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Abstract
In this paper, we present a novel Mixture of Distil-
lation (MoD) framework for distilling lightweight
student models using Visual Foundation Models
(VFMs) as teachers. Knowledge distillation (KD)
is a crucial training strategy for improving model
performance. However, conventional KD methods
face two main challenges: (1) selecting & train-
ing appropriate teacher models and (2) designing
effective knowledge distillation techniques. To ad-
dress the first challenge, we leverage recent VFMs
like CLIP, Grounding DINO, and SAM as teachers,
capitalizing on their remarkable zero-shot general-
ization abilities and low fine-tuning requirements
for new tasks, thereby avoiding expensive retraining
of teachers. For the second challenge, our MoD
framework focuses on extracting and decompos-
ing the feature and logit knowledge from VFMs
into multiple knowledge experts, which capture
modality-specific information across batches, chan-
nels, and instances. Each knowledge expert under-
goes separate projections, reshaping, normalization,
and learnable magnitude operations. Then, we em-
ploy sparse knowledge gates with a softmax func-
tion followed by a KeepTopK operation for different
knowledge experts. In this way, our MoD not only
bridges the distillation gap between VFMs and stu-
dents but also allows the adaptive transfer of useful
knowledge across different domains. Extensive ex-
periments on various classification, detection, and
medical segmentation tasks validate the effective-
ness of our approach with other models. Moreover,
our MoD framework demonstrates the potential for
transferring zero-shot abilities from VFMs without
relying on ground-truth labels. Notably, our MoD
achieves impressive performance, attaining 72.48%
for RepViT with 76.20% CLIP teacher on ImageNet-
1K without annotations.

1 Introduction
The development of sizeable deep models [Krizhevsky et al.,
2012] in computer vision continues to be significant in re-
cent years. However, it is increasingly apparent that these

models often encounter issues such as redundancy and high
computational resource requirements. To tackle these chal-
lenges, various model compression methods have emerged,
aiming to enhance the efficiency and compactness of deep
models [Li et al., 2024c; Li et al., 2024e; Dong et al., 2024;
Dong et al., 2025b; Li et al., 2024d; ?; Gu et al., 2025;
Li et al., 2025; Dong et al., 2023b; Dong et al., 2025a;
Wei et al., 2024]. Among these compression techniques,
knowledge distillation has emerged as a highly effective ap-
proach [Hinton et al., 2015]. Knowledge distillation involves
transferring knowledge from a large, cumbersome model (the
teacher model) to a smaller, more streamlined model (the
student model). This approach enables the student model to
balance efficiency and accuracy, making it suitable for deploy-
ment on resource-constrained devices.

Conventional KD methods always focus on extracting use-
ful information from teacher models and reducing teacher-
student gaps. For example, different methods are proposed
to transfer teachers’ knowledge of logits, features, and sam-
ple relationships. Other KD methods present smart designs
regarding knowledge transformations and distillation losses.
However, previous studies rarely address two critical chal-
lenges: Selecting and efficiently training teacher models and
choosing the suitable teacher knowledge for transfer in dif-
ferent scenarios. (1) Teacher training issue: Although KD
methods can reuse existing pre-trained models as teachers un-
der the public dataset, they still have to train teachers models
from scratch once they come to new datasets. This additional
teacher training process brings large time costs and compu-
tational resource consumption. Some self-distillation meth-
ods attempt to remove the teacher model via auxiliary struc-
tures or losses, but their performance could be better than the
teacher-guided methods. (2) Knowledge selection issue: Dif-
ferent knowledge performs differently under various tasks and
datasets. For example, logit knowledge performs optimally
on the classification task but consistently sub-optimal vs fea-
tures knowledge for object detection. Simply involving many
kinds of knowledge always results in gradient conflicts and
optimization difficulties. These difficulties naturally present
questions: How to efficiently obtain teachers and select the
best knowledge for the new scenarios?

Recently, VFMs, such as CLIP [Radford et al., 2021],
DINO [Zhang et al., 2022], and SAM [Kirillov et al., 2023],
have reshaped the landscape of computer vision and ma-
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Figure 1: Detailed processes in our MoD framework. First, the feature dimensions between the teacher and student are aligned via low-rank
projections, followed by normalization and magnitude scaling operations applied to the knowledge. Sparse knowledge gates are then computed
to selectively transfer relevant components based on the student’s feature and logit information. The gated knowledge is transferred by
calculating distances, using an L2 loss for features and a KL loss for logits.

chine learning with their impressive generalization capabili-
ties across various tasks. These models, pre-trained on vast
datasets, can make accurate zero-shot predictions and achieve
superior performance after fine-tuning. Advanced parameter-
efficient fine-tuning methods, like LoRA [Hu et al., 2021],
have further reduced the cost of adapting these VFMs to new
tasks, striking a balance between performance and efficiency
and making them more accessible and adaptable to a broader
range of applications. The strengths of VFMs inspired us
to employ them as an alternative to traditional teachers in
distillation frameworks. However, these VFMs have larger
model scales than traditional teachers, creating more signifi-
cant teacher-student gaps in architecture and knowledge rep-
resentations. This highlights the importance of knowledge
selection when distilling from VFMs. One key technology in
VFMs, the Mixture of Experts (MoE) [Shazeer et al., ], pro-
vides valuable insights into our knowledge selection designs.
MoE enables expert selection for specific tasks via gate spar-
sity, offering a promising direction for selectively distilling
knowledge from VFMs.

Based on the above observations, we propose a novel Mix-
ture of Distillation (MoD) framework that capitalizes on the
strengths of VFMs while addressing the challenges posed by
their scale and complexity, opening new doors for more acces-
sible applications of these powerful models in distillation. As
shown in Figure 1, we first fine-tune partial parameters in the
VFM teacher model on the downstream datasets. In this way,
we can quickly obtain ultra-powerful teachers with preferable
feature encoders and minimal training cost compared to tradi-
tional teacher training. Then, we decompose the feature and
logit knowledge from VFMs into multiple knowledge com-
ponents. For feature knowledge, we align dimensions using
separate low-rank projections and transform the aligned fea-
tures into relation, instance, and channel feature knowledge
through reshaping, normalization, and learnable magnitude op-
erations. Similarly, we derive instance, relation, and class logit
knowledge by reshaping, normalizing, and re-weighting the

original logits. Our MoD framework employs sparse knowl-
edge gates to adaptively transfer helpful knowledge to the
student model tailored to the specific domain or task. Our
sparse gates use a softmax function followed by a KeepTopK
operation to introduce sparsity in the gate selection process.
This knowledge selection strategy reduces knowledge con-
flicts and optimization difficulties arising from multiple losses
in the distillation process. Finally, the selected knowledge
serves as an input in the pairwise distance function, acting as
an optimization objective for knowledge distillation. In this
way, our MoD bridges the gap between large-scale VFMs and
compact student models, enabling efficient knowledge transfer
and task-specific adaptation.

We conduct a comprehensive evaluation to assess the effec-
tiveness of our MoD framework across diverse tasks, datasets,
and student architectures. When applied to classification
tasks, MoD consistently outperforms other distillation meth-
ods, such as KD, DIST, and MGD, in both annotation-free
and annotation-based scenarios. Notably, our MoD achieves
an accuracy 72.48 for RepViT and 72.85 for ViT-Small on
ImageNet without ground truth labels. Moving on to object
detection tasks, MoD demonstrates remarkable performance
improvements compared to student baselines, FGD, and PKD
across various architectures, encompassing two-stage, one-
stage, anchor-based, and anchor-free detectors. These im-
provements are observed for both baseline and stronger back-
bone models. For instance, MoD achieves an impressive 47.7
AP on RetinaNet, surpassing FGD and PKD by significant
margins. In the realm of medical image analysis, MoD en-
hances the performance of student models such as TinySAM
and EfficientSAM when Medical-SAM is used as the teacher
model. These findings provide strong evidence for the effi-
cacy and applicability of MoD, demonstrating its ability to
consistently improve performance across diverse computer vi-
sion tasks. In summary, the key contributions of the proposed
approach are:

• We propose a novel Mixture of Distillation (MoD) frame-
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work that capitalizes on the strengths of VFMs while
addressing the challenges posed by their scale and com-
plexity, opening new doors for more accessible applica-
tions of these powerful models in distillation.

• Our MoD framework employs sparse knowledge gates
to adaptively transfer useful knowledge to the student
model, tailored to the specific domain or task, reducing
knowledge conflicts and optimization difficulties arising
from multiple losses in the distillation process.

• The comprehensive evaluation of MoD across a wide
range of classification, object detection, and medical
image analysis tasks demonstrates its effectiveness, ro-
bustness, and versatility in consistently improving the
performance of compact student models.

2 Related Works
Knowledge distillation. Knowledge Distillation (KD) [Bucila
et al., 2006] has seen the development of various approaches
and techniques for training a student model using the knowl-
edge from a high-capacity teacher model. Pioneer studies,
such as [Bucila et al., 2006; Hinton et al., 2015], utilized soft
logit outputs from teachers to provide additional supervision
during training. Recent logits KD methods present varying
dynamic temperature factors [Li et al., 2023b] or target class
non-target class decoupling [Zhao et al., 2022] to reduce the
teacher-student gap [Li and Jin, 2022]. Besides logits KD,
another type is feature KD methods [Romero et al., 2015;
Li, 2022] focusing on transferring rich feature knowledge
within teacher models. These methods present many knowl-
edge transformation designs and distance functions to align
teacher-student features in shape and semantics. Other meth-
ods like RKD [Park et al., 2019] explore the structural
information and contrastive learning methods like SSKD
[Xu and others, 2020] incorporates self-supervised learn-
ing into the distillation process. Moreover, customized dis-
tillation methods and design strategies are based on spe-
cific tasks. For example, detection distillation methods fo-
cus on transferring knowledge in instance and foreground
features. While these existing methods suggest superior
distillation solutions, they often overlook the teacher and
knowledge selection processes, limiting their practical ap-
plications. In contrast, our approach efficiently fine-tunes
VFMs as teachers and incorporates MoD for selective knowl-
edge transfer, harnessing the potential of these powerful mod-
els. Unlike distillation tuning methods [Li et al., 2023a;
Li et al., 2024b; Sun et al., 2024a; Dong et al., 2023a;
Li et al., 2024a] that require additional hyperparameter opti-
mization overhead, our MoD method does not introduce an
additional stage. By efficiently fine-tuning VFMs and selec-
tively distilling relevant knowledge, our approach bridges the
gap between these powerful and compact student models.
Visual foundation model. Vision foundation models (VFMs)
trained on extensive datasets represent a significant advance-
ment in computer vision, serving as the cornerstone for a wide
range of downstream tasks. CLIP [Radford et al., 2021], a
multimodal model, learns joint representations of images and
text and has shown remarkable success in zero-shot classifica-
tion tasks by aligning the visual and textual domains through

contrastive learning. Derivative works of CLIP have expanded
its applications to various tasks [Ali and Khan, 2023]. For
object detection, DINO [Zhang et al., 2022] builds upon
the DETR [Dai et al., 2021] architecture and utilizes self-
supervised learning to allow the model to learn rich feature
representations without extensive manual annotation. Ground-
ing DINO [Liu et al., 2023], a variant of DINO, combines
it with grounded pre-training for open-set object detection.
In the segmentation domain, SAM [Kirillov et al., 2023] is
a prompt-based model that learns to generate segmentation
masks based on user-provided prompts, with training involving
a large dataset and a unique approach. Recently, techniques
like Parameter-Efficient Fine-Tuning (PEFT) [Zhang et al.,
2023] and Mixture-of-Experts (MoE) [Zoph et al., 2022] have
been proposed to improve the efficiency of VFMs on different
tasks. PEFT adds Adaptation Layers or employs Low-Rank
Adaptation [Liu et al., 2024] to fine-tune a minimal subset
of model weights, enabling efficient adaptation of large-scale
models. MoE, by combining specialized experts and a flexi-
ble gating mechanism, enhances the performance, efficiency,
and adaptability of VFMs. While some methods (e.g., Tiny-
CLIP [Wu et al., 2023]) attempt to distill large VFMs into
small VFMs, many compact models still require many pa-
rameters and components for various tasks. Additionally, the
training process for distilling small VFMs can be expensive.
In contrast, our approach focuses on enhancing the training
of lightweight models in traditional scenarios, allowing for a
broader range of applications.

3 Methodology: Mixture of Distillation
3.1 Reviewing Knowledge Distillation
Knowledge distillation transfers knowledge from a large, pow-
erful teacher model T to a compact student network S. Specif-
ically, the goal is to transfer the teacher’s feature and logit
knowledge, denoted as fT and pT respectively, to the student’s
outputs fS and pS . This is typically achieved by minimizing a
distance function between the transformed teacher and student
outputs:

LKD = Df

(
T S
f (fS), T T

f (fT )
)
+Dp

(
Tp(p

S/τ), Tp(p
T /τ)

)
,
(1)

where Tf and Tp are transformations applied to the features
and logits, respectively, Df (·, ·) and Dp(·, ·) are distance func-
tions measuring the difference between feature representations
and logits, and τ is a temperature scaling factor.

3.2 Knowledge Decomposition and Representation
For our MoD framework in Figure 1, we decompose the knowl-
edge from VFMs into multiple knowledge components. This
decomposition process aims to effectively capture and rep-
resent the rich knowledge encoded in the VFMs, enabling
efficient knowledge transfer to the student model.
Feature knowledge representation. Let f ∈ RB×C×H×W

denote the feature maps extracted from the VFM teacher
model, where B, C, H , and W represent the batch size, num-
ber of channels, height, and width, respectively. We first align
the feature dimensions of teacher-student models using sep-
arate low-rank projections: Pro(f) = W1W2f , where W1

and W2 are learnable projection matrices which are added to
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the student model and updated during the distillation process.
To decompose the teacher’s feature knowledge, we reshape
the aligned feature f into three components: relation feature
fr ∈ RB×(CHW ), channel feature fc ∈ RC×(NHW ), and
instance feature fi ∈ RB×C×(H/n)×(W/n). Here, the rela-
tion feature captures the spatial relationships between feature
elements, the channel feature encodes the channel-wise in-
formation, and the instance feature represents the localized
instance-level features. Finally, we apply a normalization op-
eration || · ||norm and scale the normalized features with a
learnable magnitude parameter m as:

T S
f{r,c,i}

= m{r,c,i} × ||Pro{r,c,i}(f
S
{r,c,i})||norm{r,c,i} , (2)

T T
f{r,c,i}

= m{r,c,i} × ||fT
{r,c,i}||norm{r,c,i} , (3)

where T S
fr,c,i

and T T
fr,c,i

represent the transformed feature
knowledge components of the student and teacher, respec-
tively. The magnitude parameters mr,c,i allow the framework
to adaptively scale the importance of different knowledge com-
ponents. For each transformed teacher-student feature pair, we
employ the L2 distance as the distillation loss:

L{r,c,i} = DL2

(
T S
f {r,c,i}(f

S
{r,c,i}), T

T
f {r,c,i}(f

T
{r,c,i})

)
,
(4)

where DL2(·, ·) is the L2 distance function, encouraging the
student’s transformed features to match those of the teacher.
Logits knowledge representation. Similar to feature knowl-
edge, we derive instance, relation, and class logit knowledge
from the original logits p ∈ RN×C of the VFM teacher, where
N is the number of instances, and C is the number of classes.
The global logit knowledge, denoted as pg ∈ RN×C , is the
original logit matrix. The batch logit knowledge captures
the pairwise relationships between instance logits, denoted
as pb ∈ RN×N . The class logit knowledge, denoted as
pc ∈ RC×C , captures the logit patterns across different classes.
We apply normalization and re-weighting operations to these
logit knowledge components:

Tp{g,b,c} = m{g,b,c} × ||p{g,b,c}||norm{g,b,c} , (5)

where mg,b,c is a learnable scalar weight parameter for the
respective logit knowledge component.

For the logits part of the knowledge, we select the Kullback-
Leibler (KL) divergence as the distillation loss for each trans-
formed teacher-student logit pair:

L{g,b,c} = DKL

(
Tp{g,b,c}(p

S
{g,b,c}/τ), Tp{g,b,c}(p

T
{g,b,c}/τ)

)
,

(6)
where DKL(·, ·) is the KL divergence function, and τ is a
temperature scaling factor.

3.3 Knowledge Selection with Sparse Gating
While decomposing the VFM knowledge into multiple compo-
nents is beneficial, not all components may be equally relevant
or useful for a given task or scenario. Transferring irrelevant
or conflicting knowledge can hinder the student model’s per-
formance and lead to optimization difficulties. To address this,
our MoD framework employs sparse knowledge gates G to
selectively transfer the most relevant knowledge components

to the student model while suppressing irrelevant or conflict-
ing knowledge. The sparse knowledge gates G are computed
as follows:

Gf = KeepTopK(Softmax(Wf × fs, k)), (7)

Gp = KeepTopK(Softmax(Wp × fp, k)), (8)

where Wf and Wp are learnable parameters, Softmax(·) is
the softmax function applied across the knowledge component
dimension, and KeepTopK(·, k) is an operation that keeps
the k largest values in the input vector and sets the remaining
values to zero, introducing sparsity. The sparse gate matrices
Gf and Gp are then used to select the relevant features and
logits Knowledge for each instance:

L{r,c,i} = DL2

(
Gr,c,i

f × T S
f {r,c,i}(f

S
{r,c,i}), T T

f {r,c,i}(f
T
{r,c,i})

)
,

(9)
L{g,b,c} = DKL

(
Gg,r,c

p × Tp{g,b,c}(p
S
{g,b,c}), Tp{g,b,c}(p

T
{g,b,c})

)
,

(10)
where Gr,c,i

f and Gg,r,c
p are the sparse gates for the respective

feature and logit knowledge components. The sparse gating
mechanism introduces sparsity in the knowledge selection
process, allowing the MoD framework to adaptively transfer
only the most relevant knowledge components to the student
model. This selective knowledge transfer reduces optimization
conflicts and enables more efficient learning by focusing on
the most useful information for the given task.

3.4 Optimization Objective
The final optimization objective for our MoD framework is
a combination of the pairwise distance between the selected
knowledge components of the teacher and student models, as
well as the original task loss of the student:

LMoD = Loriginal + Lr + Lc + Li + Lg + Lb + Lc. (11)

where Loriginal denotes the original task loss with ground-
truth labels. In particular, on the classification task, CLIP
teacher models produce quite high-quality predictions. Thus,
we use directly CLIP models’ predictions as an alternative to
human labels to teach student. Such annotation-free distilla-
tion also bring very promising results, detailed in the following
experiments.

4 Experiments
4.1 Experiments on Image Classification
Implementation Details. We assess our framework on fine-
grained classification datasets (e.g., Stanford Cars[Krause et
al., 2013], Oxford Pets[Parkhi et al., 2012], CIFAR-100[Alex,
2009] and Food-101[Bossard et al., 2014]), large-scale dataset
ImageNet-1K[Deng et al., 2009]. We use annotation-free as
a teacher and fine-tune it in an annotation-based setting and
zero-shot prediction in an annotation-free setting. We perform
the same distillation and data augmentation settings for all
comparison methods. Detailed implementations are in the
Appendix.
Comparison results on fine-grained datasets. We con-
duct comparative experiments on multiple datasets, using
the CLIP ViT-L/14 model as the teacher and EfficientNet-
B1 and RepViT M1.1 as the student models. The experimental
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Teacher CIFAR100 Caltech101 Food101 StanfordCars OxfordPets

Annotation-free
CLIP ViT-L/14 77.50 92.80 93.80 78.80 93.50

Student ENet RepViT ENet RepViT ENet RepViT ENet RepViT ENet RepViT

KD [Hinton et al., 2015] 74.61 74.81 81.16 81.05 84.08 87.47 67.75 73.52 80.92 83.35
DIST [Huang et al., 2022] 74.49 72.65 80.47 80.07 84.50 85.28 73.50 73.70 82.31 80.10
CAT-KD[Guo et al., 2023] 74.01 73.51 80.21 77.73 84.88 87.14 68.47 72.24 83.74 82.19

FreeKD [Zhang et al., 2024] 75.43 73.25 79.57 79.52 86.49 86.62 70.55 73.42 75.67 76.90
MGD [Yang et al., 2022] 72.05 72.25 80.47 79.90 83.42 86.76 72.70 72.45 77.33 80.27

MoD (ours) 75.72 76.15 82.56 83.51 87.03 87.51 75.32 75.13 84.62 84.75
Annotation-based

CLIP ViT-L/14 87.50 96.00 95.90 90.50 95.10
Student ENet RepViT ENet RepViT ENet RepViT ENet RepViT ENet RepViT

KD [Hinton et al., 2015] 78.20 78.56 93.30 93.60 87.60 88.40 76.80 78.20 86.30 86.90
DIST [Huang et al., 2022] 78.55 78.59 93.56 93.98 87.30 88.50 77.10 77.92 86.22 86.40
CAT-KD[Guo et al., 2023] 78.05 78.54 92.64 93.27 87.02 87.72 75.62 77.62 85.98 86.17

FreeKD [Zhang et al., 2024] 78.42 78.67 92.72 94.28 88.12 88.07 76.72 78.18 86.17 86.47
MGD [Yang et al., 2022] 78.62 78.68 94.35 94.42 87.20 88.90 77.70 78.46 86.65 87.25

MoD (ours) 79.82 80.25 95.25 95.50 89.80 90.15 78.85 79.22 88.20 88.35

Table 1: Top-1 accuracies (%) of different distillation methods. We adopt a ViT-L/14 model from CLIP [Radford et al., 2021] as the teacher
network. For the student models, we select three efficient yet compact models: EfficientNet-B1 [Tan and Le, 2019] (ENet) and RepVit
M1.1 [Wang et al., 2023] (RepViT).

Teacher: CLIP ViT-L/14 → Student: RepViT M1.1

Method Annotation-free Annotation-based
Teacher 76.20 85.40
Student NA 79.40

KD [Hinton et al., 2015] 70.75 80.70
DIST [Huang et al., 2022] 71.03 80.85
CAT-KD[Guo et al., 2023] 71.29 81.03

ReviewKD [Pengguang Chen and Jia, 2021] 70.88 80.65
CWD [Shu et al., 2021] 71.10 81.02

MGD [Yang et al., 2022] 71.25 81.25
CTKD [Li et al., 2023c] 70.86 80.95

FreeKD [Zhang et al., 2024] 71.45 81.55
SDD [Luo, 2024] 71.28 81.32

Logit Stand. [Sun et al., 2024b] 71.13 81.08
MoD (ours) 72.48 82.65

Teacher: CLIP ViT-L/14 → Student: ViT-Small

Method Annotation-free Annotation-based
Teacher 76.20 85.40
Student NA 79.90

KD [Hinton et al., 2015] 71.15 81.20
DIST [Huang et al., 2022] 71.32 81.05
CAT-KD[Guo et al., 2023] 71.26 81.18

ReviewKD [Pengguang Chen and Jia, 2021] 71.22 81.25
CWD [Shu et al., 2021] 71.41 81.40

MGD [Yang et al., 2022] 71.62 81.60
CTKD [Li et al., 2023c] 71.23 81.36

FreeKD [Zhang et al., 2024] 71.67 81.90
SDD [Luo, 2024] 71.56 81.98

Logit Stand. [Sun et al., 2024b] 71.34 81.67
MoD (ours) 72.85 83.05

Table 2: Top-1 classification accuracy (%) results on ImageNet validation set.

Method AP AP50 AP75 APS APM APL

Two-stage detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: Faster RCNN-R50 38.4 59.0 42.0 21.5 42.1 50.3
FGD [Yang et al., 2021] 38.0 58.3 41.3 21.2 41.8 49.7
PKD [Cao et al., 2022] 36.5 57.5 39.2 19.6 40.2 50.5
MoD (ours) 40.5 63.2 44.2 24.5 45.0 51.7

One-stage detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: RetinaNet-R50 37.4 56.7 39.6 20.0 40.7 49.7
FGD [Yang et al., 2021] 36.8 56.2 38.7 19.4 40.2 49.1
PKD [Cao et al., 2022] 37.2 56.6 39.3 19.6 40.5 49.1
MoD (ours) 40.2 61.0 43.1 23.6 43.7 54.1

Anchor-free detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: RepPoints-R50 38.6 59.6 41.6 22.5 42.2 50.4
FGD [Yang et al., 2021] 38.1 59.3 41.4 21.8 41.6 49.8
PKD [Cao et al., 2022] 37.1 59.2 41.3 22.1 41.8 50.1
MoD (ours) 41.7 63.6 45.1 24.8 45.3 55.0

Anchor-based detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: ATSS-R50 39.4 57.6 42.8 23.6 42.9 50.3
FGD [Yang et al., 2021] 38.3 56.6 41.8 22.1 41.3 49.6
PKD [Cao et al., 2022] 37.9 56.2 41.5 22.7 41.7 48.9
MoD (ours) 41.2 60.6 45.0 24.7 45.0 53.1

Table 3: Object detection performance with baseline settings on
COCO val set. T: teacher. S: student.

Method AP AP50 AP75 APS APM APL

Two-stage detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: Faster RCNN-X-101 41.2 62.1 45.1 24.0 45.5 53.5
FGD [Yang et al., 2021] 40.9 61.5 44.3 23.3 45.6 53.3
PKD [Cao et al., 2022] 40.3 61.8 44.4 23.8 44.8 52.7
MoD (ours) 43.0 66.0 47.6 27.0 47.8 54.3

One-stage detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: RetinaNet-PVTv2 (B4) 46.3 67.0 49.6 29.0 50.1 62.7
FGD [Yang et al., 2021] 45.8 66.7 49.2 28.1 49.6 62.5
PKD [Cao et al., 2022] 46.2 66.8 59.4 28.7 50.0 62.3
MoD (ours) 47.7 70.4 51.6 33.3 51.7 61.9

Anchor-free detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: RepPoints-X-101 (DCN) 44.2 65.5 47.8 26.2 48.4 58.5
FGD [Yang et al., 2021] 43.5 64.7 47.2 25.1 47.9 57.5
PKD [Cao et al., 2022] 43.8 65.2 47.3 25.7 48.1 58.2
MoD (ours) 46.9 69.7 51.2 32.2 51.5 60.9

Anchor-based detectors
T: Grounding-DINO-L 60.3 77.6 66.4 45.1 64.4 75.7
S: ATSS-R101 41.5 59.9 45.2 24.2 45.9 53.3
FGD [Yang et al., 2021] 40.6 59.2 44.7 23.5 45.2 52.4
PKD [Cao et al., 2022] 40.2 58.7 43.6 23.2 44.8 52.3
MoD (ours) 43.1 62.7 47.0 25.9 47.2 56.0

Table 4: Object detection performance with stronger backbones
on COCO val set.T: teacher. S: student.
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Dataset CVC-ClinicDB Kvasir Isic2018 Synapse ACDC
Method mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice
Medical-SAM (Teacher) 89.7 94.3 88.9 93.6 85.7 92.1 81.5 87.4 86.4 89.8

TinySAM (Student) 87.0 91.9 84.9 90.5 81.5 88.2 76.8 84.0 80.2 84.5
TinySAM (MoD) 88.9 93.9 85.5 92.2 82.8 89.8 78.4 85.5 81.1 85.8
EfficientSAM (Student) 85.5 91.3 85.3 90.9 81.7 88.6 77.5 84.5 82.2 87.9
EfficientSAM (MoD) 88.5 93.1 87.6 92.7 84.6 91.1 79.9 85.9 84.9 89.0

Table 5: Quantitative evaluation results on 2D medical datasets (CVC-ClinicDB, and Kvasir and ISIC2018) and two 3D medical datasets
(Synapse and ACDC).

Ablation Knowledge Representation Knowledge Selection

GT Inputs MLP LoRA S-LoRA Norm Magnitude All Top-2 (Random) Top-1(Random) Top-2 (MoD) Top-1 (MoD)

w Feature 78.65 78.80 79.15 79.20 79.47 77.30 78.18 78.24 79.54 79.61
wo Feature 74.58 74.67 74.91 75.36 75.47 73.11 73.67 73.86 75.37 75.47
w Logits NA NA NA 79.30 79.45 77.10 78.19 78.24 79.60 79.64
wo Logits NA NA NA 75.33 75.49 73.87 73.96 74.07 75.48 75.58
w F+L 79.05 79.18 79.32 79.48 79.59 77.68 78.56 78.52 79.75 79.82
wo F+L 74.98 75.05 75.26 75.48 75.61 73.58 74.08 74.25 75.65 75.72

Table 6: Ablation study of various components in MoD for EfficientNet-B1 on CIFAR100 dataset.

results in Table 1 provide a comprehensive analysis of our
approach, MoD, compared to other distillation methods in
two scenarios: Annotation-free and Annotation-based. In the
annotation-free setting, where no labeled data is available,
our MoD approach consistently outperforms other methods
across all datasets and student models. For instance, on the
CIFAR100 dataset, MoD achieves accuracies of 75.72% and
76.15% for EfficientNet-B1 and RepViT M1.1, respectively,
outperforming the second-best method, KD, by 1.11% and
1.34%, respectively. Similarly, on the Caltech101 dataset,
MoD attains accuracies of 82.56% and 83.51% for the two stu-
dent models, surpassing other method by a significant margin.
Moving to the annotation-based scenario, MoD continues to
exhibit superiority over other distillation methods. These gains
are particularly significant compared to KD, DIST, and MGD,
indicating its ability to effectively distill knowledge from the
teacher model using labeled data and additional annotations.
In an Annotation-free or Annotation-based scenario, MoD
consistently improves the performance of the student models
compared to other distillation methods. These findings suggest
that MoD can be a valuable tool for model compression and
knowledge transfer in various domains and applications.
Comparison results on large-scale datasets. The results
on the ImageNet-1K[Deng et al., 2009] dataset, as shown in
Table ??. In the annotation-free setting, our MoD approach
consistently outperforms other methods by significant mar-
gins. For the RepViT M1.1 student model, MoD achieves a
1.23% gain than MGD. Similarly, MoD attains 72.85% ac-
curacy on ViT-Small, outperforming other methods. These
results demonstrate the effectiveness of our approach in distill-
ing knowledge from the teacher model without relying on any
labeled data. Our MoD approach maintains its superior per-
formance in the annotation-based setting with labeled data for
training. For the RepViT M1.1 student model, MoD achieves
82.65% accuracy on RepViT and 83.05% on ViT-Small, sur-
passing other methods with more than 1.45% gains. The
consistent performance gains of our MoD approach across
both annotation-free and annotation-based settings, showcase
its robustness and versatility.

4.2 Experiments on Object Detection
Implementation Details. For detection on MS-COCO
dataset [Caesar et al., 2018], we conduct experiments with
baseline and stronger backbone settings on two-stage, one-
stage, anchor-free, anchor-based detectors. We fine-tune
Grounding-DINO-L on the MS-COCO and use it as the
teacher detector. We follow the same distillation setups in
previous methods [Yang et al., 2021]. Detailed implementa-
tions are in the Appendix.
Comparison results. Table 3 and Table 4 demonstrate the
remarkable gains achieved by our method with Grounding-
DINO-L as teacher across various object detection settings.
In the baseline setting (see Table 3), our method consistently
outperforms the student baseline and other methods (e.g., FGD
and PKD) by substantial margins. For two-stage detectors like
Faster R-CNN, our method achieves a 40.5 AP, surpassing
baseline and FGD by a considerable 2.1 and 2.5 AP, respec-
tively. Similar trends are observed for one-stage detectors
(RetinaNet), anchor-free detectors (RepPoints), and anchor-
based detectors (ATSS), where our method outperforms the
student baseline by 2.8, 3.1, and 1.8 in AP, respectively, and
consistently outperforms FGD and PKD across all metrics.
When employing stronger backbones (see Table 4), such as
ResNeXt-101 and PVTv2-B4, our method maintains its supe-
riority, further widening the performance gap compared to the
student baseline and other distillation methods. For example,
with RetinaNet-PVTv2 (B4), our method achieves an impres-
sive 47.7 AP of 47.7, outperforming FGD (45.8) and PKD
(46.2). This significant gain is also observed for anchor-free
and anchor-based detectors, where our method outperforms
the student baselines by 1.4, 2.7, and 1.6 AP, respectively.

4.3 Experiments on Medical Image Segmentation
Implementation Details. we conduct experiments on a di-
verse set of medical datasets. This ongoing evaluation includes
three 2D medical datasets [Fang et al., 2022], ISIC2018, CVC-
ClinicDB, and Kvasir, and two 3D medical datasets [Wang
et al., 2021], Synapse and ACDC. Our experiments employ

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

CIFAR100 Caltech101 Food101 ImageNet Faster RCNN RetinaNet Kvasir Synapse

fr, pg fc, pg fi, pr fi, pr fc, pg fi, pg fi, pc fc, pc

Table 7: Knowledge selection results in our MoD on different tasks.

MoD

Teacher(CLIP) Loss-weights Temperature

R50 ViT-B/32 ViT-L/14 0.1 0.5 1 5 1 4 8 16
78.95 79.47 79.82 79.15 79.37 79.82 79.65 79.25 79.82 79.75 79.42

Table 8: Various distillation configuration in MoD for EfficientNet-B1 on CIFAR100 dataset.

SAM-based models [Ma and Wang, 2023] with one-point
prompts. Detailed implementations are in the Appendix.
Comparison results. Table 5 presented the performance of
two student models, TinySAM with TinyVit backbone and
EfficientSAM with Efficientformer backbone, with and with-
out our MoD, using the Medical-SAM model [Ma and Wang,
2023] as the teacher. Focusing on the 2D medical datasets, we
can observe that the MoD framework consistently improves
the performance of both student models. Similarly, the Effi-
cientSAM model exhibits notable performance gains when
trained with MoD, surpassing the baseline by 3.0% and 1.8%,
respectively. The effectiveness of our MoD framework is fur-
ther demonstrated by the 3D medical datasets Synapse and
ACDC. For example, on the Synapse dataset, the TinySAM
model with MoD achieves 78.4% mIoU, and the EfficientSAM
model with MoD attains 2.4%∼ 1.4% gains, respectively.
These results demonstrate the ability of our MoD to effec-
tively distill knowledge from the Medical-SAM teacher model
on 2D and 3D segmentation.

4.4 Ablation Study
Knowledge Representation. Table 6 reports the various de-
signs for MoD. We observe that the magnitude operation con-
sistently achieves the highest performance across all settings.
For instance, with GT and features as inputs, Magnitude at-
tains an accuracy of 79.59%, outperforming MLP baseline by
0.54%. However, when solely relying on logits as inputs, Mag-
nitude and Norm exhibit comparable performance, with Mag-
nitude slightly edging out Norm by 0.15% when GT is present
and 0.16 percentage points without GT. The normalize and
separate LoRA-based projection (S-LoRA) also demonstrate
robust performance gains, trailing slightly behind magnitude
operation.
Knowledge Selection. Table 6 compares our sparse gate-
based selection to random selection. We find that our meth-
ods in Top-1 and Top-2 selection consistently outperform the
random selection approaches. This suggests that our knowl-
edge selection strategies, which prioritize the most important
elements, are more effective at capturing and retaining the rel-
evant knowledge representations for the given tasks, leading
to higher performance in both the with ground-truth and with-
out ground-truth settings. The gains are particularly notable
for the logits-only scenarios, underscoring the importance of
our targeted selection approach in optimizing the knowledge
representation when working with limited input information.
Selected Knowledge. Table 7 presents a summary of selected

knowledge from various experiments. Notably, it can be ob-
served that across different downstream tasks, instance and
channel features, as well as global knowledge, consistently
emerge as important factors. In classification tasks with many
categories, relational features and class logits play a dominant
role in the selection process.
Sensitivity Analysis of Configurations. Table 8 presents
ablation study on KD configurations, we find the following:
(1) The ViT-L/14 teacher achieves the highest performance
at 79.82%, followed by ViT-B/32 at 79.47% and ResNet50
at 78.95%. (2) Loss weight of 1 produces the best results at
79.82%, while lower or higher weights lead to slightly reduced
performance. (3) Temperature of 4 yields the highest accuracy
of 79.82%, indicating this level of logit scaling is most effec-
tive for knowledge distillation. These findings highlight the
importance of carefully selecting the teacher model, optimiz-
ing the loss-weight configuration, and tuning the temperature
scaling to achieve the best performance with the MoD.

5 Conclusion
In this paper, we propose a MoD framework to transfer knowl-
edge from large-scale VFMs like CLIP, DINO effectively,
and SAM to compact student models. The MoD framework
bridges the gap between large-scale VFMs and compact stu-
dent models, enabling efficient knowledge transfer and task-
specific adaptation. Extensive evaluations show that MoD
consistently outperforms other distillation methods across clas-
sification, object detection, and medical imaging tasks while
transferring VFM zero-shot abilities to students in annotation-
free settings. We sincerely hope that our methods will provide
insights to the community and enhance the accessibility of KD
in practical applications.
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