based techniques to improve the quality of the CA
matrix, ultimately obtaining discrete consensus clustering re-
sult through hierarchical or spectral clustering methods [Jia et
al.,2021; Xu et al., 2024]. However, the n x n-sized CA ma-
trix inevitably leads to a time complexity of O (nz) or even
0 (n3) , making it difficult to scale to large-scale datasets.

Anchor-based ensemble clustering methods are proposed
to address this scalability issue. These methods achieve
the ensemble by selecting representative samples (anchors),
learning the relationships between the anchors and the sam-
ples (the anchor similarity matrix), and clustering in three
steps [Zhang et al., 2024a; Liu et al., 2024]. The strategy for
selecting anchors is crucial for the quality of the anchor sim-
ilarity matrix and directly impacts clustering accuracy. Ex-
isting methods treat the cluster centers obtained by K-means
and its variants as anchors, and once the anchors are selected,
they remain fixed [Huang er al., 2020; Zhang ef al., 2024a;
Li ef al., 2023]. This reduces the flexibility and quality of the
constructed anchor similarity matrix, and in practical applica-
tions, the number of anchors is often large. Moreover, these
methods use data features when selecting anchors, which lim-
its the privacy-preserving capabilities of ensemble clustering.
To address these issues, there is an urgent need to propose
a method that dynamically learns anchors without relying on
data features, in order to preserve the privacy-preserving na-
ture of ensemble clustering and improve the quality of the an-
chor similarity matrix. Specifically, this method should meet
the following challenges. (C1): How to improve the reliabil-
ity of base clustering results to enhance the accuracy of sub-
sequent anchor point learning. (C2): How to dynamically
learn anchor points and construct high-quality anchor simi-
larity matrices using only base clustering results to preserve
the privacy-preserving characteristics of ensemble clustering.
(C3): How to fully leverage the effective local information
in base clustering results to improve clustering accuracy.

To address these challenges, we propose a novel method
named dynamic anchor-based ensemble clustering via hyper-
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Figure 1: We construct an initial hypergraph H and then perform random walks on the hyperedges to enhance the initial hypergraph.

graph reconstruction (YACHT). Specifically, as shown in Fig-
ure 1, YACHT transforms the base clustering results into a
hypergraph and designs a hypergraph enhancement strategy
based on random walks on hyperedges to improve the relia-
bility of the initial hypergraph. Then, YACHT reconstructs
the hypergraph through matrix factorization. During the re-
construction process, both the anchor matrix and the anchor
similarity matrix are incorporated into the optimization ob-
jective for dynamic learning. Moreover, a mapping matrix is
introduced to filter out redundant information in the hyper-
graph. This helps capture a higher-quality anchor similarity
matrix. Next, YACHT incorporates the hypergraph into the
optimization objective and imposes a hypergraph regularizer.
The regularizer constrains the hypergraph update and derives
a label partition. YACHT aligns the label partition with the
local consensus information extracted from the base cluster-
ing results. This alignment strategy helps constrain the hyper-
graph to retain local consensus information during the update
process without introducing significant deviations. Finally,
the final consensus results are obtained by applying the K-
means method to the anchor similarity matrix.
The main contributions of this paper are:

* We propose a novel method named dynamic anchor-
based ensemble clustering via hypergraph reconstruc-
tion (YACHT). Compared to methods based on the CA
matrix, YACHT reduces the time complexity to O(n)
and is more suitable for large-scale datasets.

* We introduce a hypergraph enhancement strategy to im-
prove the reliability of the initial hypergraph. The hyper-
graph regularizer and local consensus information align-
ment term are imposed to prevent significant deviations
during the hypergraph update process.

* We design an alternating optimization strategy for the
objective function. The effectiveness of YACHT is
demonstrated through comparisons with 17 representa-
tive clustering methods.

2 Related Work

2.1 Ensemble Clustering

Strehl and Ghosh [Strehl and Ghosh, 2003] conducted early
research on ensemble clustering, defining ensemble cluster-
ing as the process of learning a consensus result from a set

of base clustering results. Ensemble clustering alleviates the
robustness and stability issues of single-clustering methods.
It can be broadly divided into two categories: methods based
on the quality of base clustering results and methods based
on consensus function strategies. The former either selects
high-quality base clustering results from the base cluster-
ing set or relies on robust clustering algorithms to generate
more accurate base clustering results [Huang er al., 2023;
Abbasi et al., 2019; Zhao et al., 2017]. Methods based on
consensus function strategies have garnered wide attention
due to their excellent performance. These include CA matrix-
based methods [Tao et al., 2019; Liu et al., 2015; Xie et al.,
2024] and bipartite graph-based methods. CA matrix-based
methods focus on improving the quality of the CA matrix
[Hao et al., 2024; Jia er al., 2024] or learning its underly-
ing subspace to explore cluster structures [Tao et al., 2019;
Tao et al., 2021]. Bipartite graph-based methods leverage the
association between samples and clusters to obtain consensus
partitions [Fern and Brodley, 2004]. Some of these methods
adopt self-paced learning frameworks to progressively learn
consensus results [Zhou et al., 2021al.

2.2 Anchor based Clustering

A large number of anchor-based clustering methods have
been proposed [Liu ef al., 2024; Wan et al., 2023]. The mo-
tivation for introducing anchors in clustering is to enhance
the scalability of the algorithm. Anchors are representative
samples selected from the data, which are then used to learn
the affinity relationships among the samples. Research on an-
chors in ensemble clustering is still in its early stages. Rep-
resentative methods include: Yang ef al. performed spec-
tral clustering based on anchors and then assigned samples
to the nearest anchor clusters, significantly improving time-
liness [Yang er al., 2023]. Li et al. proposed an ensem-
ble method that reuses anchor similarity matrix and employs
light-k-means [Li et al., 2023]. Zhang et al. introduced a
fast k-nearest neighbor approximation method to construct
similarity matrices for approximating affinity matrix [Zhang
et al., 2024al. However, a key limitation of these methods
is that they used raw data features to select anchors, com-
promising the privacy-protecting characteristics of ensemble
clustering. Huang and Liang’s methods [Huang et al., 2020;
Liang ef al., 2020] did not incorporate data features. How-
ever, their methods either used fixed anchors or ignore local
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consensus information, leading to poorer performance. Un-
like the methods mentioned above, our method does not in-
troduce data features, allowing for dynamic anchor learning
and fully leveraging local consensus information.

3 The Proposed Method

This section details the YACHT method, covering the objec-
tive function, optimization, and time complexity analysis.

3.1 Constructing and Enhancing the Hypergraph

Given n samples X = {1, z3, ..., z, } and m base clustering
results = = {C’17 Cay ey Cin by where x; denotes the i-th sam-
ple. C; = {r} Ty ]”} represents the j-th base cluster-

ing result that partitions X into s; base clusters. 7Tj represents
the h-th base cluster in C;. A hypergraph G = (V, g, W)

can be constructed from the base clustering results, where V
represents the set of nodes, each corresponding to a sample.
Each hyperedge in the hyperedge set £ can represent a base
cluster. Therefore, the number of hyperedges is equal to the
number of base clusters s = Z;n_l s;. As shown in Figure
1, we can construct the initial hypergraph indicator matrix
H. The hyperedge weight Wisa diagonal matrix, where the

diagonal elements W” represents the weights of the i-th hy-
peredge. Since each hyperedge represents a base cluster, we
use local entropy weights [Huang er al., 2018] to represent
the weights of the hyperedges. The hyperedge weights are
defined as:

where p(H;., H;.) = w
number of intersecting samples between two hyperedges to
the number of samples in i-th hyperedge. 6 represents the
weight decay parameter, where a smaller value indicates
faster weight decay.

Due to the weaknesses of the base clustering algorithms,
the reliability and stability of the initial hypergraph generated
from the base clustering results are compromised [Zhou et
al., 2022]. We improve the reliability of the hypergraph by
introducing random walks to explore the proximity between
hyperedges [Zhang ef al., 2024b]. We use the Jaccard dis-
tance to define the direct similarity between hyperedges:

represents the ratio of the

|7* N7l

JaCCard(ﬂ'i,ﬂ'j) = m,

0,; = Jaccard(r*, 77),
where O;; represents the similarity between the i-th and j-th

hyperedges. Normalizing O as 0= D 1O allows it to be in-
terpreted as a probability transition matrix, where D denotes
the Laplacian matrix of O. Then, the high-order relationship

matrix O € R*** of the hyperedges is defined as:
O=0"T0+0PTO L +OWTO, (1)

where O(@) = OW-1DTQ. Based on this similarity, we can
improve the existing hypergraph structure. We generate the

enhanced hypergraph H € R**" as follows:
H, -} (;je{jlou_a}H ) it 33 e 165,20y Hi: > 0,
H;. otherwise,

2)
where 1 (-) is a mapping function that maps all values greater
than O to 1, and « is the similarity threshold. As shown in
Eq. (2), the hyperedges of the enhanced hypergraph H may
change, resulting in new hyperedge weights W.

3.2 Reconstructing the Hypergraph with
Hypergraph Regularization

After obtaining the enhanced hypergraph H, a self-expressive
model is employed to capture sample affinities:

mSinHH—DSH%,

where S € R"*" denotes the similarity matrix and D is the
dictionary. This form can reconstruct H, but has the follow-
ing issues: (i) the similarity matrix S is n X n, and the re-
construction of H is slow, leading to lower computational ef-
ficiency; (ii) it cannot filter out the redundant information in
the hypergraph. Therefore, we introduce anchor learning and
a mapping matrix. The anchor points reduce the similarity
matrix dimension from n X n to k X n relations, where k is
the number of anchor points. This results in a smaller anchor
similarity matrix Z compared to S, thereby accelerating the
reconstruction process. The introduction of the mapping ma-
trix helps filter out redundant hyperedges in the hypergraph,
which aids in capturing a higher-quality anchor similarity ma-
trix. Therefore, we obtain the following form:

min |H-PTAZ||%
P.AZ 3)
=L,AA" =

st. PPT LZ'1=1,Z; >0,

where P € R¥ % is the projection matrix, Z € R**" is
the similarity matrix representing the relationship between
the anchors and the samples, and A € RS ** denotes the
anchor matrix. s’ is the number of representative base clus-
ters. The orthogonal constraints on variables P and A help
learn a better similarity matrix Z [Feng er al., 2024].

Furthermore, we attempt to incorporate H into the opti-
mization objective, as the quality of H directly impacts the
reliability of Z. However, unconstrained updates inevitably
lead to large errors and unreliable Z. Therefore, to learn a
better hypergraph, we apply the widely used hypergraph reg-
ularizer [Gao et al., 2022; Zhang et al., 2018]. We rewrite
equation (3) as:

o nin, [H—P AZ||F+tr(F LF)

st PPT =L,AAT =L FF'

4
=1,Z'1=1,Z; >0,

where L =1— D_1/2HTWD 'HD, /2 is the Laplacian
matrix of the hypergraph. D, = dzagq-ITWI ) denotes the
node degree matrix, D, = diag(1"HT) is the edge degree
matrix. This regularizer not only constrains the hypergraph
update but also derives a label indicator matrix F € R"*¢,
where c is the number of clusters. The label indicator ma-
trix helps us align the local consensus information derived
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Figure 2: x5 and x3 form a consensus cluster, as do x5, 7 and zs.
The consensus clusters are ranked by size, and the top c clusters are
selected to generate the Y matrix. ¢ denotes the number of clusters.

from the base clustering results. This ensures that the hy-
pergraph preserves this information during the optimization
process while avoiding significant deviations.

3.3 Aligning Local Consensus Information

In general, local consensus information refers to results that
are reflected in all base clustering results, for example, when
two samples are clustered together in every base clustering
perspective. Since the CA matrix captures relationships at
the sample level, local consensus information can be easily
applied in methods based on the CA matrix [Jia et al., 2021;
Jia et al., 2024; Li et al., 2024]. To align local consensus
information with the label indicator matrix F derived from the
hypergraph, we also need to define a consensus base cluster
S to match the size of F.

Definition 1. Let S be a set of objects. The set S is a consen-
sus base cluster if and only if (i) Vz;,x; € S s.t. Hyy = Hy,
and (ii) the number of samples contained in the set, num (.S),
is at least 2 (num (.59)).

Definition 1 provides the definition of consensus base clus-
ter based on the initial hypergraph. Although both consensus
base clusters and microclusters [Huang er al., 2016] require

consistent sample-base cluster relationships (i.e. H.; = H.;),
we additionally require that consensus base clusters contain
more than 2 samples. This is because microclusters can in-
clude single samples, but retaining a consensus base cluster
with only a single sample for alignment is meaningless. Con-
sidering the size of F', we strive to retain as much information
as possible from the large number of local consensus base
clusters. We first sort the number of samples in all consensus
base clusters and then retain the top ¢ consensus base clus-
ters. Based on these c base clusters, we generate the local
consensus information indicator matrix. Figure 2 shows the
construction process of the local consensus information indi-
cator matrix Y. Note that all of this is based solely on the
base clustering results, without relying on any ground truth.
Finally, we minimize the error between F and Y to achieve
alignment. The final objective function is as follows:

min _||H - PTAZ|} + tr (FTLF) +IF-Y|%

H,P,A,Z,

st PP =LAA" =LFF' =1,Z'1=1,Z;; > 0.

&)

3.4 Optimization

To solve Eq. (5), we employ the alternating optimization
strategy [Zhong and Pun, 2022], i.e., optimizing the target
variable alternately while fixing other variables.

Update P To update the variable P, other variables need
to be fixed. The subproblem w.r.t. P is as follows:

min |[H - P"AZ|; stPP’ =1L ©6)

We expand the Frobenius norm by the trace operation and
remove terms unrelated to P, further transforming Eq. (6)
into the following form:

T T _
mgxtr(P Q) stPP =1, (7)

where Q = AZH . Supposing the Singular value decompo-
sition (SVD) of Q is Uq EQV(S, we can obtain the optimal

solution for P as UqV Q.
Update A With P, Z, H and F being fixed, the subprob-
lem for A is as follows:

min [H - P AZ|[; st AAT =1

Similar to the subproblem for P, we transform the subprob-
lem for A into the following form by expanding the Frobe-
nius norm:

T T
mﬁxtr(A B) st AA =1, (8)

where B = PHZ'. Similarly, we perform the SVD de-
composition B = UBEBVE, and then obtain the optimal

solution for the variable A as U V.
Update Z With P, A, H and F being fixed, the subprob-
lem for Z is as follows:

min [H-PTAZ|% stZ'1=1,Z; >0. ©)

Eq. (9) can be solved using the augmented Lagrange multi-
plier (ALM) method [Bazaraa er al., 2013]. Its augmented
Lagrangian function is as follows:

£(z)= |H-PTAZI}+37 (271-1) + L2711},

(10
where J € R™*! represents the Lagrange multiplier, 4 is the
penalty parameter. Next, we take the derivative of Eq. (10)
and set it to zero. The variable Z can be updated by:

-1
7= (ZATPPTA + ,ullT) (unT +2ATPH - 1JT) .
Update H With P, A, Z and F being fixed, the subprob-
lem for H is as follows:
min [H - PTAZ|} + tr (FTLF). (11)
Since D, and D, are related to H, we need to first take the
derivatives of D,, and D, before taking the derivative of Eq.
(11). Denote that D, > = diag ([d,...,d’]) and D;} =
diag ([dS, ...,dS]). We can get:

ey oy

1
s -2
adr 9 (225=1 Hiiw, 1.
= ( ) :_i(di)?)(siqua

OHyq OHpq
0d; _O(SiiHis) ' ey
OHp, OHypq == (&) o,
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Algorithm 1 Obatain label indicator matrix F

Algorithm 2 YACHT

Input: Matrix G, Y.
Output: F.
1: Initialize an orthogonal matrix F satisfying FF " = I.
2: while not converged do
3:  Update Q' by Q' = GF + 2Y.
4:  Calculate the SVD of Q' = UQ/EQ/V(S,.
5:  Update Fby F = Uq/'V{,.
6: end while

where 0 is the Kronecker delta, i.e., §;; = 1ifi = gand 6, =
0 otherwise. Let the subproblem for Eq. (11) be denoted as
Q (H). The derivative w.r.t. H can be written as:

_1 _1
VQ(H)=2(H-P'AZ)-2WD_'HD, 2FF'D, ?
-3 . T g T
+ D, 2 diag (H WD, 'HD, 2FF ) JW
_1 _1
+ J diag (HDv 2FF' D, 2 HTWD;Q) \

where J is a matrix where all elements are 1. Setting the
derivative VQ to 0 and then solving is quite difficult, so we
use the projected gradient method to optimize the variable H
[Gao et al., 2022]. H is updated as follows:

Hyy1 = P[H, — oVQ(Hy)], (12)

where « is the learning rate, and P is the projection onto the
feasible set {H|1 > H > 0}. P is defined as follows:

H; if0<H; <1
P[Hij] =140 ifH;; <0. (13)
1 if Hij >1

Update F With P, A, Z and H being fixed, the subproblem
for F is as follows:

min tr (FTLF> +|F-Y|? stFF' =1,
- g T T (14)
= max tr(F GF)+2tr(F' ' Y) stFF =1,

where G = Dv_l/QHTWDngDv_l/Q. Inspired by [Zhuge
et al., 2019], we solve for variable F using Algorithm 1 and
obtain its closed-form solution.

Update J and ;¢ The Lagrange multipliers and penalty
parameters in the ALM method are updated as follows:

I=T+u(271-1), p=min(op, ftmar) (15)

where p > 0 is a user-defined constant, and fi,,,4, represents
the maximum value of ;. The overall process of the algorithm
is summarized in Algorithm 2.

3.5 Complexity Analysis

In YACHT, the time complexity is mainly driven by the hy-
pergraph enhancement strategy and the updates of several
variables. The hypergraph enhancement strategy involves
random walks on the hyperedges and matrix multiplication,
with a time complexity of O(s?). For variable P, its update

Input: m base clustering results, ¢, k and .
Output: Consensus result s.
1: Initialize P, A, Z, and J. Construct the initial hyper-

graph H and obtain the enhanced hypergraph H.
while not converged do

Update P by solving Eq. (7).

Update A by solving Eq. (8).

Update Z by solving Eq. (9).

Update H by solving Eq. (11).

Update F by Algorithm 1.

Update J and p by Eq. (15).
end while
Obtain the left singular vector U by performing SVD on
Z. Perform k-means method on U to obtain s.

S A Al

Ju—

No. Dataset Instance Feature Class
D1 Tri2 313 5804 8
D2 Cars 392 8 3
D3 1S 2310 19 7

D4 Segment 2310 18 7
D5  MnistData_05 3495 653 10
D6  MnistData_10 6996 688 10
D7 COIL100 7200 1024 100
D8 FashionMNIST 60000 784 10
D9 KannadaMNIST 60000 784 10
D10 EMNIST 280000 784 10

Table 1: Characteristics of all datasets.

process involves SVD decomposition and matrix multiplica-
tion, resulting in a time complexity of O(s’s? + s'n(k + s)).
For variable A, its time complexity is O(s'k? + s'n(k + s)).
For variable Z, it involves matrix inversion, resulting in a time
complexity of O(k?). For variable H, we use the projected
gradient method for optimization. In each iteration, the time
complexity of the computation can be reduced to O(n) by
appropriately applying the associative law of matrix multi-
plication. Similarly, for variable F, by adjusting the order
of matrix multiplication, its computational complexity can be
controlled within O(c?n). According to [Zhou et al., 2022],
the number of base clusters is much smaller than the number
of samples, so we have n >> s, n >> k, and n >> s,
Overall, the total time complexity of YACHT is linearly re-
lated to the number of samples, O(n).

4 Experiment

4.1 Experimental Setup

We conduct extensive experiments on 10 real datasets. Char-
acteristics of these datasets are provided in Table 1. Some
methods [Zhou er al., 2019; Tao et al., 2019] provide rele-
vant base clustering results, which we use directly for conve-
nience. For the other datasets', we randomly run the K-means
method 100 times to generate the base clustering result set.

"http://archive.ics.uci.edu/datasets
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Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
ACC
Base clusterings (average) 45.2+5.7 23.0£8.6 38.74+13.6 59.94+6.5 53.943.5 53.6+£3.4 44.2+1.9 52.3+4.4 69.845.3 55.6+£0.4
Base clusterings (best) 63.6 44.9 66.9 70.5 62.6 62.7 49.2 61.4 80.9 63.3
ECCMS [TNNLS, 2024] 542431 52.64£5.9 653425 62.0+£0.7 58.1+£0.7 54.9+1.8 44.1+1.2 N/A N/A N/A
CEAM [TKDE, 2024] 557432 44.6+£5.2 64.0+3.3 62.1£1.8 54.7+£1.2 55.7+£1.8 49.8+1.0 N/A N/A N/A
SPCE [TNNLS, 2021] 46.0+5.2 56.1+£5.7 61.0+1.8 63.14+2.6 54.4+2.5 55.0+3.5 48.840.9 N/A N/A N/A
CESHL [Inf. Fusion,2022] 49.2+3.3 51.4£1.0 66.24+3.1 64.5+6.2 57.44+1.8 57.04+0.5 30.8+4.2 N/A N/A N/A
DREC [Neuro., 2019] 527447 48.446.6 65.1+2.8 58.1£5.6 51.1£5.4 55.842.3 42.6+£2.5 49.7+3.7 67.1+4.9 52.44+2.7
TRCE [AAAI 2021] 52.842.9 63.542.0 64.542.2 64.2+6.7 53.240.6 55.543.0 49.840.9 N/A N/A N/A
LWEA [TCYB, 2018] 57.4+£10.8 53.3+7.6 65.742.6 63.4+3.0 58.0+t1.6 48.3+0.6 43.4+1.4 51.542.0 73.242.5 N/A
LWGP [TCYB, 2018] 57.6+£5.8 54.6+£5.2 65.6+2.1 61.7£0.3 55.5+2.1 48.5+1.3 48.9+1.2 51.6+3.6 71.74+3.6 57.34+2.4
ECPCS-HC [TSMC, 2021] 45.3+29 49.5+4.0 63.84+3.1 62.1+0.7 53.043.6 52.7+1.5 41.4+1.1 51.6+2.6 60.9+4.1 N/A
ECPCS-MC [TSMC, 2021] 48.6+2.9 499+1.8 64.243.0 60.1+£7.1 52.6+0.4 49.7+0.7 48.64+1.1 51.243.7 71.843.2 57.8+2.1
U-SENC [TKDE, 2020] 55.542.5 48.7+1.9 66.34+2.6 62.6+7.5 53.6+1.8 53.942.1 51.2+1.6 51.8+3.7 73.1+3.6 58.34+0.8
SEC [KDD, 2015] 43.947.6 49.5+8.8 49.249.1 56.445.0 51.24+6.0 48.4+3.8 44.3+1.5 45.545.2 57.9+7.5 53.0+4.8
PTA-AL [TKDE, 2016] 57.8+6.3 53.743.5 623122 61.444.4 54.4+2.0 489+1.1 35.5+1.5 51.54£3.6 75.3+3.3 56.5+2.8
PTA-CL [TKDE, 2016] 56.845.0 47.1+7.1 662455 62.1£4.0 56.2+2.9 49.5+0.8 34.54+1.5 52.34+3.2 76.3+3.8 56.8+4.3
PTGP [TKDE, 2016] 57.345.1 52.145.0 67.045.5 63.8+4.8 55.442.0 49.440.8 34.54+1.2 52.0+2.5 75.74+3.8 55.943.5
AWMVC [AAAI 2023] 549445 47.04£6.6 512459 64.044.3 51.1£1.8 52.9+1.7 50.3+0.8 50.0+4.0 72.2+4.3 56.94+2.8
SMVAGC-SF [TIP, 2024] 55.7+4.2 47.746.2 51.6+9.0 64.1+6.0 51.8+1.8 53.7+3.1 49.9+1.2 51.842.6 73.24+4.4 57.1+4.3
YACHT 62.5+1.3 58.0+8.9 71.6+6.5 68.3+1.9 58.7+1.0 57.5+1.1 53.84+1.6 55.3+3.0 76.8+2.5 60.9+4.1
ARI
Base clusterings (average) 21.8+84 3.842.2 34.4+11.1 47.1+4.3 36.842.3 36.64+2.3 39.3£1.8 36.2+2.0 57.84+3.7 38.04+2.9
Base clusterings (best) 44.1 9.2 56.7 54.5 43.1 43.3 43.7 41.1 65.7 42.2
ECCMS [TNNLS, 2024] 27.243.2 10.649.8 53.842.5 49.3+1.1 39.740.9 39.5+1.4 37.64+0.7 N/A N/A N/A
CEAM [TKDE, 2024] 325445 6.247.6 48.4449 489+0.9 359+3.5 36.6+2.1 46.0+0.7 N/A N/A N/A
SPCE [TNNLS, 2021] 272453 9.6+7.6 469447 50.8+1.8 38.1+0.7 38.94+1.0 47.64+1.3 N/A N/A N/A
CESHL [Inf. Fusion,2022] 19.2+3.5 13.0£2.7 52.544.5 50.1+4.1 39.04+0.9 38.9+0.7 13.9+7.5 N/A N/A N/A
DREC [Neuro., 2019] 26.1+4.5 6.6+7.4 52.442.1 45345.4 34.6+£3.8 38.1+£1.4 34.1+£5.2 347422 54.5+4.5 34.542.3
TRCE [AAAI 2021] 22.844.7 18.6+6.9 52.04+2.0 49.7+4.9 36.8+0.5 37.5+1.7 41.5+1.3 N/A N/A N/A
LWEA [TCYB, 2018] 35.84+15.1 12.14£8.0 52.9+3.2 50.14+2.1 39.440.6 39.3+0.8 37.9+0.7 37.5+1.2 59.5+1.7 N/A
LWGP [TCYB, 2018] 31.3+12.5 13.541.0 54.4+1.8 49.7+0.8 38.4+1.2 37.241.6 42.14+1.1 36.7+1.5 58.84+2.4 40.2+2.0
ECPCS-HC [TSMC, 2021] 14.6+£1.8 9.0+7.6 51.942.4 51.240.8 38.14+1.7 39.4+1.1 35.3+0.8 34.5+2.8 52.442.6 N/A
ECPCS-MC [TSMC, 2021] 18.9+3.0 12.54£24 53.142.0 47.0+4.5 36.440.3 37.24+1.3 42.1£0.9 36.3+1.8 58.7+2.0 40.6+1.9
U-SENC [TKDE, 2020] 30.24+4.0 12.04£2.1 51.6+2.1 48.944.9 36.9+0.9 37.1£1.1 46.0+£1.0 36.8+2.0 59.8+2.6 41.1+0.7
SEC [KDD, 2015] 15.246.9 2.54+15.5 30.2+13.0 41.3£5.7 33.1+£5.8 30.1+4.3 35.04+4.0 29.1£6.5 43.0+8.8 34.6+4.5
PTA-AL [TKDE, 2016] 30.24+7.0 16.44+4.1 49.343.3 50.8+2.1 37.6+1.0 37.84+1.6 31.8+1.6 36.5+2.0 61.2+2.4 38.0+3.1
PTA-CL [TKDE, 2016] 30.1£6.2 12.04£5.1 52.0+4.3 51.74+1.4 38.7+£1.4 38.5+1.3 31.1+£1.4 37.6+1.7 61.9+2.8 39.1+2.7
PTGP [TKDE, 2016] 29.946.4 14.343.7 54.64+3.6 51.9+1.9 38.2+1.0 38.64+1.6 31.84+0.9 37.1£1.5 61.6+2.8 38.74+3.1
AWMVC [AAAI, 2023] 32.543.2 82472 31.747.8 50.3+5.6 33.0+2.0 35.14+2.0 44.7+1.1 33.9+1.8 57.5+3.5 38.54+2.9
SMVAGC-SF [TIP, 2024] 33.044.6 10.3+6.4 33.0£9.7 50.3+3.9 33.74+1.5 35.64+2.5 44.14+1.0 34.442.8 58.1£3.9 39.6+3.4
YACHT 41.1+4.3 23.1+13.5 54.7+5.8 52.6+1.8 41.5+0.6 40.9+1.1 49.1+0.9 38.4+2.3 62.0+3.2 43.0+3.0

Table 2: Clustering performance is measured by two metrics (%). The optimal results are highlighted in bold.

Following many ensemble methods, we set the ensemble size
to 20 and conduct 10 repeated experiments with different base
clustering combinations, reporting the mean and standard de-
viation. All compared methods use the same combination
of base clustering. In YACHT, we set the hyperedge weight
parameter § = 0.4 and the maximum order of hyperedge ran-
dom walks d = 20. We set the hyperparameters as follows:
the number of anchors k = k'+c, where k' € {—1,0, 1,2, 3};

and the similarity threshold o € [0.9 : 0.01 : 1]. All methods
are evaluated using two popular clustering metrics: Accuracy
(ACC), and Adjusted Rand Index (ARI). We use 17 represen-
tative methods, including state-of-the-art (SOTA) ensemble
methods, fast ensemble methods and anchor-based cluster-
ing methods. e SOTA ensemble methods: ECCMS [Jia et al.,
2024], CEAM [Zhou et al., 2024], SPCE [Zhou et al., 2021b],
CESHL [Zhou et al., 2022], TRCE [Zhou et al., 2021c],
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(a) FashionMNIST

(b) EMNIST

Figure 3: ACC w.r.t. k¥’ and a.

DREC [Zhou et al., 2019], ECPCS-HC/MC [Huang et al.,
2021]. e Fast ensemble methods: LWEA/LWGP [Huang et
al., 2018], U-SENC [Huang et al., 2020], SEC [Liu et al.,
20151, PTA-AL/CL [Huang et al., 2016], PTGP [Huang et
al., 2016]. e Anchor-based clustering methods: AWMVC
[Wan et al., 2023], SMVAGC-SF [Wang et al., 2024].

4.2 Experimental Results

Table 2 presents the experimental results on two metrics.
‘N/A’ indicates excessive runtime or insufficient memory.
From the experimental results, we have the following obser-
vations: (i) YACHT outperforms the average results of base
clustering on all metrics across all datasets, demonstrating
the effectiveness of integrating multiple base clustering re-
sults. (i) YACHT demonstrates strong performance advan-
tages across various datasets of different sizes, highlighting
the method’s excellent scalability. Particularly in terms of
the ARI metric, YACHT outperforms all comparison meth-
ods across all datasets. (iii) Overall, fast ensemble meth-
ods generally do not outperform SOTA ensemble methods on
most datasets. However, SOTA methods are often limited by
the size of the dataset and may fail to produce results. (iv)
YACHT outperforms the hypergraph method CESHL across
all metrics, validating the effectiveness of using anchors to
reconstruct the hypergraph.

4.3 Parameter Study and Time Comparison

Figure 3 shows the impact of different parameter combina-
tions on the accuracy of the YACHT method. We observe
that, on large-scale datasets, the YACHT method is not highly
sensitive to parameter combinations, indicating that YACHT
exhibits good robustness. For large-scale datasets (Fashion-
MNIST, EMNIST), we select no more than twenty anchor
points to reconstruct the hypergraph, achieving the highest
clustering accuracy, which validates the effectiveness of the
reconstruction. Additionally, the parameter o has some im-
pact on the accuracy of the YACHT method, indicating that
although H is incorporated into the optimization objective,
the initial values still affect the clustering accuracy. This also
suggests that the hypergraph enhancement strategy can adjust
the hypergraph structure through a threshold, providing a bet-
ter initial value for the optimization method. Figure 4 shows a
comparison of the running time across different methods. Al-
though the YACHT method is not the fastest ensemble clus-
tering method, it is the first to introduce a dynamic anchor
learning strategy compared to existing fixed-anchor ensemble
methods. Dynamic anchor learning significantly improves
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Figure 4: The running time comparison of different methods.

Dataset Metric w/o H-Re w/o H-r w/o H-e YACHT

D3 ACC  0.616 0.700  0.681  0.716
ARI 0.468 0.538  0.506  0.547
D9 ACC  0.719 0.755  0.768  0.768
ARI 0.586 0.610  0.620  0.620

Table 3: Ablation study results.

accuracy, but updating the anchors inevitably requires more
time. In practical applications, accepting a bit of additional
runtime is reasonable in order to achieve higher accuracy.

4.4 Ablation Study

Table 3 shows the results of the ablation versions of the
YACHT method. ‘w/o H-Re’ indicates the version without
hypergraph reconstruction, where k-means is applied directly
on the hypergraph. ‘w/o H-r’ indicates the version using hy-
pergraph reconstruction only, without hypergraph update and
regularization. ‘w/o H-e’ refers to the version without the
hypergraph enhancement strategy. We observe that the clus-
tering accuracy significantly decreases without hypergraph
reconstruction, which suggests that reconstruction helps re-
move erroneous information, improving clustering accuracy.
Overall, the absence of the hypergraph enhancement strategy
and the lack of hypergraph regularizer both lead to a decrease
in clustering accuracy. This demonstrates the effectiveness of
hypergraph reconstruction and the hypergraph regularizer in
the YACHT method.

5 Conclusion

This paper proposes a dynamic anchor-based learning
and hypergraph reconstruction ensemble clustering method,
YACHT. YACHT transforms the base clustering results into
a hypergraph and designs a hypergraph enhancement strat-
egy to improve its reliability. Unlike other methods, YACHT
learns a high-quality anchor similarity matrix through hyper-
graph reconstruction. Additionally, it constructs a more reli-
able hypergraph and constrains its update using a local con-
sensus alignment term and hypergraph regularization. Exper-
iments on real datasets validate the effectiveness of YACHT.
Although YACHT is not the fastest ensemble method, its ac-
curacy significantly outperforms existing SOTA methods.
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