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Abstract
Community detection, a vital technology for real-
world applications, uncovers cohesive node groups
(communities) by leveraging both topological and
attribute similarities in social networks. However,
existing Graph Convolutional Networks (GCNs)
trained to maximize modularity often converge to
suboptimal solutions. Additionally, directly using
human-labeled communities for training can under-
mine topological cohesiveness by grouping discon-
nected nodes based solely on node attributes. We
address these issues by proposing a novel Topo-
logical and Attributive Similarity-based Commu-
nity detection (TAS-Com) method. TAS-Com in-
troduces a novel loss function that exploits the
highly effective and scalable Leiden algorithm to
detect community structures with global optimal
modularity. Leiden is further utilized to refine
human-labeled communities to ensure connectivity
within each community, enabling TAS-Com to de-
tect community structures with desirable trade-offs
between modularity and compliance with human
labels. Experimental results on multiple bench-
mark networks confirm that TAS-Com can sig-
nificantly outperform several state-of-the-art algo-
rithms.

1 Introduction
Community Detection (CD) in social networks is an active re-
search area with immense practical implications across nu-
merous fields like marketing, sociology, and public health
[Chunaev, 2020; Wu et al., 2020]. Unveiling hidden struc-
tures within complex networks drives transformative innova-
tions that help to shape the future of society [Su et al., 2022;
He et al., 2021a]. Real-world applications of CD are vast
and impactful, including information spreading [Karataş and
Şahin, 2018], dimensionality reduction, and product recom-
mendation [Moradi et al., 2015].

Many existing methods for CD are mainly based on net-
work topology [Traag et al., 2019; de Silva et al., 2023;
Jin et al., 2021]. However, real-world networks often in-
clude node attributes that are crucial for identifying meaning-
ful communities. Networks with these attributes are known as

attributed networks [Chunaev, 2020; Bhowmick et al., 2024;
Xie et al., 2021].

In an attributed network, a community is a group of nodes
that are densely connected and share strong attribute simi-
larities [Bhowmick et al., 2024; Zhu et al., 2024; Luo and
Yan, 2020]. Such communities capture both topological and
attribute cohesiveness, making them meaningful representa-
tions of real-world groups where both connections and shared
characteristics are important. A set of non-overlapping com-
munities that completely covers the whole attributed network
is known as the community structure of the network.

CD in attributed networks has been approached through
various methods, including heuristic-based [Combe et al.,
2015], evolutionary computation (EC)-based [Guo et al.,
2024], and learning-based techniques [Jin et al., 2019;
Bhowmick et al., 2024; Ju et al., 2023; He et al., 2022].
Among these, learning-based methods have gained signif-
icant attention in recent literature [Sun et al., 2019], with
Graph Convolutional Neural Networks (GCNs) emerging as
the leading solution. GCNs leverage deep learning to inte-
grate topological and attribute information through layer-wise
propagation [Tsitsulin et al., 2023; He et al., 2021b], offer-
ing a precise understanding of network topology and provid-
ing a comprehensive view of social networks. Despite their
strengths, state-of-the-art GCN approaches still face two crit-
ical challenges.

The first issue lies in the challenge of directly training
GCNs to maximize modularity, which often results in sub-
optimal community structures [Chunaev, 2020]. Although
maximizing modularity effectively promotes topological co-
hesiveness [Bhowmick et al., 2024; Tsitsulin et al., 2023],
the inherent complexity of the modularity function makes
gradient-based optimization prone to local optima, leading
to poor results. This difficulty in achieving globally optimal
solutions highlights the limitations of modularity as a direct
training objective and underscores the need to use a different
loss function that makes it more straightforward to maximize
modularity.

The second issue arises from using human-labeled com-
munities to train GCNs, as these labels are typically based
solely on node attributes while overlooking topological co-
hesiveness. This omission, a critical factor for high-quality
community structures, often leads to poorly formed commu-
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nities with disconnected nodes, significantly reducing mod-
ularity. This problem highlights the necessity of integrat-
ing topological information with node attributes to enhance
GCNs’ ability to produce well-formed and cohesive commu-
nity structures.

To address these issues, we propose a novel Topological
and Attributive Similarity-based Community detection (TAS-
Com1). TAS-Com introduces a newly designed loss function
to guide GCN training. Our innovative loss function exploits
the highly effective and scalable Leiden algorithm [Traag et
al., 2019] (see Appendix M for more details) to identify com-
munity structures with global optimal modularity. Leiden is
further utilized to refine human-labeled communities to en-
sure connectivity within each community, enabling TAS-Com
to detect community structures with desirable trade-offs be-
tween modularity and compliance with human labels. The
key contributions of this paper are as follows:

• We are the first to address the limitations of directly us-
ing human-provided community labels to train GCNs,
which often compromise CD due to lack of topologi-
cal cohesiveness. To overcome this, we propose a novel
Leiden-based method to refine human-labeled commu-
nities, ensuring they are both cohesive and free from
disconnected nodes that degrade CD quality, thereby en-
hancing their suitability for effective GCN training.

• We are the first to address the limitations of directly
training GCNs to maximize modularity. We propose
a novel modularity-based similarity loss, enhanced by
the Leiden algorithm, to effectively guide GCNs to-
ward discovering community structures with globally
optimal modularity. Additionally, we integrate this loss
with a refined human-label-based similarity loss, sig-
nificantly improving the GCN’s ability to identify com-
munity structures that achieve both high modularity and
strong alignment with human-labeled communities.

• We conduct extensive experiments on many real-world
attributed benchmark networks. The experiment re-
sults confirm that TAS-Com can significantly outper-
form multiple state-of-the-art approaches for CD across
most of these benchmark networks.

2 Related Work
CD has traditionally focused on graph topology, but recent
research [Chunaev, 2020] started to consider node attributes
to improve CD in attributed networks. Heuristic approaches
like I-Louvain [Combe et al., 2015] use inertia-based mea-
sures for attribute similarity but often fail to find globally
optimal structures. EC methods, such as @NetGA [Piz-
zuti and Socievole, 2018], optimize fitness functions com-
bining attributes and connectivity, while multi-objective algo-
rithms [Li et al., 2017] refine these strategies. However, these
approaches rely on manually designed similarity measures,
overlooking intrinsic node relationships and highlighting the
need for machine learning techniques to learn high-level node
embeddings for more accurate CD [Su et al., 2022].

1The full paper is available at https://arxiv.org/abs/2505.10197,
with code at https://github.com/desilanja/TAS-Com

The emergence of advanced Graph Neural Networks
(GNNs) has significantly shifted recent research toward
learning-based approaches, showcasing the critical impor-
tance of leveraging these technologies for more effective
CD [Chunaev, 2020; Zhu et al., 2024; Yang et al., 2023;
Liu et al., 2022; Xia et al., 2021]. These approaches generally
perform CD through two consecutive steps: 1) node repre-
sentation learning, and 2) node grouping/clustering based on
the learned high-level node embeddings [Zhou et al., 2023;
Tsitsulin et al., 2023; Bhowmick et al., 2024].

The most commonly used GNNs for CD are Autoencoders
(AEs) [Zhu et al., 2024] and GCNs [Bhowmick et al., 2024].
AEs are proficient at extracting node semantic information
[Liu et al., 2024; Sun et al., 2020; Kumar et al., 2023]. No-
table AE-based approaches include DNR [Yang et al., 2016]
and CDBNE [Zhou et al., 2023]. Despite their recent suc-
cess, AEs are not specifically designed to process graph data.
In contrast, GCNs can effectively handle node information at
both topological and attribute levels [Zhu et al., 2024].

Most GCN approaches for CD conduct either supervised
or semi-supervised learning based on ground truth commu-
nity labels [Bhowmick et al., 2024]. A few recent studies, like
SGCN [Wang et al., 2021] and DMoN [Tsitsulin et al., 2023],
further demonstrated the importance of unsupervised learn-
ing. For example, Zhu et al. [Zhu et al., 2024] introduced
DyFSS, an unsupervised approach that dynamically fuses
embeddings from multiple self-supervised tasks with node-
specific weights, effectively balancing attribute and structural
information to enhance clustering accuracy and robustness.
However, DyFSS’s reliance on hyperparameter tuning, such
as pseudo-label thresholds, limits its generalizability across
diverse graph datasets without extensive adjustments.

Existing unsupervised methods largely focus on optimiz-
ing modularity, often neglecting explicit optimization of at-
tribute similarity [Tsitsulin et al., 2023]. While DGCluster
[Bhowmick et al., 2024] optimizes both modularity and at-
tribute similarity, its maximization of modularity frequently
leads to suboptimal community structures. DGCluster learns
directly from human-labeled communities, which often group
disconnected nodes based solely on attributes, undermining
connectivity cohesiveness. To overcome these challenges, we
propose TAS-Com, powered by an innovative loss function
that properly integrates topological and attribute information,
improves the quality of human-labeled communities, and en-
ables GCNs to discover community structures with optimal
modularity and strong alignment with human labels.

3 Problem Definition
An attributed network can be modeled as a graph N =
(V,E,X), where V is the set of nodes, i.e., V =
{v1, v2, ..., vn}. E is the set of edges, i.e., E = {ei,j |ei,j ∈
V × V }. X ∈ Rn×T is the node attributes matrix, where T
is the number of attributes for each node.

A community structure CS of an attributed network
N is a set of non-overlapping communities, i.e., CS =
{C1, C2, ..., Ck} where k ≥ 1 s.t. ∀q ̸= l, Cq ∩ Cl = ∅ and
∪pq=1Cq = V . The main goal of CD in attributed network N
is to identify CS that satisfies the following conditions:
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• High topological cohesiveness: This implies that intra-
community edge density within any community is
higher than the inter-community edge density among
different communities [Chunaev, 2020].

• High attribute similarity: Nodes within the same com-
munity exhibit strong attribute level similarity. Mean-
while, nodes from different communities are expected
to have distinct and dissimilar attributes.

Modularity (Q) is a well-known metric to quantify the
quality of different community structures [Newman and Gir-
van, 2004]. As a quality metric at the topology level, Q with
respect to any given community structure CS is defined in
Equation (1):

Q(CS) =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(ci, cj , CS), (1)

where m is the total number of edges of the social network,
ki and kj are the degrees of the nodes vi and vj . Aij is the ad-
jacency matrix where Aij = 1 if an edge exits between nodes
vi and vj , otherwise 0. δ(.) is the Kronecker delta function
where δ(ci, cj , CS) = 1 if nodes vi and vj are in the same
community (i.e., ci = cj with ci and cj being the community
labels of node i and j respectively), otherwise 0.

Normalized Mutual Information (NMI) is a widely used
metric in existing research to assess how well a community
structure C aligns with human-labeled community structure
D in a social network N , particularly in terms of attributive
similarity [Bhowmick et al., 2024; Chunaev, 2020]. It is de-
fined in Equation (2) below:

NMI(C,D) =

−2
∑gC

i=1

∑gD
j=1 Pij log(Pijn/Pi.Pj.)∑gC

i=1 Pi. log(Pi./n) +
∑gD

j=1 P.j log(P.j/n)
,

(2)

where P represents the confusion matrix. Each of its el-
ements Pij refers to the number of nodes of community
Ci ∈ C that are also in community Dj ∈ D. The values
of i and j span within the range of {1, . . . , n} where n is the
number of nodes in N . gC refers to the number of communi-
ties in C. gD refers to the number of communities in D. Pi.

denotes the sum of the i-th row of P and P.j denotes the sum
of the j-th column.

Our Goal: We aim to identify high-quality commu-
nity structures that can outperform those discovered by
other state-of-the-art methods, achieving significantly higher
scores in both modularity (indicating topological cohesive-
ness) and NMI (indicating alignment with human labels).

4 Proposed Method
This section proposes TAS-Com for CD in attributed net-
works. Figure 1 illustrates the overall design of TAS-Com.
As shown in this figure, the adjacency matrix A, node at-
tribute matrix X , and human-labeled communities CSO are
utilized to build the loss function L and to train our GCN
model. Specifically, the GCN model first processes A and
X to generate the high-level node embedding X(e). Sup-
ported by the Leiden algorithm and our refinement algo-

rithm in Algorithm 1, X(e) is further adopted to calculate re-
spectively the modularity-based loss LM and refined human-
label-based loss LR to be introduced later in this section. The
total loss L is then constructed by combining LM and LR. L
subsequently guides the training of the GCN. Finally, based
on X(e) produced by the trained GCN, a clustering algorithm
named BIRCH [Zhang et al., 1996] is performed to obtain the
final community structure CS.

We follow [Bhowmick et al., 2024] to design the architec-
ture of our GCN model. In particular, the message passing
rule for the l-th layer, where l = 0, 1, ..., L− 1, is defined in
Equation (3):

X(l) = σ(ÃX(l−1)W (l−1)), (3)

where Ã is the normalized adjacency matrix s.t. Ã =

D− 1
2AD

1
2 . D is the diagonal node degree matrix [Bhowmick

et al., 2024]. The embedding output of the l-th layer is de-
noted by X(l). W (l) refers to the corresponding learnable
weight matrix of this layer. SELU is used as the activa-
tion function σ(·) to incorporate the non-linearity for the ag-
gregation of node attributes [Klambauer et al., 2017]. Fur-
ther, the node embedding matrix X(e) is transformed as in
[Bhowmick et al., 2024] to ensure that the embedding is con-
strained within the positive coordinate space (see Appendix
C). The following provides detailed descriptions of the new
components introduced in TAS-Com.

4.1 Proposed loss function (L)
In line with the problem formulation in the previous section,
we propose a new loss function to train GCNs to jointly max-
imize the node connectivity strength (modularity optimiza-
tion) and the node attribute similarity (NMI optimization).
The proposed loss function is defined at a high level in Equa-
tion (4):

L = LM + µLR, (4)
where µ ≥ 0 is a hyperparameter that controls the influence
of LR in L. LM refers to the modularity-based similarity
loss and LR refers to the refined human-label-based simi-
larity loss. The process of constructing LM and LR are ex-
plained in the next two subsections.

Modularity-based similarity loss (LM )
Most existing GNNs were trained directly to optimize the
modularity metric (see Equation (1)), resulting frequently in
locally optimal community structures with low modularity
[Tsitsulin et al., 2023]. In this paper, we employ the Leiden
algorithm with proven effectiveness and scalability [Traag et
al., 2019; de Silva et al., 2023; de Silva et al., 2022] to iden-
tify high-quality community structures with close-to-optimal
modularity. Due to the stochastic nature of Leiden, we apply
Leiden to a social network 30 times and select the community
structure with the highest NMI score out of all runs. Leiden
focuses solely on topological information, whereas our prob-
lem also concerns about attribute information. Therefore, we
select the community structure with the highest NMI from 30
runs, ensuring an ideal balance between topological level and
attribute level similarities.

Let H ∈ Rn×n be the pairwise information matrix
[Bhowmick et al., 2024]. As an n × n matrix, where n is
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Figure 1: The overall design of the proposed TAS-Com approach.

the total number of nodes in a social network, each element
of H is defined as in Equation (5):

Hij =

{
1 if ci = cj ;

0 otherwise,
(5)

where ci and cj are the community assignments of nodes
vi and vj according to Leiden. Specifically, the community
structure identified by Leiden can be represented in the form
of a one-hot matrix CSL ∈ {0, 1}n×k below:

(CSL)ij =

{
1 if node vi belongs to community j;

0 otherwise,

where k is the total number of communities detected by Lei-
den. Subsequently, H can be rewritten as follows:

HL = CSL · CST
L . (6)

In line with the above, the modularity-based loss LM is de-
signed to minimize the discrepancy between the community
assignments obtained by Leiden and the embedding similar-
ity matrix derived from the high-level node embedding X(e)

produced by the GCN model, as detailed below:

LM =
1

n2
||HL −X(e) · (X(e))T ||2F . (7)

Refined human-label-based similarity loss (LR)
As pointed out in the introduction, human-labeled communi-
ties contain disconnected nodes that seriously hurt the qual-
ity of the community structure in terms of modularity (see
Appendix D for a concrete example). Hence, we propose a
new method to refine human-labeled communities to simulta-
neously enhance consistency with human labels and connec-
tivity within each community. In practice, if human-labeled
communities are unavailable, any scalable CD algorithm can

Algorithm 1 Refinement of the human-labeled communities
Input: Human-labeled community structure CSO

Output: Refined community structure CSR

1: for each community Ck in CSO do
2: Step 1: Apply Leiden algorithm
3: Obtain a sub-network SN that contains nodes in Ck

4: CSL ←− CS with highest Q(CSL) after applying
Leiden(SN) for n times

5: Step 2: Merge sub-communities
6: while |CSL| ≥ threshold do
7: for each pair of sub-communities Ci and Cj in CSL

do
8: CSnew ←−Merge Ci and Cj

9: Calculate Q(CSnew) {Refer Equation (1)}
10: end for
11: CSL ←− CSnew with the highest Q(CSnew)
12: end while
13: CSR ←− (CSR \ {Ck}) ∪ CSL

14: end for
15: return CSR

be used to obtain the substitute labels. The pseudo-code of
the newly proposed refinement method is presented in Algo-
rithm 1. According to this algorithm, the refinement process
consists of two main steps explained below.

1. Apply a topology-based CD algorithm to detect
sub-communities in each human-labeled community.
Since Leiden can produce topologically connected com-
munities [Traag et al., 2019], we apply Leiden to ob-
tain the connected sub-communities within each human-
labeled community. In practice, any scalable CD algo-
rithm, such as Louvain [Blondel et al., 2008], can re-
place Leiden for this task. Due to the stochastic nature
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of Leiden, it is executed 10 times in our experiments
for each human-labeled community. We then choose the
community structure with the highest modularity, i.e.,
CSL, as described in lines 2–4 of Algorithm 1.

2. Merge sub-communities. In our experiments (see Ap-
pendix E), we found that Leiden can sometimes produce
many small sub-communities CSL that significantly de-
viate from human-labeled communities. Hence, GCNs
trained based on CSL can exhibit poor NMI perfor-
mance. To address this issue, we must merge closely
connected sub-communities in CSL. For this purpose,
we iteratively merge pairs of sub-communities in CSL.
Each iteration will select and merge the pair of sub-
communities that can produce the highest modularity af-
ter merging among all possible merge pairs (see lines 6–
12 in Algorithm 1). This process continues until a spe-
cific threshold = |CC(NL)|

2 is reached (see Appendix
B), where CC(NL) = {C1, . . . , Ck} refers to the set of
connected components of the sub-network NL contain-
ing all nodes of network N in CSL.

The community structure obtained from the above two
steps is deemed the refined human-label-based community
structure, denoted as CSR. CSR is subsequently adopted
to train our GCN to maximize NMI . Notably, CSR is con-
sistent with human-labeled communities since each human-
labeled community comprises one or more connected sub-
communities in CSR.

Using CSR, we define the refined human-label-based loss
LR in Equation (8) below:

LR =
1

n2
||HR −X(e) · (X(e))T ||2F . (8)

In the above, matrix HR follows the definition in Equation
(5). It is the pairwise matrix obtained from below:

HR = CSR · CST
R , (9)

where CSR is the one-hot matrix (similar to CSL) derived
from the community structure obtained from Algorithm 1.
According to Equation (8), LR guides our GCN to minimize
the discrepancy between HR and the embedding similarity
matrix derived from X(e). This is expected to enable the
trained GCN to produce node embedding that closely aligns
with human-provided community labels.

Driven by the loss function L designed above, we can fi-
nally develop a system to train GCNs through the stochastic
gradient descent method. The training process is summarized
in Appendix A.

4.2 Community detection based on node
embedding

Based on the node embedding produced by the trained GCN
model, we utilize the clustering algorithm named Balance It-
erative Reducing and Clustering using Hierarchies (BIRCH)
[Zhang et al., 1996] to identify the final community structure,
following DGCluster [Bhowmick et al., 2024]. The primary
benefit of BIRCH is its ability to flexibly construct commu-
nity structures without determining the number of communi-
ties in advance, enabling the algorithm to achieve a desirable
trade-off between modularity and NMI .

5 Experiment Design
This section outlines the experimental settings used to exam-
ine the performance of TAS-Com.

5.1 Benchmark networks
We conduct experiments on six commonly used attributed
social networks with human-provided community labels
[Bhowmick et al., 2024; Zhu et al., 2024]. In particular, Cora
and Citeseer are citation networks [Sen et al., 2008], Amazon
Photo and Amazon PC are co-purchase networks [Shchur et
al., 2018], and Coauthor CS [Shchur et al., 2018] and Coau-
thor Phy [Shchur and Günnemann, 2019] are co-authorship
networks for computer science and physics respectively. Ta-
ble 1 summarizes all the benchmark networks.

Network n m T k

Cora 2708 5278 1433 7
Citeseer 3327 4552 3703 6

Amazon Photo 7650 119081 745 8
Amazon PC 13752 245861 767 10
Coauthor CS 18333 81894 6805 15
Coauthor Phy 34493 247962 8415 5

Table 1: Statistics of benchmark social networks. n, m, T , and
k denote the number of nodes, edges, node attributes, and human-
provided community labels respectively.

5.2 Baseline approaches
The effectiveness of TAS-Com is evaluated in comparison to
12 state-of-the-art approaches, categorized into three distinct
groups: (1) approaches relying solely on attributive or topo-
logical information for CD, including k-m(feat) (i.e., k-means
based only on features) and DMoN [Tsitsulin et al., 2023]; (2)
approaches that consider node similarities at both the topo-
logical and attribute levels, including k-m(DW) [Perozzi et
al., 2014], k-means(DGI) [Veličković et al., 2018], DAEGC
[Wang et al., 2019], SDCN [Bo et al., 2020], NOCD [Shchur
and Günnemann, 2019], DyFSS [Zhu et al., 2024], and DG-
Cluster [Bhowmick et al., 2024], and (3) approaches that use
graph pooling techniques, including DiffPool [Ying et al.,
2018], MinCutPool [Bianchi et al., 2020], and Ortho [Bianchi
et al., 2020]. Additional details regarding these approaches
are provided in Appendix G, while the performance of the
MinCutPool and Ortho approaches is analyzed in Appendix
J. Among all competing approaches, DGCluster is the most
competitive approach, as it is explicitly designed to maximize
both modularity and attribute-level node similarity.

5.3 Performance metrics
We adopt two metrics, namely modularity and NMI intro-
duced in Section 3 to compare the performance of all com-
peting approaches. As explained previously, both metrics are
essential to determine the quality of the community structures
identified by the trained GCNs [Bhowmick et al., 2024].
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5.4 Parameter settings
In the experiments, TAS-Com employs a GCN architecture
identical to that proposed in [Bhowmick et al., 2024]. The
model uses a GCN with two hidden layers, the Adam opti-
mizer with a learning rate of 0.001, and is trained for 300
epochs. Additional details on the parameter settings of TAS-
Com are provided in Appendix K. In line with existing works
[Bhowmick et al., 2024; Tsitsulin et al., 2023], we report the
average performance results across 10 independent runs with
different random seeds. Furthermore, µ and threshold in
Algorithm 1 are two important hyperparameters. Their sensi-
tivity analysis is reported in Appendix B.

6 Results and Discussion
6.1 Performance comparison
Table 2 compares the performance of TAS-Com with 12 state-
of-the-art approaches in terms of modularity (Q) and NMI .
Most of the results, except DyFSS and DGCluster have been
reported previously in [Bhowmick et al., 2024]. The results
for DyFSS and DGCluster were reproduced using their pub-
lished code and original experimental settings. Furthermore,
the results of DGCluster are reported in Table 2 based on two
settings of the hyperparameter λ (i.e., λ = {0.2, 0.8}), which
are the recommended settings in [Bhowmick et al., 2024].
As evidenced in Table 2, TAS-Com achieved the best trade-
off between Q and NMI across all benchmark networks. We
have conducted the Wilcoxin rank-sum test. Our test results
show that the observed performance gain of TAS-Com is sta-
tistically significant (see Appendix H for statistical analysis).

Specifically, while TAS-Com obtained identical NMI
value (i.e., 41.0) on the Citeseer network as DGCluster, TAS-
Com significantly improves the quality of the community
structure in terms of modularity Q. Although DyFSS at-
tained the highest NMI value for the Citeseer network, its
corresponding Q value was notably lower than that of TAS-
Com. Meanwhile, concerning the Amazon PC and Coauthor
Phy networks, TAS-Com noticeably improves the quality of
the community structures in terms of NMI (i.e., 12% and
11% increase in NMI compared to DGCluster on the two
networks respectively) without hurting the modularity Q. For
the Coauthor CS network, while TAS-Com doesn’t match the
best Q value of 74.2 achieved by DGCluster(λ = 0.2), it im-
proves the Q value by 1.1% and matches the NMI value of
82.1 obtained by DGCluster(λ = 0.8).

These results confirm that TAS-Com outperforms in Q
and/or NMI without sacrificing either metric. It shows sig-
nificant performance gains for several benchmark networks,
reinforcing its competitiveness for CD in attributed networks.

6.2 Further analysis
We conduct additional analysis to validate the effectiveness
of TAS-Com.

Connectivity within communities
We analyze the connectivity within each community iden-
tified by TAS-Com, DGCluster, and DyFSS. For this pur-
pose, we check the average number of isolated sub-networks

in each community of a community structure CS =
{C1, C2, . . . , Ck}, i.e., Oc(CS), as defined below:

Oc(CS) =

∑
C∈CS |CC(C)|
|CS|

, (10)

where CC(C) refers to the set of isolated sub-networks
within community C ∈ CS. Ideally, all nodes with any
given community C are expected to be inter-connected, i.e.,
|CC(C)| = 1. In this case, Oc(CS) reaches its smallest
value of 1. Hence, the lower the value of Oc(CS), the better.
Figure 2 compares Oc(CS) achieved respectively by TAS-
Com, DGCluster, and DyFSS. For DGCluster, we report the
lowest Oc(CS) obtained by either DGCluster(λ = 0.2) or
DGCluster(λ = 0.8).

Cora Citeseer Ama._Photo Ama._PC Coa._CS Coa._Phy
Network

1

11

21

31

41

51

61

71

81

91

101

111

O
c(
C
S
)

2.3
6.4 6.1 7.0 5.0

20.6

4.7
9.6

20.6

49.2

8.4

34.9

18.7

86.5 85.8

101.1

33.3

67.9

TAS-Com
DGCluster
DyFSS

Figure 2: Comparison of Oc(CS) achieved by TAS-Com, DGClus-
ter, and DyFSS across all benchmark networks.

Figure 2 shows that TAS-Com significantly reduces iso-
lated sub-networks compared to DGCluster and DyFSS.
While TAS-Com may still produce isolated sub-networks,
these can be treated as separate communities in the final CS
without reducing modularity Q (see Appendix F). This con-
firms that using refined human-labeled communities to guide
the training of GCNs enhances the effectiveness of CD.

Performance evaluation using additional metrics
To further evaluate the performance of the proposed TAS-
Com, we employ two additional metrics: conductance and
F1 score [Bhowmick et al., 2024](see Appendix L). Table 3
compares TAS-Com and the baseline algorithm, DGCluster,
in terms of average conductance (Con) and average F1 score
(F1) on the benchmark networks Cora and Amazon Photo.
The results demonstrate that TAS-Com outperforms DGClus-
ter on these networks, highlighting its superior performance
not only in Q and NMI but also in Con and F1. Additional
results for all benchmark networks are in Appendix I.

Ablation study
To verify the effectiveness of the loss function proposed in
Equation (4), an ablation study has been performed on the
Cora network. We specifically consider four variants of TAS-
Com associated with different designs of the loss functions.
Figure 3 compares all variants based on both Q and NMI . In
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Approach Cora Citeseer Amazon Photo Amazon PC Coauthor CS Coauthor Phy

Q NMI Q NMI Q NMI Q NMI Q NMI Q NMI

k-m(feat) 19.8 18.5 30.3 24.5 10.5 28.8 5.4 21.1 23.1 35.7 19.4 30.6

k-m(DW) 30.7 24.3 24.3 27.6 22.9 49.4 11.8 38.2 59.4 72.7 47.0 43.5

SDCN 50.8 27.9 62.3 31.4 53.3 41.7 45.6 24.9 55.7 59.3 52.8 50.4

DAEGC 33.5 8.3 36.4 4.3 58.0 47.6 43.3 42.5 49.1 36.3 N/A N/A

k-m(DGI) 64.0 52.7 73.7 40.4 35.1 33.4 22.8 22.6 57.8 64.6 51.2 51.0

NOCD 78.3 46.3 84.4 20.0 70.1 62.3 59.0 44.8 72.2 70.5 65.5 28.7

DiffPool 66.3 32.9 63.4 20.0 46.8 35.9 30.4 22.1 59.3 41.6 N/A N/A

DMoN 76.5 48.8 79.3 33.7 70.1 63.3 59.0 49.3 72.4 69.1 65.8 56.7

DyFSS 73.5 55.5 75.2 44.8 57.7 53.6 35.1 36.3 68.9 76.8 65.6 56.9

DGCluster(λ = 0.2) 80.8 53.0 87.4 30.3 71.6 73.0 61.5 53.8 74.2 76.1 67.3 59.0
DGCluster(λ = 0.8) 78.6 62.1 86.3 41.0 71.6 77.3 60.3 60.4 73.3 82.1 66.0 65.7

TAS-Com 81.7 65.1 88.1 41.0 72.2 78.4 61.5 61.2 74.1 82.1 67.3 66.0

Table 2: Performance comparison in terms of Q and NMI (results are multiplied by 100) between TAS-Com and state-of-the-art approaches.
The bolded results indicate instances where TAS-Com achieves the best results. N/A: Not Available.

Approach Cora Amazon Photo

Con F1 Con F1

DGCluster(λ = 0.2) 9.7 43.5 8.6 70.7
DGCluster(λ = 0.8) 14.5 54.5 12.4 75.9

TAS-Com 8.8 56.9 8.1 76.7

Table 3: Performance comparison of TAS-Com and DGCluster in
terms of Con (the lower the better) and F1 (the higher the better).
The best results (multiplied by 100) are bolded.

this figure, LM indicates that L = LM , LR indicates that L =
LR, Q + LR indicates that L = Q + µLR, and LM +NMI
indicates that L = LM + µNMI , where NMI refers to the
attributive similarity loss with respect to the human-labeled
communities (without using Algorithm 1). Finally, LM +LR

indicates the proposed loss function in Equation (4).
Figure 3 shows that LM + LR outperforms Q + LR and

LM +NMI , confirming the importance of both LM and LR

for the overall loss L to be effective. While LM alone yields
slightly better Q value than LM + LR, it results in signifi-
cantly lower NMI . This is because LM focuses only on topo-
logical similarity. Similarly, LR achieves a slightly higher
NMI but a noticeably lower Q score compared to LM +LR,
as it considers only attributive similarity. Hence, it is crucial
to balance topological and attributive similarities by includ-
ing both LM and LR in the overall loss L. This ablation study
confirms the effectiveness of the proposed loss function L.

7 Conclusion
In this paper, we developed TAS-Com, a novel GCN-based
approach powered by a newly designed loss function to ef-
fectively train GCNs to extract high-level node embeddings

LM LR Q+ LR LM+NMI LM+ LR
60

80

100

120

140
Q
NMI

Figure 3: Ablation study on the Cora network evaluating the impact
of LM and LR in the loss function L. Scores (Q and NMI) are
scaled by 100. LM + LR achieves the best total score.

in attributed social networks. Our new loss function lever-
ages the highly effective and scalable Leiden algorithm to
identify community structures with globally optimal modu-
larity (Q). Meanwhile, Leiden refines human-labeled com-
munities, ensuring connectivity within each community and
enabling GCNs to effectively learn node similarity at both the
topology and attribute levels. Thanks to our new loss func-
tion design, the trained GCNs can detect community struc-
tures with a desirable balance between topological similarity
(i.e., modularity (Q)) and attributive similarity (i.e., NMI).
Experiments on multiple benchmark networks with varying
sizes and complexities show that TAS-Com significantly out-
performs 12 state-of-the-art approaches.

Future work could explore the potential integration of tem-
poral dynamics or multi-view data to enhance the wide appli-
cability of TAS-Com, including dynamic social networks.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Bhowmick et al., 2024] Aritra Bhowmick, Mert Kosan,

Zexi Huang, Ambuj Singh, and Sourav Medya. Dgclus-
ter: A neural framework for attributed graph clustering
via modularity maximization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages
11069–11077, 2024.

[Bianchi et al., 2020] Filippo Maria Bianchi, Daniele Grat-
tarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In International con-
ference on machine learning, pages 874–883. PMLR,
2020.

[Blondel et al., 2008] Vincent D Blondel, Jean-Loup Guil-
laume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment, 2008(10),
2008.

[Bo et al., 2020] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi
Zhu, Emiao Lu, and Peng Cui. Structural deep cluster-
ing network. In Proceedings of the web conference 2020,
pages 1400–1410, 2020.

[Chunaev, 2020] Petr Chunaev. Community detection in
node-attributed social networks: a survey. Computer Sci-
ence Review, 37:100286, 2020.

[Combe et al., 2015] David Combe, Christine Largeron,
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R Devon Hjelm. Deep graph infomax. arXiv preprint
arXiv:1809.10341, 2018.

[Wang et al., 2019] Chun Wang, Shirui Pan, Ruiqi Hu,
Guodong Long, Jing Jiang, and Chengqi Zhang. At-
tributed graph clustering: A deep attentional embedding
approach. arXiv preprint arXiv:1906.06532, 2019.

[Wang et al., 2021] Xiaofeng Wang, Jianhua Li, Li Yang,
and Hongmei Mi. Unsupervised learning for community
detection in attributed networks based on graph convolu-
tional network. Neurocomputing, 456:147–155, 2021.

[Wu et al., 2020] Ling Wu, Qishan Zhang, Chi-Hua Chen,
Kun Guo, and Deqin Wang. Deep learning techniques
for community detection in social networks. IEEE Access,
8:96016–96026, 2020.

[Xia et al., 2021] Wei Xia, Quanxue Gao, Ming Yang, and
Xinbo Gao. Self-supervised contrastive attributed graph
clustering. arXiv preprint arXiv:2110.08264, 2021.

[Xie et al., 2021] Xiaoqin Xie, Mingjie Song, Chiming Liu,
Jiaming Zhang, and Jiahui Li. Effective influential com-
munity search on attributed graph. Neurocomputing,
444:111–125, 2021.

[Yang et al., 2016] Liang Yang, Xiaochun Cao, Dongxiao
He, Chuan Wang, Xiao Wang, and Weixiong Zhang. Mod-
ularity based community detection with deep learning. In
IJCAI, volume 16, pages 2252–2258, 2016.

[Yang et al., 2023] Xihong Yang, Yue Liu, Sihang Zhou, Si-
wei Wang, Wenxuan Tu, Qun Zheng, Xinwang Liu, Lim-
ing Fang, and En Zhu. Cluster-guided contrastive graph
clustering network. In Proceedings of the AAAI conference
on artificial intelligence, volume 37, pages 10834–10842,
2023.

[Ying et al., 2018] Rex Ying, Ruining He, Kaifeng Chen,
Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-
scale recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge
discovery & data mining, pages 974–983, 2018.

[Zhang et al., 1996] Tian Zhang, Raghu Ramakrishnan, and
Miron Livny. Birch: an efficient data clustering method for
very large databases. ACM sigmod record, 25(2):103–114,
1996.

[Zhou et al., 2023] Xinchuang Zhou, Lingtao Su, Xiangju
Li, Zhongying Zhao, and Chao Li. Community detection
based on unsupervised attributed network embedding. Ex-
pert Systems with Applications, 213:118937, 2023.

[Zhu et al., 2024] Pengfei Zhu, Qian Wang, Yu Wang, Jialu
Li, and Qinghua Hu. Every node is different: Dynamically
fusing self-supervised tasks for attributed graph clustering.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 38, pages 17184–17192, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


