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Abstract
Training deep neural networks is resource-
intensive, making it crucial to protect their intellec-
tual property from infringement. However, current
model ownership resolution (MOR) methods
predominantly address general removal attacks that
involve weight modifications, with limited research
considering alternative attack perspectives. In this
work, we propose a frequency-based model owner-
ship removal attack, grounded in a key observation:
modifying a model’s high-frequency coefficients
does not significantly impact its performance
but does alter its weights and decision bound-
ary. This change invalidates the existing MOR
methods. We further propose a frequency-based
fingerprinting technique as a defense mechanism.
By extracting frequency-domain characteristics
instead of decision boundary or model weights,
our fingerprinting defense effectively against the
proposed frequency-based removal attack and
demonstrates robustness against existing general
removal attacks. The experimental results show
that the frequency-based removal attack can easily
defeat state-of-the-art white-box watermarking
and fingerprinting schemes while preserving
model performance, and the proposed defense
method is also effective. Our code is released at:
https://github.com/huangtingqiao/RRA-IJCAI25.

1 Introduction
Deep Neural Networks (DNNs) have achieved great suc-
cess in many real-world applications [Kälble et al., 2024;
Chen et al., 2024; Kim et al., 2024]. However, train-
ing a high-performance DNN model is very costly, typi-
cally requiring heavy investment in high-quality data, ex-
pert knowledge, computing power, and so on. As a result,
these valuable models are increasingly becoming targets for
thieves. Previous studies [Tang et al., 2024; Chen et al.,
2023] have revealed that attackers can acquire an exact replica
of the original model via model-sharing platforms, and even
steal models through model extraction attacks, such as APIs
querying [Carlini et al., 2024] and side-channel exploita-
tion [Gongye et al., 2020].

Model ownership resolution (MOR) [Liu et al., 2024] is an
effective method for protecting intellectual property of DNN
models, which mainly includes model watermarking [Fan et
al., 2019; Zhu et al., 2024] and fingerprinting [Peng et al.,
2022; Pan et al., 2022] techniques. MOR enables model own-
ers to verify and assert their ownership if the model is mis-
appropriated, thus providing a means to resolve intellectual
property disputes.

DNN watermarking methods embed an ownership-
representing watermark into the DNN model during train-
ing and later verify ownership by extracting the watermark
from suspected models. Specifically, feature-based white-
box watermarking methods [Uchida et al., 2017; Li et al.,
2022; Fan et al., 2019] embed ownership identifiers within
model weights by modifying the loss function during training.
In contrast, backdoor-based black-box watermarking meth-
ods [Adi et al., 2018; Leroux et al., 2024; Li et al., 2023]
insert specific triggers during training, allowing the owner
to verify a pirated model based on distinct model outputs.
However, the model retraining process for the model water-
marking is costly, and the embedded watermark may lead to a
loss in model accuracy. Furthermore, while some watermark-
ing methods have demonstrated robustness against various re-
moval attacks, such as pruning or fine-tuning, recent stud-
ies indicate that model watermarking still faces threats from
tampering and watermark overwriting [Zong et al., 2024;
Wang et al., 2023].

By contrast, DNN fingerprinting methods, which have
gained increasing attention for their non-intrusive nature,
demonstrate model ownership by extracting unique charac-
teristics from the existing model without modifying it. Re-
searchers have found that the decision boundary can reflect
the distinct characteristics of a model and have proposed var-
ious methods to extract fingerprints from the decision bound-
ary, including utilizing feature points close to the decision
boundary [Cao et al., 2021], or the adversarial samples [Wang
and Chang, 2021; Peng et al., 2022]. They have also evalu-
ated the robustness of fingerprinting against existing owner-
ship removal attacks. These attacks primarily modify model
weights but minimally alter the decision boundary, so it is
difficult to destroy the existing model fingerprint. However,
the evaluated attacks thus far were not specifically designed
for DNN fingerprinting methods, and the robustness of fin-
gerprinting methods has yet to be thoroughly assessed.
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In this work, we propose a frequency-based model own-
ership removal attack, grounded in a key observation: after
applying a Discrete Cosine Transform (DCT) to shift model
weights into the frequency domain, modifying a model’s
high-frequency coefficients does not significantly impact its
performance but does alter its decision boundary and weights.
This boundary shift renders fingerprinting methods ineffec-
tive, and the weight changes prevent watermark recogni-
tion embedded within the model. We further propose a
frequency-based fingerprinting technique as a defense mech-
anism. By extracting frequency-domain characteristics in-
stead of decision boundary characteristics, our method ef-
fectively withstands the proposed frequency-based removal
attack and demonstrates robustness against existing general
removal attacks. Both the proposed attack and defense ap-
proaches are efficient, requiring only frequency transforma-
tion of the model without necessitating retraining or adver-
sarial training.

Overall, our contributions are summarized as follows: (1)
We reveal a noval attack surface for model ownership re-
moval based on frequency analysis. The proposed attack can
defeat MOR methods based on decision boundary or model
weights. (2) We design a frequency-based fingerprinting de-
fense against the proposed attack as well as general removal
attacks. (3) Extensive experiments show the effectiveness of
both our attack and defense.

2 Preliminaries and Related Work
Model Watermarking relies on embedding specific owner-
ship indicators, such as strings or backdoor triggers, within
the model. For instance, Uchida et al. [Uchida et al., 2017]
pioneered a feature-based white-box watermarking algorithm
that embeds ownership information in model weights by
adding a regularization term to the loss function. Another
category of backdoor-based black-box watermarking [Adi et
al., 2018] introduces a trigger into the model, causing the
pirated model to produce specific outputs for certain inputs,
serving as a unique identifier. Li et al. [Li et al., 2022] used
black-box and white-box watermarking to jointly detect sus-
picious models and enable forensics. Recent studies [Xu et
al., 2024] have also explored model watermarking in com-
plex settings, such as personalized federated learning [Zhang
et al., 2025]. However, the embedding process of the water-
mark alters the original model weights, potentially affecting
the accuracy. Some studies [Lukas et al., 2021] also show
that model watermarking is vulnerable to removal attacks.
Model Fingerprinting leverages the intrinsic characteristics
of a model as proof of ownership. Existing studies primar-
ily treat the decision boundary as a unique and representative
feature of models, constructing various types of adversarial
examples to capture this boundary. IPGuard [Cao et al., 2021]
is an efficient adversarial example method that generates data
points near the decision boundary to serve as a model finger-
print. Similarly, Wang et al. [Wang and Chang, 2021] uti-
lize the geometry characteristics inherited in the DeepFool
attack to extract these data points. Peng et al. [Peng et al.,
2022] discovered that the model’s decision boundary can be
uniquely represented by universal adversarial perturbations

(UAP). Besides, Zheng et al. [Zheng et al., 2022] introduced
a weight-based fingerprinting approach rooted in the stability
of the model’s early layers, employing random projection to
bind these weights to the owner’s identity and enhance the
fingerprint’s non-repudiation. In this work, we demonstrate
that their fingerprints cannot withstand frequency-based own-
ership removal attack and propose a frequency-based finger-
printing defense with greater robustness.
Discrete Cosine Transform is a reversible linear transforma-
tion that maps an input sequence of N real numbers into fre-
quency components represented by orthogonal cosine bases.
This transformation expresses the original data as a sum of
cosine waves with varying frequencies and amplitudes, ef-
fectively converting it to a frequency-domain representation.
The resulting coefficients are arranged by increasing fre-
quency, where lower frequencies typically represent the pri-
mary features of the data, while higher frequencies capture
details or noise. As the dimensionality of the input data in-
creases, DCT can capture a more comprehensive set of fea-
tures; however, excessive dimensionality may amplify noise,
causing feature extraction bias.

Recent studies have explored applying DCT to transform
DNN model weights into the frequency domain, enabling
more effective poison attack detection [Wang et al., 2018;
Fereidooni et al., 2024]. We take convolutional layers (e.g.,
a tensor containing 64×3 independent 3×3 kernels) as an ex-
ample to illustrate the method of transforming model weights
into the frequency domain using DCT. We apply the DCT to
each kernel individually, and then combine all transformed
kernels to form a frequency coefficient matrix for the layer,
which retains the same dimensions as the original.

3 Frequency-based Removal Attack
3.1 Threat Model
We consider two entities: the model owner and the attacker.
The model owner is responsible for training a DNN model,
which they may distribute by sharing model parameters or
by providing APIs. The owner’s objective is to protect the
intellectual property of the model through MOR techniques.
Specifically, the owner can embed a watermark or extract a
fingerprint in the model, allowing them to verify ownership
by extracting these identifiers from suspect models if unau-
thorized use is detected.

The attacker’s objective is to acquire a well-performing
model at a relatively low cost while avoiding accountabil-
ity. We assume the attacker has white-box access to the vic-
tim model and focus on the way to make watermarks or fin-
gerprints unrecognizable. The attacker may employ various
modifications to the model, such as fine-tuning and pruning,
but will not generate data to train a new model from scratch
due to the high computational cost involved.

3.2 Observation Explanation
OBSERVATION: After transforming model weights into a
frequency domain coefficient matrix using DCT, modifying
the high-frequency coefficients leads to minimal performance
loss while rendering the MOR mechanisms ineffective. In
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Dimension Band Modified Value (V )

V =-1 V =-0.5 V =0 V =0.5 V =1

1D DCT
Low 11.92 12.85 37.97 9.88 9.33
Mid 17.07 25.90 51.68 23.36 14.94
High 37.51 66.47 73.70 66.29 39.71

2D DCT
Low 12.35 13.47 35.57 10.49 10.05
Mid 21.57 57.34 72.39 58.50 23.91
High 66.46 77.80 80.08 78.79 67.51

3D DCT
Low 12.34 13.37 19.31 11.56 10.43
Mid 76.43 81.73 83.43 82.75 78.02
High 87.44 87.91 88.01 88.05 87.61

Table 1: Impact of modifying frequency domain coefficients at dif-
ferent locations under various DCT dimensions on the model accu-
racy (%) of AlexNet (Original accuracy: 88.33%).

Modified
Scale

Modified Value (V )

V =-1 V =-0.5 V =0 V =0.5 V =1

1/3 87.44 87.91 88.01 88.05 87.61
1/5 88.38 88.30 88.32 88.35 88.30
1/9 88.39 88.38 88.33 88.32 88.31

Table 2: Impact of different modification scales of high-frequency
coefficients on the model accuracy (%) of AlexNet.

contrast, altering the low-frequency coefficients significantly
degrades the model’s usability.

We first demonstrate the impact of modifying frequency
domain coefficients of model weights on model ownership
recognition and performance. In this experiment, we trained
a baseline AlexNet model on the CIFAR-10 dataset, achiev-
ing an accuracy of 88.33%. Next, we transformed the convo-
lutional layer weights of the model to the frequency domain
using 1D, 2D, and 3D DCT, respectively, and divided the fre-
quency domain coefficients sequentially into low, medium,
and high-frequencies. Finally, we modified the frequency do-
main coefficients and tested the accuracy of the model after
applying the Inverse Discrete Cosine Transform (IDCT). The
experimental results are shown in Table 1 and Table 2.

As the DCT dimension increases from 1D to 3D, the
impact on model performance decreases, suggesting that a
higher-dimensional DCT more effectively concentrates the
primary feature information in the low-frequency compo-
nents, thus minimizing disruption to overall model perfor-
mance when modifying high-frequency coefficients. Addi-
tionally, the experiments show a notable difference in the ef-
fect of modification values and frequency band positions on
model performance: modifications to frequency domain co-
efficients closer to zero have minimal impact on model accu-
racy, and alterations in the high-frequency range result in rel-
atively lower performance loss. These findings further con-
firm the structural characteristics of the DCT frequency do-
main, where low-frequency components typically carry the
main feature information, while high-frequency components
reflect finer details and noise, making them more suitable for
non-destructive modification.

Method ACC (%) ORR (%)

Before After Before After

Uchida [Uchida et al., 2017] 83.09 82.21 100.00 69.14
IPGuard [Cao et al., 2021] 88.33 87.61 100.00 39.10
DeepFool [Wang and Chang, 2021] 88.33 87.61 100.00 51.52
FUAP [Peng et al., 2022] 88.33 87.61 100.00 44.64
Zheng et al. [Zheng et al., 2022] 88.33 87.61 100.00 46.87
Ours 88.33 87.61 100.00 100.00

Table 3: Model accuracy (ACC) and ownership recognition rate
(ORR) of AlexNet protected by different MOR methods against
frequency-based removal attack.

Next, we present the impact of modifying frequency do-
main coefficients on MOR. We examined various types of
MOR methods, including feature-based watermarking, deci-
sion boundary-based fingerprinting (represented by adversar-
ial samples, geometric characteristics, and UAP), and weight-
based fingerprinting. As shown in Table 3, these methods
exhibit a significant decrease in ownership recognition rates
after modifying high-frequency coefficients of the model.
This decline is due to two primary reasons: first, the high-
frequency components capture the finer details of the model,
which are critical to defining its decision boundaries. Altering
these high-frequency components shifts the decision bound-
aries, rendering decision boundary-based fingerprints ineffec-
tive. Second, changes in the high-frequency coefficients in-
troduce detailed adjustments that, upon inverse DCT trans-
formation, are distributed across all weights, causing global
alterations in model weights. This global shift in weights
invalidates weight-based ownership resolution methods. In
contrast, existing methods are typically effective only against
local changes, such as pruning or fine-tuning.

3.3 Removal Attack Design Details
Based on the above observations, we propose a model owner-
ship removal attack by modifying the high-frequency domain
coefficients. At the beginning, the attacker obtains the origi-
nal model M and sets the model’s high-frequency modifica-
tion ratio ratio and the high-frequency coefficient modifica-
tion value V . The attack is described in Algorithm 1, using
convolutional layers as an illustrative example. It mainly con-
sists of the following steps:
Calculate the DCT coefficient of the model weight. Extract
the 3D array corresponding to each convolutional kernel from
the convolutional layer f(x, y, z). These 3D arrays are then
transformed using 3D DCT, resulting in frequency domain
coefficients F (u, v, w).
Modify the high-frequency coefficient. In the DCT, the low-
frequency components are usually located at smaller index
positions, while the high-frequency components correspond
to larger index positions. Therefore, for each frequency do-
main coefficient F (u, v, w), it can be considered as a high-
frequency component when its index sum Si = ui + vi + wi

exceeds the preset threshold ratio× (nu + nv + nw), where
nu , nv and nw denote the number of input channels, height
and width of the filter. Subsequently, all high-frequency com-
ponents F (u, v, w) are set to the modified value V to obtain
the new frequency domain coefficients F ′(u, v, w).
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DCT IDCT

DCT

Identity 
Vector

Fingerprint Generation

Extract Frequency 
Domain Features

Model Frequency Domain Frequency Domain Model
(a) Frequency-based Removal Attack

Model Frequency Domain Fingerprint
(b) Frequency-based Fingerprinting Defense 

Modified High 
Frequency Coefficient

Figure 1: Frequency-based removal attack and fingerprinting defense.

Algorithm 1 Frequency-based Removal Attack

Input: Original model: M , Ratio of the modified high-
frequency coefficients: ratio, High-frequency coefficient
values after the attack: V

Output: Removal model: M ′

1: Extract the convolutional kernel f(x, y, z) from the front
convolutional layer of the original model M

2: for each kernel fi(x, y, z) ∈ f(x, y, z) do
3: Fi(u, v, w)← DCT(fi(x, y, z))
4: F ′

i (u, v, w)← ∅
5: for i ∈ [0, nu × nv × nw − 1] do
6: d, h, w ←

⌊
i

nv×nw

⌋
,
⌊

i
nw

⌋
mod nv, i mod nw

7: if d+ h+ w ≥ ratio× (nu + nv + nw) then
8: F ′

i (d, h, w)← V
9: else

10: F ′
i (d, h, w)← Fi(d, h, w)

11: end if
12: end for
13: f ′

i(x, y, z)← IDCT(F ′
i (u, v, w))

14: end for
15: Replace the original kernel with f ′(x, y, z) in the convo-

lutional layer to form the new model M ′

16: return M ′

Calculate model weights via inverse DCT. The modified
frequency domain coefficients F ′ are converted back to their
original spatial domain form through an inverse 3D IDCT
transform, resulting in new convolutional kernel parameters
f ′(x, y, z).

4 Frequency-based Fingerprinting Defense
Observations in Section 3.2 indicate that the low-frequency
components of model weights capture the model’s primary

features. Therefore, we propose extracting the model fin-
gerprint from the low-frequency coefficients of the model
weights. After training the model, the owner extracts the fin-
gerprint and registers it with a trusted third party (TTP). In
the event of an ownership dispute, the owner can extract the
fingerprint from the suspect model and verify it by compar-
ing the cosine similarity between the fingerprints of the sus-
pect and the victim models. A high cosine similarity would
suggest that the suspect model is a post-processed version of
the victim model. The owner could send the above proof to
the TTP to resolve ownership disputes. We assume that the
model owner has white-box access to both their own model
and the suspect model, or can obtain effective weight infor-
mation from the suspect model through existing side-channel
techniques. The proposed method comprises two main com-
ponents: fingerprint extraction and ownership verification.
Fingerprint Extraction: The model owner extracts the fin-
gerprint from their model by selecting a specific layer and
applying the DCT to convert it into the frequency domain.
The sum of the low and mid frequency components of these
frequency-domain coefficients is then taken as the model’s
frequency-domain feature. The owner then binds this feature
to their identity using random projection as an intermediary,
forming the model fingerprint.
Ownership Verification: The TTP verifies the ownership of
the suspect model. In the event of an ownership dispute, the
model owner submits the frequency-domain features of the
original model along with the suspect model to the TTP. The
TTP first checks whether the submitted frequency-domain
features match the owne’s registered fingerprint. It then eval-
uates the similarity between the fingerprints of the suspect
and original models to determine the model ownership.

4.1 Fingerprint Extraction
Before fingerprinting, the model owner trains a well-
performing model M and presets an ownership threshold T .
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T is the limit for judging the similarity between the pirated
model and the original model. The model owner generates
the model fingerprint through three steps: frequency domain
transformation, frequency domain feature extraction and fin-
gerprint generation.
Frequency Domain Transformation. Each convolutional
kernel in the model’s front (usually first) convolutional layer
f(x, y, z) undergoes a 3D DCT, generating the corresponding
frequency domain coefficients F (u, v, w).
Frequency Component Extraction. The low and mid-
frequency components can be filtered based on the position
of the indices. When the index sum Si = ui + vi + wi is
below the preset threshold (r × (nu + nv + nw)), the corre-
sponding components are extracted as effective components,
denoted as Fe. For each convolution kernel, the components
Fe are then combined to form a composite feature vector Ve.
Fingerprint Generation. To generate unique random finger-
prints, the extracted feature vector Ve is bound to the model
owner’s identity information. Specifically, a unique ran-
dom Bernoulli matrix U ∈ Rt×t0 is created using a pseudo-
random number generator and the model owner’s identity in-
formation (e.g., ID number or company entity number). Here,
t0 represents the length of the feature vector Ve, and t corre-
sponds to the length of the final generated fingerprint f . Next,
the matrix U is normalized to produce a random projection
matrix P , ensuring that each column of P is a unit vector.
This normalization follows the Johnson-Lindenstrauss (JL)
lemma [Dasgupta and Gupta, 2003], which guarantees the
preservation of relative distances between data points in the
lower-dimensional space. Finally, as described in Equation 1,
the DNN model’s feature vector Ve is projected onto the ran-
dom space defined by the matrix P , resulting in the finger-
print f . The model owner then submits the extracted finger-
print f to the TTP, which performs a timestamp verification
on the submitted fingerprint to ensure its validity.

f = VeP
T =

VeU
T

√
t

(1)

4.2 Ownership Verification
When it is necessary to verify the ownership of a suspicious
model, we can follow the above steps to compute the finger-
print of that model f ′. Subsequently, the computed finger-
prints are compared with the enrolled fingerprints in the TTP
database. In the comparison process, we use cosine similarity
as a measure, which is calculated as follows:

FS =
f · f ′

∥f∥∥f ′∥
=

∑n
i=1 fif

′
i√∑n

i=1 f
2
i

√∑n
i=1(f

′
i)

2
(2)

In this process, the fingerprint vector f and f ′ denote the
feature representations of the victim model and the suspect
model, respectively. A larger value of cosine similarity in-
dicates a higher match between the two fingerprints, thus in-
dicating a stronger similarity between these two models. If
the computed cosine similarity exceeds a preset threshold and
the timestamps in the TTP database show that the original
model was registered earlier than any of the suspicious mod-
els claimed to have been registered, it can be confirmed that
the suspicious model belongs to the original owner.

5 Evaluation
5.1 Setup
Datasets. We evaluate our approach on four popular image
classification datasets: MNIST [LeCun et al., 1998], Fash-
ion MNIST (FMNIST) [Xiao et al., 2017], CIFAR-10 and
CIFAR-100 [Krizhevsky et al., 2009].
Models. We evaluate our method in four different model
architectures: CNN with two convolutional layers, a max-
pooling layer, and two fully connected layers, AlexNet
[Krizhevsky et al., 2012], ResNet18 [He et al., 2016],
VGG16 [Simonyan and Zisserman, 2014]. We train inno-
cent models using the same dataset or model structure as the
original model, or using the same dataset and model but with
different initialization conditions, and apply removal attacks
to the original model to obtain pirated versions.
Baselines. To verify the effectiveness of fingerprinting de-
fense, we evaluate it with four classes of advanced model
fingerprint methods: (a) IPGuard [Cao et al., 2021] finds
data points close to the decision boundaries by optimiz-
ing the objective function; (b) Deepfool [Wang and Chang,
2021] uses geometric properties to find the minimum per-
turbation, so that the input point crosses the decision bound-
ary; (c) FUAP [Peng et al., 2022] represents decision bound-
ary by universal adversarial perturbations; (d) Zheng et al’s
method [Zheng et al., 2022] uses the weights of the model’s
front convolutional layers as a fingerprint.
Removal Attacks. We consider following model ownership
removal attacks: (a) Weight Pruning (WP): Prune the least
important p percent of weights in the target model, beginning
at 0.4 and increasing in increments of 0.1; (b) Filter Pruning
(FP): Prune the least significant q percent of weights in the
target model, starting at 1/16 and increasing in increments
of 1/16; (c) Fine-tuning-retrain (Retrain): All the parame-
ters of the target model are updated using the training data
with a smaller learning rate and the model is trained for 20
epochs; (d) Fine-tuning-transfer (Transfer): All the parame-
ters of the target model are updated using a different dataset
and the model is trained for 20 epochs; (e) Frequency-based
Removal: the 1/3 highest frequency coefficients of the model
weights modified to V using the proposed attack.

5.2 Result
Robustness. We evaluated the robustness of our scheme
against various attacks under different settings and compared
it with baseline approaches. As shown in Table 4, our scheme
maintains a model accuracy between 85.6% and 89.34%
when facing different types of removal attacks, and the fin-
gerprint recognition rates almost 100% are still maintained.
Additionally, both our fingerprinting method and baselines
effectively resist existing removal attacks. However, when
encountering the frequency-based removal attack, the finger-
print recognition rates of IPGuard, DeepFool, and UAPS drop
significantly. Due to the use of low-frequency features as
fingerprints in our scheme, modifications to high-frequency
coefficients do not impact fingerprint effectiveness. In con-
trast, we observed that the fingerprint recognition rate of the
baselines decreases as the degree of high-frequency coeffi-
cient modifications increases. This occurs because most high-
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Method Results Original WP FP Fine-tuning Frequency-based Removal
p=0.4 p=0.5 p=0.6 q=1/16 q=2/16 Retrain Transfer V =0.3 V =0.5 V =0.7 V =1

Init ACC (%) 88.33 88.41 88.41 88.35 87.31 85.60 89.34 - 88.02 88.05 87.87 87.61

IPGuard [Cao et al., 2021] FS (%) 100.00 97.40 96.80 95.30 86.10 78.00 79.50 - 72.00 63.20 54.10 39.10
DeepFool [Wang and Chang, 2021] FS (%) 100.00 98.59 97.11 95.67 89.60 82.44 81.16 - 77.80 72.70 63.23 51.52
FUAP [Peng et al., 2022] FS (%) 100.00 87.39 85.75 85.18 76.67 74.37 82.87 82.72 46.46 39.64 40.24 44.64
Zheng et al. [Zheng et al., 2022] FS (%) 100.00 99.99 99.99 99.99 99.08 97.84 99.99 99.95 83.33 70.91 59.65 46.87
Ours FS (%) 100.00 99.99 99.99 99.99 99.05 97.84 99.99 99.95 100.00 100.00 100.00 100.00

Table 4: Model accuracy and fingerprint similarity under different removal attacks compared with different model fingerprints.

Model Results Original WP FP Fine-tuning Frequency-based Removal
p=0.4 p=0.5 p=0.6 q=1/16 q=2/16 Retrain Transfer V =0.3 V =0.5 V =0.7 V =1

CNN ACC (%) 80.33 80.26 79.71 73.81 76.82 72.82 82.31 - 80.25 79.83 78.55 76.33
FS (%) 100.00 99.97 99.92 99.61 98.89 97.72 99.93 97.26 100.00 100.00 100.00 100.00

AlexNet ACC (%) 88.33 88.41 88.41 88.35 87.31 85.60 89.34 - 88.02 88.05 87.87 87.61
FS (%) 100.00 99.99 99.99 99.99 99.05 97.84 99.99 99.95 100.00 100.00 100.00 100.00

ResNet18 ACC (%) 85.94 83.25 78.67 71.09 24.81 10.23 88.54 - 84.15 84.38 84.86 85.29
FS (%) 100.00 99.99 99.97 99.95 99.41 98.67 99.98 99.98 100.00 100.00 100.00 100.00

VGG16 ACC (%) 90.20 90.21 90.19 90.26 89.46 86.99 92.43 - 89.80 89.61 89.61 89.60
FS (%) 100.00 99.99 99.97 99.99 99.62 99.45 98.98 99.94 100.00 100.00 100.00 100.00

Table 5: Model accuracy and fingerprint similarity of different models on CIFAR-10 under various attacks.

Dataset Results Original WP FP Fine-tuning Frequency-based Removal
p=0.4 p=0.5 p=0.6 q=1/16 q=2/16 Retrain Transfer V =0.3 V =0.5 V =0.7 V =1

CIFAR-10 ACC (%) 88.33 88.41 88.41 88.35 87.31 85.60 89.34 - 88.02 88.05 87.87 87.61
FS (%) 100.00 99.99 99.99 99.99 99.05 97.84 99.99 99.95 100.00 100.00 100.00 100.00

CIFAR-100 ACC (%) 60.65 60.74 60.83 60.56 58.82 54.41 64.67 - 60.39 60.30 60.19 59.84
FS (%) 100.00 99.99 99.99 99.99 99.33 98.51 99.98 99.97 100.00 100.00 100.00 100.00

MMIST ACC (%) 99.46 99.44 99.43 99.42 99.43 99.45 99.55 - 99.45 99.45 99.42 99.34
FS (%) 100.00 99.99 99.99 99.99 99.60 98.49 99.98 99.46 100.00 100.00 100.00 100.00

FMNIST ACC (%) 92.22 92.23 92.21 92.23 92.16 91.65 93.24 - 91.56 91.48 91.32 91.23
FS (%) 100.00 99.99 99.99 99.99 99.47 98.51 99.98 99.74 100.00 100.00 100.00 100.00

Table 6: Model accuracy and fingerprint similarity of AlexNet on different datasets under various attacks.

Selection Scale Results Original WP FP Fine-tuning Frequency-based Removal
p=0.4 p=0.5 p=0.6 q=1/16 q=2/16 Retrain Transfer V =0.3 V =0.5 V =0.7 V =1

Init ACC (%) 88.33 88.41 88.41 88.35 87.31 85.60 89.34 - 88.02 88.05 87.87 87.61

1/3 FS (%) 100.00 99.99 99.99 99.99 94.96 91.62 99.92 99.57 100.00 100.00 100.00 100.00
1/2 FS (%) 100.00 99.99 99.99 99.99 98.85 97.38 99.98 99.93 100.00 100.00 100.00 100.00
2/3 FS (%) 100.00 99.99 99.99 99.99 99.05 97.84 99.99 99.95 100.00 100.00 100.00 100.00
4/5 FS (%) 100.00 99.99 99.99 99.99 99.10 97.91 99.99 99.96 87.80 78.50 68.92 56.50
1 FS (%) 100.00 99.99 99.99 99.99 99.09 97.86 99.99 99.96 84.43 72.70 61.72 48.94

Table 7: Impact of frequency domain feature selection scale r on frequency-based model fingerprinting.

frequency coefficients are initially zero, and as the modifica-
tion values deviate further from zero, the model weights and
decision boundaries shift more, leading to a marked decline
in the baselines’ fingerprint recognition rates.

Table 5 and Table 6 present the accuracy and fingerprint
recognition rates of our method across different models and
datasets. The results show that under all attack scenarios,
our method consistently achieves a similarity of over 97%.
Specifically, in the FP attack scenario, even with the removal

of some convolutional kernels leading to partial loss of fin-
gerprint information, our method still maintains a fingerprint
recognition rate between 97.72% and 99.62%. This indicates
that FP operations on model weights do not invalidate our
frequency-based fingerprints, even with some kernel informa-
tion lost, the remaining fingerprint provides sufficient recog-
nition accuracy. Additionally, we observe that as model com-
plexity increases, the variations in model performance and
fingerprint similarity under the same attack conditions de-
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Figure 2: The effect of tampering with fingerprint frequency domain
coefficients on model performance (ACC) and fingerprint similarity
(FS).

crease. This can be attributed to differences in model struc-
tural complexity. Larger models typically exhibit higher pa-
rameter redundancy, meaning that the percentage of effective
parameters is relatively low. Due to the presence of redun-
dant parameters, the impact of attacks on model performance
becomes more distributed, allowing key model features and
fingerprint similarity to remain more stable under attack.

Table 7 illustrates the relationship between the range of
frequency-domain features extracted for fingerprints and the
fingerprint recognition rate. In our experiments, we se-
lected frequency-domain coefficients from low to high, rang-
ing from one-third up to all available coefficients, to generate
the model fingerprint. The results show that as the propor-
tion of selected frequency-domain coefficients (r) increases,
the overall similarity of the fingerprint also rises when facing
pruning and fine-tuning attacks. This indicates that includ-
ing more frequency-domain coefficients enhances fingerprint
stability and improves resistance to such attacks. However,
when encountering frequency-domain attacks targeting high-
frequency coefficients, the fingerprint similarity drops sig-
nificantly. Therefore, to achieve an optimal trade-off under
various removal attacks, we recommend selecting up to two-
thirds of the frequency-domain coefficients, focusing on low
and mid-frequency coefficients, for fingerprint extraction.

Adaptive attack. We simulated an adaptive attack sce-
nario in which an attacker, aware of our fingerprinting
method, attempts to make our frequency-based fingerprints
unrecognizable by altering the model’s frequency-domain
coefficients. Figure 2 presents the effects on model accu-
racy and fingerprint recognition rate when the attacker ran-
domly selects modification locations and alters the frequency-
domain coefficients to random values at various modification
rates. The results indicate that this adaptive attack leads to
a significant decline in model accuracy, rendering the model
unusable. For example, to reduce the fingerprint recognition
rate below 50%, the attacker would need to modify 40% of
the frequency-domain coefficients, resulting in a model accu-
racy drop to 31.69%.

Uniqueness. Even models trained with the same dataset
and architecture exhibit low similarity due to the non-convex
nature of the neural network loss function, where different
initializations lead to distinct local minima. Thus, models
trained independently on the same data should be considered
distinct. In Table 8, we compare the fingerprint similarity
(FS) of models trained independently on the same dataset

Original models Innocent models FS (%)
Dataset Model Dataset Model

CIFAR-10 CNN CIFAR-10 CNN 6.27
CIFAR-10 AlexNet CIFAR-10 AlexNet 2.51

Table 8: Fingerprint similarity between independently models.

Method Gen. Time(s) Ver. Time(s)

IPGuard [Cao et al., 2021] 293.723 0.656
DeepFool [Wang and Chang, 2021] 270.537 9.175
Zheng et al. [Zheng et al., 2022] 0.001 0.001
Ours 0.044 0.024

Table 9: Average time for generating and verifying fingerprints on
the CIFAR-10 dataset using four models.

or with identical architectures. The results show generally
low similarity, well below the threshold for detecting pirated
models, indicating a very low false-positive rate.

Efficiency. Table 9 presents the time usage for model
fingerprint extraction and verification. Compared to other
decision-boundary-based fingerprinting methods, our ap-
proach and that of Zheng et al. [Zheng et al., 2022] are highly
efficient, requiring only a few seconds of computation. This
efficiency comes from the fact that decision boundary-based
fingerprinting methods require adversarial sample training,
which incurs a substantial computational cost. Zheng et
al.’s method requires only model weight extraction, result-
ing in minimal computation overhead. However, it demon-
strates weaker robustness against frequency-domain removal
attacks. In contrast, our method involves converting the
model to the frequency-domain for extraction, introducing
additional DCT computation costs. Additionally, Table 9
demonstrates the efficiency of the proposed attack methods,
indicating that the computational costs of our removal attacks
and fingerprinting defenses are essentially negligible.

6 Conclusion

In this work, we propose a frequency-based model ownership
removal attack, which changes the decision boundary and
model weight by modifying the high-frequency coefficients,
making traditional watermarking and fingerprinting methods
ineffective with minimal impact on model accuracy. Addi-
tionally, we propose a robust defense mechanism based on
frequency-domain fingerprinting, which withstands the pro-
posed frequency-based attack and shows resilience against
other general removal attacks. Experimental results validate
the efficacy of our attack in erasing ownership indicators
while maintaining model performance and demonstrate the
robustness of our fingerprinting defense. Our method relies
on frequency domain conversion, applicable to models with
structured weights like CNN, ResNet, and LSTM. Its applica-
bility to architectures with less spatial or sequential structure
is limited. Extending our approach to support these models
will be future work.
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