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Abstract

Knowledge tracing plays a pivotal role in enabling
personalized learning on online platforms. While
deep learning-based approaches have achieved im-
pressive predictive performance, their limited in-
terpretability poses a significant barrier to practical
adoption. Existing explanation methods primarily
focus on specific model architectures and fall short
in 1) explicitly prioritizing critical interactions to
generate fine-grained explanations, and 2) main-
taining similarity consistency across interaction im-
portance. These limitations hinder actionable in-
sights for improving student outcomes. To bridge
the gap, we propose a model-agnostic approach
that provides enhanced explanations applicable to
diverse knowledge tracing methods. Specifically,
we propose a novel ranking loss designed to ex-
plicitly optimize the importance ranking of past in-
teractions by comparing their corresponding per-
turbed outputs. Furthermore, we introduce a simi-
larity loss to capture temporal dependencies, ensur-
ing consistency in the assigned importance scores
for conceptually similar interactions. Extensive ex-
periments conducted on various knowledge tracing
models and benchmark datasets demonstrate sub-
stantial enhancements in explanation quality.

1 Introduction
Knowledge Tracing (KT) aims to predict learners’ future per-
formance based on their past learning records. Deep learning-
based knowledge tracing (DLKT) has achieved remarkable
performance. However, the lack of interpretability in DLKT
models hinders their broader adoption in real-world online
education systems. Consequently, developing effective meth-
ods to explain DLKT predictions is crucial for the practical
application of knowledge tracing.

Current explanation methods for knowledge tracing can be
broadly categorized into two types: intrinsic explanations and
feature attribution explanations, as illustrated in Figure 1. In-
trinsic explanation approaches [Yeung, 2019; Su et al., 2021;

∗corresponding author

Minn et al., 2022; Chen et al., 2023; Huang et al., 2024] uti-
lize interpretable prediction structures based on educational
theories, such as item response theory [McDonald, 2000]
or selective perception [Simon, 1978], to provide explana-
tions through educational concepts, such as exercise diffi-
culty. This is illustrated in Figure 1(a). Although such ex-
planations assist researchers in verifying the reasonableness
of knowledge tracing model structures, they often constrain
model flexibility, leading to a trade-off with performance [Li
et al., 2022]. Moreover, these methods cannot be directly
utilized to improve learning plans. Instead of explaining
model structures, feature attribution methods highlight signif-
icant past interactions that contribute to DLKT’s prediction,
as shown in Figure 1(b). Here feature refers to an interaction,
representing a student’s completion of an exercise along with
the associated score. In knowledge tracing, attention-based
methods [Pandey and Karypis, 2019; Ghosh et al., 2020] are
the primary approach for assessing the impact of each past
interaction. However, within the explainable artificial intel-
ligence research community, attention-based explanations re-
main controversial due to their potential to generate mislead-
ing explanations for humans [Bastings and Filippova, 2020;
Lopardo et al., 2024].

While only a few feature attribution methods are specifi-
cally tailored for knowledge tracing, they have been exten-
sively developed in other research fields, such as time series
prediction [Sundararajan et al., 2017; Crabbé and van der
Schaar, 2021; Bhalla et al., 2023]. A promising direc-
tion of research has focused on learning a mask to perturb
the input, where the mask encodes the feature importance
at each time step for prediction [Fong and Vedaldi, 2017;
Crabbé and van der Schaar, 2021; Bhalla et al., 2023]. We
refer to these methods as mask optimization methods, which
serve as the foundation of our proposed approach. Our em-
pirical observations reveal that applying these methods to
knowledge tracing leads to suboptimal performance, primar-
ily due to two key challenges. Firstly, existing methods fail to
account for the unique temporal dependencies in knowledge
tracing compared to other domains. For example, in time
series prediction, temporal dependencies are largely deter-
mined by the positional relationships within a sequence. Con-
trastively, knowledge tracing considers temporal dependen-
cies influenced by both the positions within the sequence and
the similarity between interactions. Secondly, these methods
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To improve performance on 𝑥! ,
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so on.
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Generate Explanation

…
Knowledge State

Exercise Difficulty

Intrinsic Explanation

Feature Attribution Explanation

… … …

Fails to directly enhance the learning plan.

Priority Guided Explanation

(a)

(b) (c)

Learning Plan (Unordered)

Learning Plan

Existing Methods Our Method

Figure 1: Explanation for Knowledge Tracing: xi denotes an individual interaction at time step i, and df\i represents the distance between the
perturbed output f(x\i), which removes interaction xi, and the original output f(x).

often reduce interactions to a binary classification of impor-
tant or unimportant, failing to provide precise rankings of
their importance scores. In knowledge tracing, however, fine-
grained explanations that identify and prioritize important in-
teractions are preferred, as they allow students to develop per-
sonalized learning plans based on these rankings, thereby im-
proving learning outcomes. As shown in Figure 1(c), if a
student learns that xi is a more important interaction than xj

for their performance on xT based on the explanation, they
can devise an efficient learning plan, which first reviews xi

and then xj to improve their performance on xT .
Motivated by the above observations, we propose two

novel consistency assumptions, namely similarity consis-
tency and ranking consistency, to enhance feature attribution
explanation methods and address the aforementioned chal-
lenges. We formulate the problem as a mask optimization
task, where the method optimizes a mask to represent the im-
portance of each interaction in the prediction process. To cap-
ture temporal dependencies, we introduce a similarity con-
sistency loss, ensuring that the distances between interaction
importance scores align with the distances of the interactions
in the latent feature space. For instance, if an interaction
xi is more similar to xj than x∗, the discrepancy in their
corresponding importance scores dmij should also be smaller
than dmj∗. To achieve a fine-grained ranking of the impor-
tance scores, we propose a ranking consistency loss, which
ensures that the importance ranking of interactions is accu-
rately reflected in the perturbed output space. Specifically,
if the perturbed output f(x\j), which excludes feature j, is
closer to the original output than f(x\i), it suggests that fea-
ture i is more important than feature j and should therefore be
assigned a higher mi. Our method is model-agnostic and pro-
duces improved explanations that are valuable for enhancing
learning plans. Here we summarize the main contributions of
this paper as follows:

• To the best of our knowledge, we present the first
model-agnostic and priority-guided explanation method
for knowledge tracing, which is able to provide high-
quality and fine-grained explanation for various knowl-
edge tracing methods.

• We propose two novel consistency assumptions to ex-
plicitly capture the relationships between interactions
and their importance scores, in the input latent space and
the perturbed output space, respectively.

• We conduct extensive experiments to compare to 7 ex-
planation methods across 4 knowledge tracing models
and 2 benchmark datasets, with results showcasing its
superior performance and generalization capability.

2 Related Work
Knowledge Tracing. We present the development of
knowledge tracing methods based on their underlying deep
learning architectures. Long short-term memory net-
works [Hochreiter and Schmidhuber, 1997] have been em-
ployed in numerous studies to model students’ knowledge
states [Piech et al., 2015; Long et al., 2021; Liu et al., 2023;
Abdelrahman et al., 2023]. Memory-augmented neural net-
works with two external memory matrices [Graves et al.,
2014], designed to store knowledge concept representations
and mastery levels separately, have also been adopted in vari-
ous studies [Zhang et al., 2017; Wang and Sahebi, 2023]. Ad-
ditionally, attention mechanisms [Vaswani et al., 2017] have
been widely applied to model the relevance between interac-
tions and predict student performance [Pandey and Karypis,
2019; Ghosh et al., 2020; Pandey and Srivastava, 2020;
Lee et al., 2022; Wang et al., 2023; Li et al., 2024].

Model Interpretability. Based on the application domains
of explanation methods, we categorize existing approaches
into static and temporal methods. Static methods are typi-
cally applied in domains without time dependencies, such as
image classification. Gradient-based methods have been em-
ployed to measure the influence of each feature by calculat-
ing the gradient of features with respect to the model’s out-
put [Simonyan et al., 2014; Sundararajan et al., 2017]. Other
approaches assess the contribution of each feature by exam-
ining how perturbations to input features affect the model’s
output [Ribeiro et al., 2016; Jalwana et al., 2020; Ren et al.,
2023]. However, these methods often overlook time depen-
dencies inherent in temporal models, which leads to expla-
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FI

Performance

0

𝐿(𝑓 𝟎 , 𝑓(𝒙))

Assumption:
𝐿 𝑓 𝒙 , 𝑓 Φ 𝒙,𝒎\" ≤ 𝐿(𝑓 𝟎 , 𝑓(𝒙))

𝑓(𝟎)

𝑓(Φ(𝒙,𝒎\"))

𝐿(𝑓 𝒙 , 𝑓(Φ(𝒙,𝒎\")))

𝑓(𝒙)

(a) Deletion Game

FI

Performance

0

Assumption:

𝐿 𝑓 𝒙 , 𝑓 Φ 𝒙,𝒎\" ≥ 0

𝑓(𝒙) 𝐿(𝑓 𝒙 , 𝑓(Φ(𝒙,𝒎\")))

𝑓(Φ(𝒙,𝒎\"))

(b) Preservation Game

FI

Performance

𝑓(𝒙)

𝑓(𝟎)
0 𝑞! 𝑞!"# 𝑞$"#𝑞$

𝑓(Φ(𝒙,𝒎, 𝑞$"#, 𝑞$))

… … 𝑞%𝑞#

𝑓(Φ(𝒙,𝒎, 𝑞%, 𝑞#))

𝑓(Φ(𝒙,𝒎 , 𝑞!"#, 𝑞!))

Assumption:
𝐿 𝑓 𝒙 , 𝑓(𝟎)
≥ 𝐿 𝑓 𝒙 , 𝑓 Φ 𝒙,𝒎, 𝑞$"#, 𝑞$
≥ 0

(c) Our method

Figure 2: Figure (a) and (b) illustrate the assumptions of the deletion and preservation games, respectively, while Figure (c) presents our en-
hanced assumption that encompasses both. The horizontal axis denotes feature importance (FI), the vertical axis denotes model performance,
and the shaded region marks the interval of features removed. The blue curve illustrates how model performance may change when different
numbers of features are removed. The fluctuating change rate suggests that current methods lack fine-grained explanations.

nations of suboptimal quality [Ismail et al., 2020]. To ad-
dress these limitations, recent methods have focused on mea-
suring the contribution of features by introducing the tem-
poral relevance between features [Fong and Vedaldi, 2017;
Tonekaboni et al., 2020; Crabbé and van der Schaar, 2021;
Bento et al., 2021; Leung et al., 2023; Bhalla et al., 2023].
However, these methods typically only distinguish between
important and unimportant features and fail to provide fine-
grained explanations suitable for knowledge tracing, ignoring
the differences in temporal dependencies between knowledge
tracing and other temporal domains.

3 Problem Formulation
A student’s learning record consists of a sequence of in-
teractions. Each interaction at time step t is denoted as
xt = (qt, ct, at), where qt represents the exercise, ct cor-
responds to the knowledge concept, and at indicates the
score. Typically, at takes a value of 0 or 1, with 0 indicat-
ing an incorrect response to the exercise and 1 indicating
a correct response. Given a student’s past learning record
x = {x1, · · · , xt, · · · , xT }, the goal of knowledge tracing
is to predict the learner’s score aT+1 for exercise qT+1 as-
sociated with knowledge concept cT+1 at the next time step
T + 1. Formally, we define knowledge tracing as âT+1 =
f(x, qT+1, cT+1), where f represents the knowledge tracing
function we aim to learn from large-scale historical data and
âT+1 is the prediction for time step T + 1 generated by f .

In addition to predicting âT+1, we further analyze the im-
pact of each past interaction xt on âT+1. Specifically, the ex-
planation of f is defined as a vector m ∈ [0, 1]T , where each
mt quantifies the importance of interaction xt to prediction
âT+1. For example, mt > mt′ indicates that the interaction
xt has a greater influence on the prediction âT+1 compared
to xt′ . In this paper, our goal is to propose a novel and model-
agnostic explanation method, which can effectively derive m
for any knowledge tracing function f .

4 Method
Our explanation method consists of two components: 1)
priority-guided explanation and 2) similarity-aware attribu-

tion consistency. Each component will be introduced in detail
in the following sections.

4.1 Priority Guided Explanation
Assumptions Behind the Mask Optimization Method
We first investigate the underlying assumptions of current
mask optimization methods. Based on these insights, we
propose enhanced assumptions and leverage them to design
our method. Current mask optimization methods can be
categorized into the deletion game and preservation game
[Dabkowski and Gal, 2017; Enguehard, 2023]. These meth-
ods typically adopt one of the two approaches [Crabbé and
van der Schaar, 2021] or simply combine them [Dabkowski
and Gal, 2017].

In the deletion game, the goal is to use the perturbation
function Φ(x,m) to obscure the data as minimally as possi-
ble while maximizing the change in the model’s predictions.
There are two ways to maximize this change: 1) making
f(Φ(x,m)) farther from f(x), or 2) making f(Φ(x,m))
close to f(0). It has been found that the latter performs bet-
ter, as it provides a clearer optimization objective. In con-
trast, the former is challenging to define clearly because there
are multiple ways to achieve distance from f(x) [Enguehard,
2023]. In the following sections, we refer to the latter as the
definition of the deletion game:

argmin
m

λ∥m∥1 + L(f(0), f(Φ(x,1−m))),

where the perturbation function is typically defined as:

Φ(x, s) = x⊙ s+ b⊙ (1− s),

where ⊙ denotes element-wise multiplication, and b is a ref-
erence vector used to replace the original features in x. In our
experiment, we set b to the zero embedding 0, and define L
as the Jensen–Shannon divergence.

Furthermore, the deletion game is based on the following
underlying assumption: a good explanation m satisfies the
condition that removing the important features, based on the
mask m, will significantly reduce the performance of f . This
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assumption is illustrated in Figure 2a. Based on this assump-
tion, we have:

L(f(x), f(Φ(x,m\+)))

≤ L(f(x), lim
s→0

f(Φ(x, s))) = L(f(x), f(0)),

where Φ(x,m\+) denotes the perturbed input obtained by ex-
cluding the most important features from the original input.

In the preservation game, the goal is to obscure as much
data as possible while keeping the predictions as close as pos-
sible to the original predictions. It is defined as follows:

argmin
m

λ∥m∥1 + L(f(x), f(Φ(x,m))).

The preservation game is based on the following underlying
assumption: a good explanation m satisfies the condition that
removing the unimportant features, based on m, will slightly
reduce the performance of f . This assumption is illustrated
in Figure 2b. Based on this assumption, we have:

L(f(x), f(Φ(x,m\-))) ≥ L(f(x), lim
s→1

f(Φ(x, s)))

= L(f(x), f(x)) = 0,

where Φ(x,m\-) denotes the perturbed input obtained by ex-
cluding the least important features from the original input.

Based on the assumptions in deletion game and preserva-
tion game, we have:

0 ≤ L(f(x), f(Φ(x,m\-)))

≤ L(f(x), f(Φ(x,m\+))) ≤ L(f(x), f(0)).
(1)

The above equation reflects an ranking assumption regard-
ing the removal of two feature intervals: those containing the
least important features and those containing the most impor-
tant features. We extend this assumption and propose an en-
hanced version, termed the ranking consistency assumption
(Figure 2c). By partitioning features into intervals based on
their importance scores (from most to least important) and
progressively removing one interval at a time, the model’s
performance is expected to improve monotonically.

Priority-Guided Explanation Using Ranking Loss
We propose a ranking-based method to provide priority-
guided explanation. To achieve this goal, we first define a
list of values Q to separate the mask m:

Q = [q0, q1, · · · , qk, qk+1, · · · , qn],
where qk can be quantiles of m or even any values holds the
following constraint:

∀k ∈ [1, n], max(m) ≥ qk > qk+1 ≥ min(m).

Subsequently, we define the following binary operation for
input perturbation:

S(m, qk−1, qk) :=


si = 1 mi ≥ qk−1,

si = 0 qk−1 > mi ≥ qk,

si = 1 mi < qk.

(2)

where si refers to the i-th feature in S(m, qk−1, qk). For no-
tation simplicity, we define

∀k ∈ [1, n], rk = L(f(x), f(Φ(x, S(m, qk−1, qk)))),

r = [r1, ..., rk, ..., rn].

Recall that, based on deletion game and preservation game,
we have the following conclusion:

sup
k∈[1,n]

rk = L(f(x), f(0)), inf
k∈[1,n]

rk = 0.

We generalize the order assumption in Equation (1) and ob-
tain the following enhanced assumption:

∀j, k ∈ [1, n], j < k =⇒ rj ≥ rk. (3)

We implement the order assumption in Equation (3) using
ranking loss to provide priority enhanced explanation.

LRL(r) =
∑

1≤i<j≤n

max(0,−1 · (ri − rj) + γ), (4)

where γ is a hyperparameter that determines the margin.
When a student has a long learning history, the computa-

tional cost of this loss function can become substantial. To
mitigate this, we apply the ranking loss only to the top-K im-
portant features by setting q0 = max(m), where K is smaller
than the length of the original input. This strategy reduces
computational overhead and improves the accuracy of priori-
tizing the top-K features in the most critical explanations.

Directional Ranking Loss for Knowledge Tracing
The above method represents a general formulation designed
for multi-class classification tasks. Knowledge tracing, how-
ever, is a binary classification task, where the direction of the
perturbed prediction’s deviation from the original prediction
can be further specified.

In knowledge tracing, we aim to identify which features
encourage the model to predict a correct response and which
lead to an incorrect one. We use c and w to denote the la-
bels for correct and incorrect responses, respectively. Since
there are only two classes, the prediction is typically a single
value with 1 indicating c and 0 indicating w. When the label
is c, the perturbation should shift the prediction away from c
and toward w. This will lead to a decrease in f(x) after the
perturbation is applied. Let fk = f(Φ(x, S(m, qk−1, qk))),
f = [f1, ..., fk, ..., fn, fn+1] and fn+1 = f(x) 1, we refor-
mulate Equation (3) as

∀j, k ∈ [1, n+ 1], j < k =⇒ fj ≤ fk, (5)

and subsequently obtain the directional loss function for class
c based on Equation (4) as

Lc
DRLPE(f) =

∑
1≤i<j≤n+1

max(0, fi − fj + γ).

On the other hand, if the label is w, the perturbation should
shift the prediction away from w and toward c, which will
lead to an increase in f(x) after the perturbation is applied.
Again, we reformulate Equation (3) as

∀j, k ∈ [1, n+ 1], j < k =⇒ fj ≥ fk, (6)

and subsequently obtain the directional loss function for class
w based on Equation (4) as

Lw
DRLPE(f) =

∑
1≤i<j≤n+1

max(0,−1 · (fi − fj) + γ).

1Through experiments, We observe that adding an additional
item fn+1 = f(x) to f without perturbation improves performance.
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By combining the above two cases, we define the Directional
Ranking Loss for Priority-Guided Explanation (DRLPE) as:

LDRLPE(f) =

{
Lc

DRLPE(f), if the true label is c,
Lw

DRLPE(f), if the true label is w.
(7)

One last important point is that the binary mask operation
in Equation (2) is not differentiable. To solve this issue, we
adopt the straight-through trick from Gumbel-Softmax [Jang
et al., 2017]:

S(m, qk−1, qk) = S(m, qk−1, qk) +m− sg[m],

where sg[·] represents the stop-gradient operator, which acts
as the identity operator during the forward pass and has a zero
partial derivative during the backward pass.

4.2 Similarity-Aware Attribution Consistency
Since a student’s performance on a specific exercise is in-
fluenced by their performance on other exercises involving
similar knowledge concepts [Piech et al., 2015; Pandey and
Karypis, 2019], we introduce the similarity-aware attribution
consistency regularization. This regularization ensures that
interactions with similar knowledge concepts have compara-
ble importance scores for the model’s predictions. Inspired
by previous work [Ghosh et al., 2020], the similarity between
interactions is defined as follows:

∀t′ < t,w(t, t′) =
t∑

τ=t′+1

exp( 1√
d
e(xt)e(xτ )

T )∑
1≤τ ′≤t exp(

1√
d
e(xt)e(xτ ′)T )

,

where e(x) is a fixed, non-trainable embedding of x, ex-
tracted from the pretrained target model, d is the dimension
of e(x), and wt,t′ is the cumulative similarity between inter-
actions at t and t′. We enforce consistency in the importance
scores of different interactions based on their similarity. This
is defined as follows:

Lconsis(m) =
T∑

t=0

T∑
τ=t+1

w(t, τ)∥mt −mτ∥2,

where mt is importance score of interaction at t.

4.3 Loss Function
We formally define the overall loss function as follows:

argmin
m

LDRLPE(r
f ) + λ1Lconsis(m) + λ2L1(m),

where λ1, λ2 are hyperparameters balancing the loss terms
and L1(m) represents the Lasso regularization applied to m.

5 Experiment
5.1 Experimental Setup
Dataset. We evaluate the explanation methods on two public
datasets, ASSISTment 20092 and ASSISTment 20173. These
datasets, collected from an online tutoring platform, are used

2https://sites.google.com/site/assistmentsdata/home/2009-2010-
assistment-data/skill-builder-data-2009-2010

3https://sites.google.com/view/assistmentsdatamining/dataset

to train the knowledge tracing models to be explained. For the
ASSISTment 2009 dataset, we remove records without corre-
sponding knowledge concepts, resulting in a dataset contain-
ing 4,151 students, 16,891 exercises, and 110 associated con-
cepts, with a total of 325,637 records. The ASSISTment 2017
dataset includes 1,709 students, 3,162 exercises, and 102 as-
sociated concepts, comprising 942,816 interaction records.
Knowledge tracing models. To comprehensively evaluate
our proposed method, we select representative knowledge
tracing models from various deep learning frameworks as ex-
planation targets. The selected models include DKT [Piech
et al., 2015], DKVMN [Zhang et al., 2017], SAKT [Pandey
and Karypis, 2019], and AKT [Ghosh et al., 2020].
Metrics. Due to the absence of ground-truth explanations for
knowledge tracing, we adopt the following two metrics in our
experiments, inspired by the evaluation methods proposed in
previous studies [Kim et al., 2020; Tonekaboni et al., 2020;
Leung et al., 2023].

Comprehensiveness (Comp). We remove the most impor-
tant features and compute the average change of Area Under
the ROC Curve (AUC) compared with the original inputs.
Higher is better with this metric, as it indicates that the ex-
planation methods have identified the important features that
significantly impact model performance.

Comprehensiveness = AUC(f(x))− AUC(f(x\+)),

where x\+ represents the perturbed input obtained by remov-
ing the important features from the original input.

Sufficiency (Suff). Instead of removing the important fea-
tures, we remove the unimportant features and compute the
change in the AUC compared to the original input. A lower
score indicates better performance, as it signifies that the ex-
planation methods have identified unimportant features with
little or no impact on model performance.

Sufficiency = AUC(f(x))− AUC(f(x\-)),

where x\- represents the perturbed input obtained by remov-
ing the unimportant features from the original input.

5.2 Experiment Result
Comparison to Existing Methods
We compare our method against three static methods, includ-
ing FO [Zeiler and Fergus, 2014], LIME [Ribeiro et al.,
2016], and KernelSHAP [Lundberg and Lee, 2017], as well
as four temporal methods, including FIT [Tonekaboni et al.,
2020], TimeSHAP [Bento et al., 2021], DynaMask [Crabbé
and van der Schaar, 2021], and WinIT [Leung et al., 2023].
The results are presented in Table 1. Ours method outper-
forms others across all four models and both datasets. We also
found that temporal explanation methods, such as DynaMask
and FIT, generally outperform static explanation methods,
likely due to their incorporation of temporal dependencies.
For the AKT model, attention-based explanations show bet-
ter performance compared to other baseline methods. How-
ever, this advantage is not observed in SAKT, suggesting that
attention-based explanations do not always provide superior
performance, despite the success of attention-based methods
in various domains.
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Type Methods ASSISTment 2009 ASSISTment 2017 ASSISTment 2009 ASSISTment 2017

Comp ↑ Suff ↓ Comp ↑ Suff ↓ Comp ↑ Suff ↓ Comp ↑ Suff ↓

DKT DKVMN

Random 0.0192 0.0183 0.0044 0.0025 0.0184 0.0160 0.0041 0.0079

Static
FO 0.0682 0.0138 0.0889 0.0012 0.0740 0.0188 0.0994 0.0013
LIME 0.0792 0.0118 0.0845 0.0014 0.0787 0.0132 0.0981 0.0010
KernelSHAP 0.0745 0.0127 0.0745 0.0011 0.0785 0.0148 0.0973 0.0013

Temporal

TimeSHAP 0.0344 0.0402 0.0624 0.0158 0.0513 0.0507 0.0807 0.0445
FIT 0.0465 0.0155 0.0425 -0.0019 0.0538 0.0123 0.0287 0.0024
WinIT 0.0305 0.0271 0.0357 0.0008 0.0376 0.0217 0.0540 0.0014
DynaMask 0.0915 0.0103 0.0999 0.0006 0.0507 0.0231 0.0899 0.0014

Ours 0.1470 -0.0980 0.2379 -0.0499 0.1498 -0.0886 0.1088 -0.1058

SAKT AKT

Random 0.0574 0.0347 0.0007 0.0047 0.0261 0.0317 0.0040 0.0019
Attention 0.0790 0.0282 0.0243 0.0001 0.0719 0.0426 0.0636 0.0082

Static
FO 0.1147 0.0186 0.0009 -0.0012 0.0417 0.0294 0.0630 0.0004
LIME 0.1046 0.0184 -0.0002 -0.0005 0.0535 0.0210 0.0588 -0.0003
KernelSHAP 0.1065 0.0226 0.0022 -0.0014 0.0590 0.0211 0.0608 -0.0017

Temporal

TimeSHAP 0.0893 0.1005 0.0396 -0.0060 0.0419 0.0597 0.0504 0.0160
FIT 0.0249 0.0656 0.0019 0.0075 0.0467 0.0265 0.0315 0.0022
WinIT 0.0695 0.0426 0.0226 -0.0026 0.0476 0.0258 0.0139 -0.0001
DynaMask 0.1294 0.0241 0.0222 -0.0016 0.0374 0.0355 0.0540 0.0019

Ours 0.3228 -0.0666 0.2777 -0.0609 0.0886 -0.0323 0.1304 -0.0188

Table 1: Performance of explanation methods on the knowledge tracing model. The best method is highlighted in bold, and the second-best
method is underlined. For ↑ metrics, the higher the better, while for ↓ ones, the lower the better.
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Figure 3: Removement experiments on ASSISTment 2017. A lower AUC indicates better performance in Comp, while a higher AUC
indicates better performance in Suff.

Ablation Experiment for Different Components
To evaluate the contribution of each component in our
method, we conducted ablation studies on two datasets and
four knowledge tracing models. Specifically, we tested three
variants of our method:

• w/o Ranking. We eliminate the ranking loss to examine
its impact on the explanation. Formally, we redefine the
ranking loss in Equation (5) and Equation (6) as follows:

∀k ∈ [1, n], fk ≤ fn+1, if the true label is c,
∀k ∈ [1, n], fk ≥ fn+1, if the true label is w.

• w/o AC. We remove the attribution consistency regular-
ization on the mask.

• w/o Direction. We replace the directional ranking loss
defined in Equation (7) with the ranking loss defined in
Equation (4).

As shown in Table 2, removing the ranking loss compo-
nent significantly degrades performance in most models and
datasets, highlighting its importance. We also observe that re-
moving the directional ranking loss component has a greater
impact on performance than removing the attribution consis-
tency component. These results indicate that both compo-
nents are crucial for the performance of our method and for
providing fine-grained explanations. Additionally, we found
that the attribution consistency component has a significantly
greater influence on performance than other components, but
only in specific cases, such as the DKVMN model on the
ASSISTment 2017 dataset. We believe this is because this
regularization imposes a strong assumption on the model’s
internal decision process, which may not be suitable for all
models. Nevertheless, the regularization still positively im-
pacts the explanation quality, as demonstrated by the results.
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Methods
ASSISTment 2009 ASSISTment 2017 ASSISTment 2009 ASSISTment 2017

Comp (-%) Suff (+%) Comp (-%) Suff (+%) Comp (-%) Suff (+%) Comp (-%) Suff(+%)

DKT DKVMN

Ours 0.1470 (0%) -0.0980 (0%) 0.2379 (0%) -0.0499 (0%) 0.1498 (0%) -0.0886 (0%) 0.1088 (0%) -0.1058 (0%)
w/o Ranking 0.0186 (87%) 0.0191 (120%) 0.0257 (89%) -0.0051 (90%) 0.0186 (88%) 0.0500 (156%) 0.0209 (81%) 0.0389 (137%)
w/o AC 0.1264 (14%) -0.0710 (27%) 0.2346 (1%) -0.0482 (3%) 0.0724 (52%) -0.0560 (37%) 0.0074 (93%) -0.0573 (46%)
w/o Direction 0.0575 (61%) -0.0028 (97%) 0.0560 (76%) 0.0123 (125%) 0.0449 (70%) 0.0295 (133%) 0.0618 (43%) 0.0568 (154%)

SAKT AKT

Ours 0.3228 (0%) -0.0666 (0%) 0.2777(0%) -0.0609 (0%) 0.0886 (0%) -0.0323 (0%) 0.1304 (0%) -0.0188 (0%)
w/o Ranking 0.0355 (89%) 0.0508 (176%) 0.0129 (95%) -0.0074 (88%) 0.0116 (87%) 0.0242 (175%) 0.0232 (82%) 0.0181 (196%)
w/o AC 0.2458 (24%) -0.0152 (77%) 0.1814 (35%) 0.0078 (113%) 0.0836 (6%) -0.0169 (48%) 0.0619 (53%) -0.0103 (45%)
w/o Direction 0.1069 (67%) 0.0189 (128%) 0.0036 (99%) 0.0023 (104%) 0.0159 (82%) 0.0126 (139%) 0.0060 (95%) 0.0033 (117%)

Table 2: Ablation study. The values in the format X (Y%) represent the absolute performance difference (X) and the relative performance
change (Y%) when removing the corresponding module from the method. A positive Y% indicates a performance degradation. The most
important components are highlighted in bold, and the second most important components are underlined.

Methods ASSISTment 2009 ASSISTment 2017

∆Comp ↑ ∆Suff ↓ ∆Comp ↑ ∆Suff ↓

Attention 0.0489 0.0075 0.0273 0.0012
FO 0.0077 0.0005 0.0233 -0.0001
LIME 0.0166 0.0016 0.0278 0.0005
KernelShap 0.0186 -0.0006 0.0263 -0.0015
TimeShap 0.0141 0.0141 0.0229 0.0104
FIT 0.0152 0.0031 0.0101 -0.0007
WinIT 0.0173 0.0022 0.0040 -0.0046
DynaMask 0.0086 0.0019 0.0252 -0.0006
Ours 0.0408 -0.0094 0.0308 -0.0025

Table 3: Sensitivity to the ranking of feature importance on the AKT
model. The best methods are highlighted in bold, and the second-
best method is underlined. For ↑ metrics, the higher the better, while
for ↓ ones, the lower the better.

Ranking Sensitivity in Explanation Methods
To evaluate different methods from this perspective, we pro-
pose an intuitive method to assess whether explanations from
different methods preserve the ranking of important features.

The process is as follows: first, we permutate the ranking of
explanations for the top-K important features so that mi does
not match with xi for i ≤ K. Then, we evaluate the perfor-
mance of the explanation on the top-⌊K/2⌋ features. In other
words, the permutation operation will replace some features
with importance rankings in the range [1, ⌊K/2⌋] with fea-
tures having importance rankings in the range [⌊K/2⌋+1,K]
or shuffle the features ranking in [1, ⌊K/2⌋]. We define the
ranking sensitivity of explanations as the expected change in
explanation performance after a single permutation.

∆H = Em∼E(D),m̃∼PK(m)(H(m)−H(m̃)),

where H(·) represents a metric for evaluating an explana-
tion, such as Comp. E(D) represents the explanations for
the dataset D, and PK(m) is the permutation set of m with
the top-K features permuted. Direct computation of ∆H is
computationally expensive. Therefore, in practice, we use
some sampled instances from PK(m) to approximate it. A
higher ∆Comp or lower ∆Suff indicates that the explanation
is more sensitive to the ranking of important features within
[1, ⌊K/2⌋] and effectively differentiates features ranked in
[1, ⌊K/2⌋] from those in [⌊K/2⌋+ 1,K].

The results are presented in Table 3, where we evaluate
∆H for all methods on the AKT model across two datasets.
Our method consistently outperforms others in almost all
metrics, except for a slight disadvantage compared to WinIT
on ASSISTment 2017 and Attention on ASSISTment 2009,
though it still surpasses the remaining methods. In most
cases, we observe that ∆Comp > 0 and ∆Suff < 0, indicating
that the shuffled explanations are inferior to the original ones
and that these explanations successfully capture the priority
among important features. However, we also notice that, in
the ASSISTment 2009 dataset, ∆Suff > 0 for most baseline
methods, which suggests that these explanations fail to cap-
ture the priority among important features.

Impact Study on the Number of Removed Interactions
We evaluate our methods by removing different numbers of
interactions and observing performance changes in the AKT
model on ASSISTment 2017, as shown in Figure 3. To study
whether the explanation methods can provide fine-grained ex-
planations, we evaluate the performance on the top 10 fea-
tures. The figure demonstrates that our method consistently
outperforms others by a considerable margin. Additionally,
the performance of our methods continuously decreases in
Comp and increases in Suff as the number of masked inter-
actions increases, while the performance of other methods
fluctuates. This suggests that our method not only excels
in identifying the most important interactions but also out-
performs in ranking the top 10 interaction importance, while
other methods exhibit mediocre performance when assigning
importance scores to a small number of interactions.

6 Conclusion
In this work, we introduce a fine-grained feature-attribution
method tailored to knowledge tracing that supports im-
proved learning outcomes. Our approach outperforms exist-
ing techniques in uncovering key interactions across diverse
models and real-world datasets, underscoring the value of
task-specific explanations. While current evaluation relies on
model performance, future work will explore more objective
and comprehensive metrics to assess explanation quality and
their educational value.
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