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Abstract
Multivariate time series forecasting holds signifi-
cant theoretical and practical importance in various
fields, including web analytics and transportation.
Recently, graph neural networks and graph differ-
ential equations have shown exceptional capabili-
ties in modeling spatio-temporal features. How-
ever, existing methods often suffer from over-
smoothing, hindering real-world problem-solving.
In this work, we analyze the graph propagation
process as a dynamical system and propose a
novel feedback mechanism to enhance represen-
tation power, adaptively adjusting the representa-
tions to align with desired performance outcomes,
thereby fundamentally mitigating the issue of over-
smoothing. Moreover, we introduce an effective
multivariate time series forecasting model called
SF-GDE, based on the proposed graph propagation
with the feedback mechanism. Intensive experi-
ments are conducted on three real-world datasets
from diverse fields. Results show that SF-GDE
outperforms the state of the arts, and the feedback
mechanism can serve as a universal booster to im-
prove performance for graph propagation models.

1 Introduction
In the Internet of Things era, multivariate time series forecast-
ing remains a key focus within practical applications, includ-
ing monitoring of web traffic [Casado-Vara et al., 2021] and
detection of air quality [Yi et al., 2018]. Among these appli-
cations, multivariate time series data can be viewed as a com-
bination of univariate time series recorded on each sensor in a
sensor network, which can be interconnected and influenced
by each other. Typically, these data can valuably reflect the
evolutionary processes, anomalous phenomena, emergent be-
haviors, and other features of the complex system [Cui et al.,
2024]. Therefore, modeling and predicting multivariate time
series is essential for forecasting future states, understanding
the evolution of complex phenomena, and regulating intricate

∗Corresponding Author

systems. For example, accurate traffic flow predictions can
enhance travel and commute efficiency [Long et al., 2024].

As the underlying complex spatio-temporal correlations,
multivariate time series forecasting has always been a no-
toriously challenging task [Dong et al., 2021]. Traditional
statistical models [Box et al., 2015] frequently rely on strin-
gent mathematical assumptions, such as linear correlation,
or require extensive manual feature engineering, making it
difficult to be satisfied when facing real-world data. The
current deep learning models have shown promising poten-
tial in capturing nonlinear temporal and spatial patterns, ow-
ing to their sophisticated data representation and modeling
[Dong et al., 2021]. Although recurrent neural networks
(RNNs) [Wang et al., 2023; Greff et al., 2017], convolutional
neural networks (CNNs) [Li et al., 2021], and transformers
[Vaswani et al., 2017; Zhou et al., 2021a; Wu et al., 2021a;
Zhang and Yan, 2023; Liu et al., 2024] are often used to
model nonlinear temporal features, they fail to explicitly ex-
ploit the noteworthy interdependencies among variables.

To effectively capture spatial dependencies, the current ap-
proaches are mainly built on graph neural networks (GNNs)
[Wu et al., 2019a; Song et al., 2020; Gao et al., 2022]. They
utilize the adjacency matrix to characterize the correlations
among variables and mainstream message passing mecha-
nisms to simulate dynamic dependencies, showcasing sub-
stantial promise in modeling multivariate time series. In addi-
tion to topology learning [Wu et al., 2020], the limitations of
discrete modeling [Jin et al., 2022] and performance degra-
dation caused by over-smoothing [Chen et al., 2020] are also
challenges in multivariate time series forecasting. As we
know, increased GNN layers enhance modeling power, but
they risk over-smoothing, where the embeddings of all nodes
tend to be consistent as the number of GNN layers increases,
resulting in indistinguishable personalized features, thereby
failing to improve the performance of time series forecast-
ing compared to shallower models [Zhou et al., 2021b]. Al-
though deep GNNs with several effective training tricks, e.g.,
adding residual connections, regularization, and normaliza-
tion, can be increased to dozens of GNN layers, partially
alleviating over-smoothing, their gains are not always con-
sistent nor significant [Li et al., 2023]. In contrast to the
discrete nature of graph propagation, graph differential equa-
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tions (GDEs), which integrate graph neural networks (GNNs)
and ordinary differential equations (ODEs), are seen as a con-
tinuous extension of graph propagation, allowing for infinite
layers [Jin et al., 2023; Fang et al., 2021]. However, due to
the fact that the message passing is an uncontrolled one-way
process that is not affected by the output, there is still a risk
of reaching a stable state, where all embeddings become con-
sistent [Rusch et al., 2023]. Therefore, how to address this
and improve the actual performance in multivariate time se-
ries forecasting remains unresolved.

Inspired by automatic control theory, in this work, we pro-
pose a novel message passing mechanism to enhance the
GDEs. Specifically, we consider the message passing process
in graph networks or GDEs as a dynamical system and intro-
duce the state feedback mechanism to adjust its state. Open-
ing up a feedback pathway for the message passing process
can essentially avoid over-smoothing and adaptively control
the system to learn the goal-oriented hidden representations.
Built on this, we propose an effective multivariate time series
forecasting model by integrating variable relationship con-
struction and nonlinear spatio-temporal modeling.

The main contributions are summarized as follows:
• We introduce a novel message passing mechanism,

drawing inspiration from automatic control theory, to
address over-smoothing by incorporating learnable feed-
back. To our knowledge, this is the first work to analyze
the GDEs from a control theory perspective and intro-
duce state feedback to enhance the representation power.

• Based on the linear and non-linear implementations
of the proposed mechanism, we introduce the State
Feedback enhanced Graph Differential Equations (SF-
GDE) to effectively model multivariate time series.

• Extensive experiments are conducted on various real-
world datasets from atmospheric and traffic fields,
demonstrating the effectiveness of the SF-GDE with su-
perior results compared to the state of the arts. The feed-
back mechanism can act as a universal booster to im-
prove performance in graph propagation models.

2 Related Work
Nowadays, deep learning models have shown promising po-
tential to capture nonlinear temporal and spatial patterns
[Dong et al., 2021]. Recurrent neural networks (RNNs)
[Wang et al., 2023; Greff et al., 2017], convolutional neu-
ral networks (CNNs) [Li et al., 2021], and transformers
[Vaswani et al., 2017; Zhou et al., 2021a; Wu et al., 2021a;
Zhang and Yan, 2023; Liu et al., 2024] are often used to
model nonlinear temporal characteristics in time series. How-
ever, due to their discrete modeling, the inevitable accumula-
tion of errors damages the models’ predictive performance.
Although the ordinary differential equations (ODEs) [Chen
et al., 2018] can be combined with the above models, such
as ODE-LSTMs [Lechner and Hasani, 2020], to model the
continuous evolution of time series, they still fail to explicitly
exploit the noteworthy interdependencies among variable.

To effectively represent multivariate time series, it is neces-
sary to carefully model the spatial interactions among time se-
ries, bringing the following two challenges [Wu et al., 2020]:

effective modeling of spatial dependencies and message pass-
ing. For the former, early work constructs the adjacency ma-
trix by the physical distances and similarities between ob-
servation locations of time series data [Bruna et al., 2014;
Defferrard et al., 2016; Huang et al., 2020], causing pos-
sible inconsistencies with the underlying interdependencies
among variables in practical applications [Wu et al., 2021b;
Zhou et al., 2020]. Although the data-driven graph con-
struction algorithms can directly learn potential spatial re-
lationships from data [Bai et al., 2020; Hu et al., 2023],
there is still no consensus on an effective and efficient graph
construction method. For message passing, the current ap-
proaches are mainly built on graph neural networks (GNNs)
[Wu et al., 2019a; Song et al., 2020; Gao et al., 2022] to
simulate dynamic dependencies, demonstrating great poten-
tial in modeling multiple time series. To improve the per-
formance of time series forecasting, more GNN layers are
added to the model [Zhou et al., 2021b], but this brings
about the problem of over-smoothing, resulting in indistin-
guishable personalized features. To alleviate over-smoothing,
several effective training tricks, e.g., adding residual connec-
tions, regularization, and normalization, are used to increase
the depth of GNNs [Liu et al., 2021; Zhou et al., 2021b;
Li et al., 2023]. However, their gains are not always consis-
tent nor significant [Li et al., 2023]. Graph differential equa-
tions (GDEs), which combine GNNs and ordinary differential
equations (ODEs), can extend discrete finite layers to theo-
retically continuous infinite GNN layers [Fang et al., 2021;
Jin et al., 2023]. Since the message passing process in GDEs
is not affected by external factors, these models still risk
reaching a stable state, where all embeddings become consis-
tent [Rusch et al., 2023]. Therefore, it is still important and
urgent to address this risk for improving the practical perfor-
mance of multivariate time series forecasting.

Despite the emergence of many time series foundation
models that have shown excellent performance in a wide
range of tasks, such as TimeGPT [Garza and Mergenthaler-
Canseco, 2023], they are short of clear modeling of spatial de-
pendencies and typically require a large amount of data and
computing resources, making it hard to deploy to edge de-
vices, which is essentially different from the lightweight time
series algorithms, as considered in this work.

3 A Novel Message Passing Mechanism
Inspired by the State Feedback

Inspired by the state feedback in automatic control theory,
we propose a new message passing mechanism with learn-
able feedback to avoid reaching the steady state of over-
smoothing, thereby enhancing the model performance.

3.1 State Feedback
In automatic control theory, state feedback is proposed for a
dynamical system [Gopal, 1993]. It effectively uses the in-
ternal characteristics of the system, ultimately enhancing its
stability and performance [Berberich et al., 2020].
Definition 1. (State feedback) Given a linear dynamical sys-
tem formalized by the ODEs: ẋ = Ax + Bu, y = Cx, and a
linear control law of state feedback, i.e., u = −Mx + Lv, we
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Figure 1: System diagrams of the GDE (a), GDE with the linear
state feedback (b), and GDE with the nonlinear feedback (c).

can derive a closed-loop system with state feedback as [Lunze
and Lehmann, 2010]:

ẋ = (A − BM)x + BLv, y = Cx, (1)

where u is the system input, x is the system state, ẋ is the
differential of state over time, y is the system output, A is the
system matrix representing the system operation mechanism,
B and L are the control matrices, C is the output matrix, M
is the state feedback matrix, and v is the reference input.

Compared to the original open-loop system, where the
input is unaffected by the output, the closed-loop system
formed by introducing feedback can freely change the system
eigenvalues by modifying M without increasing the state di-
mension, thus achieving the required system performance. As
a control method that embodies the characteristics of modern
control theory, state feedback plays a crucial role in adjust-
ing the system state, and enhancing system transparency and
real-time feedback control [Houde and Nagarajan, 2011].

3.2 State Feedback Inspired Continuous Graph
Propagation

We introduce the state feedback mechanism to GDEs to en-
hance the representation power while suppressing the occur-
rence of feature over-smoothing. We consider a simplified
graph propagation [Wu et al., 2019a; Jin et al., 2023], which
eliminates redundant nonlinearities and decouples the feature
propagation and transformation steps, resulting in a simpler
structure and more efficient computation that can be deployed
on edge devices while still achieving comparable accuracy.
Proposition 1. By removing nonlinearity, simplified continu-
ous graph propagation can be viewed as a dynamical system:

dHk
dk = ÂHk + uB, Hout

k = HkWk, (2)

where Hk ∈ Rn×d is feature matrix, n is the number of nodes,
d is feature dimension, Â = Ã + I, Ã ∈ Rn×n is normalized
adjacency matrix, Hout

k ∈ Rn×d is output representations,
Wk ∈ Rd×d is trainable parameter matrix, B ∈ Rd×d is
control matrix, and u ∈ Rn×d is system input.

Figure 1(a) shows its system structure. Note that the cur-
rent GDE methods [Jin et al., 2023] usually set uB to be equal
to 0, which means it forms an uncontrolled open-loop system

without external input, leading to the possibility of the system
reaching an undesired over-smoothing steady state. Thus, we
hope to introduce external input and state feedback to break
the steady state and make the system achieve satisfactory per-
formance. Since the system in Proposition 1 is completely
observable (Please refer to Appendix A for the guarantee),
meaning that the internal system state Hk can be obtained,
we can establish its corresponding state feedback system.
Proposition 2. Given a control law of state feedback, i.e.,
u = −HkM + vL, the closed-loop feedback system corre-
sponding to the simplified continuous graph propagation in
Proposition 1 is as:

dHk
dk = ÂHk − HkMB + b, Hout

k = HkWk, (3)

where Â = Ã + I, b = vLB, B ∈ Rd×d is the control matrix,
Wk ∈ Rd×d is the trainable parameter matrix, M ∈ Rd×d

is the state feedback matrix, v ∈ Rn×d is the reference input,
and L ∈ Rd×d is the control matrix for v.

Its system structure is shown in Figure 1(b). Note that, if
B is 0, the system (3) in Proposition 2 degenerates into the
linear GDE methods [Jin et al., 2023]. That is, the original
simplified continuous graph propagation is a special case of
the proposed feedback system. Actually, ÂHk can be viewed
as the interactions with neighbors and HkMB as the evo-
lution of variables themselves, which is similar to the gen-
eral form of network dynamics [Barzel and Barabási, 2013;
Cui et al., 2024]. If there are external factors such as weather,
i.e., the input v exists, we can learn the parameter matrix L.
Otherwise, we assign L to 0 to ignore the influence of v. If not
specified, we set L = 0 in our settings. Thus, we can achieve
satisfactory performance by adjusting the parameter matrices
(B, M, and Wk) to control the model. From the first part in
Eq. 3, we see that its right-hand side consists of three parts,
i.e., feature convolution (ÂHk), linear state negative feedback
(−HkMB), and a bias term. Naturally, we transform the lin-
ear state feedback part into a nonlinear one to improve the
practicality, as shown in Figure 1(c).
Proposition 3. For a linear feedback system, its nonlinear
extension of the continuous graph propagation can be:

dHk
dk = ÂHk − ffeedback(Hk) + b, Hout

k = HkWk, (4)

where ffeedback is a nonlinear neural network.

4 SF-GDE: Proposed Model for Multivariate
Time Series Forecasting

Based on the proposed graph propagation mechanism, we
introduce the State Feedback enhanced Graph Differential
Equations (SF-GDE) for multivariate time series forecasting.

4.1 Overview of the Proposed Model
The overall process of the SF-GDE can be divided into five
steps, as shown in Figure 2(a). Step 1 is to learn the spatial
topological structure A that characterizes the dependency pat-
terns between multiple time series. Step 2 is to learn the initial
spatial representations from historical multiple time series to
enable subsequent graph propagation, i.e., HS

0 and HS
1. Then,
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Figure 2: (a) Overall process of the proposed SF-GDE. (b) Encoder: learning the spatial topological structure, i.e., A and the initial spatial
representations from historical multiple time series (X) to enable subsequent graph propagation, i.e., HS

0 and HS
1. (c) Spatial GDE: capturing

spatial features and obtaining the final spatial representations, i.e., Hout
K−1 and Hout

K . (d) Temporal NDE: capturing temporal features and
getting the hidden representations at any time t, i.e., HT

t . (e) Decoder: decoding the final predictive state at any future time, i.e., X̂t.

based on the learned topological structure, Step 3 is to per-
form message passing for capturing spatial features and ob-
taining the final spatial representations, i.e., Hout

K−1 and Hout
K .

Built on spatial representations, Step 4 is to capture tempo-
ral features and get the hidden representations at any time t,
i.e., HT

t . Step 5 is to output the predictive state at any future
time, i.e., X̂t. Note that the above five steps constitute four
main modules, i.e., an encoder, spatial information propaga-
tion, temporal dynamic evolution, and a decoder.

4.2 Encoder

To model the implicit topological structure for multivariate
time series, we assign a learnable embedding vector, i.e.,
ei ∈ Rde , to each variable i, where de is the embedding di-
mension, and then construct the spatial topological patterns
by calculating the cosine distance between variables, i.e, A,
where Aij = (ei × eTj )/(∥ei∥ × ∥ej∥) represents the connect-
ing weight between variables i and j, and n is the number of
variables. The cosine distance is commonly used and effec-
tive for measuring the correlation between variable features.
This simple way can efficiently reduce computational com-
plexity compared to directly calculating the similarities be-
tween high-dimensional historical time series, whose length
is usually much greater than de. Due to the importance of
having good initial values for solving differential equations,
we transform historical time series to construct initial repre-
sentations (see Figure 2(b)) by HS

0 = XW0,HS
1 = AXW1,

where, X ∈ Rn×l represents the historical multivariate time
series, HS

0 ∈ Rn×dh and HS
1 ∈ Rn×dh are the initial rep-

resentations after transformation, l is the length of historical
time series, dh is the dimension of initial representations, and
W0,W1 ∈ Rl×dh are learnable weights.

4.3 Spatial GDE With the State Feedback
To overcome the over-smoothing, we build a spatial GDE
based on the proposed continuous graph propagation with
learnable feedback mechanism to capture spatial character-
istics of multivariate time series (Figure 2(c)).

Implementation of the linear state feedback: Based on
Proposition 2, ignoring the bias term, we can create the con-
tinuous graph propagation process with linear feedback as:
dHS

k
dk = ÂHS

k − HS
k MB, where HS

k is the spatial representa-
tion at propagation layer k. Â = Ã + I, Ã ∈ Rn×n is the
normalized adjacency matrix calculated from A, B ∈ Rdh×dh

and M ∈ Rdh×dh are the trainable weights.
Implementation of the nonlinear state feedback: In the

face of more complex scenarios, we propose a practical non-
linear implementation based on Proposition 3 as: dHS

k
dk =

ÂHS
k − ffeedback(HS

k ), where ffeedback is a neural network.
Integral approximation of continuous graph propaga-

tion: By solving the initial value problem (IVP), we can
obtain the spatial representation at any continuous layer K

as: HS
K = HS

0 +
∫K

0
fS(HS

k )dk, where HS
0 is an ini-

tial representation obtained from the encoder, fS(HS
k ) =

ÂHS
k − HS

k MB for linear implementation and fS(HS
k ) =

ÂHS
k − ffeedback(HS

k ) for nonlinear implementation. Due
to complex neighbor interactions and nonlinearity, deriving
its closed-form solution is usually intractable. Therefore, in
principle, any ODE solver can be used to approximate the
integral. To achieve a balance between computational effi-
ciency and approximation accuracy, we empirically choose
the Predictor-Corrector method [Abramowitz and Stegun,
1964] for numerically approximating the integral: HS

k+∆k =

HS
k + ∆k

2 [fS(HS
k ) + fS(HS

k−∆k + 2∆kfS(HS
k ))], where

∆k is the difference between continuous layers. Note that
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in this nested form, the representation of the current step,
i.e., HS

k+∆k, is calculated through a nonlinear transforma-
tion of the representations of the previous two steps, i.e., HS

k

and HS
k−∆k. We thus can use the HS

0 and HS
1 obtained from

the encoder to initiate the iterative process to obtain the spa-
tial representation HS

K . See Appendix B.1 for the detailed
derivation. Then, the final spatial representation produced by
the linear or nonlinear graph propagation can be calculated as
Hout

K = HS
KWK , where WK ∈ Rdh×dh is the weights.

4.4 Temporal NDE for Dynamic Evolution
Built on spatial representations, we introduce a temporal neu-
ral differential equation (NDE) to capture the temporal char-
acteristics of the dynamic evolution of multivariate time se-
ries, as shown in Figure 2(d). We define the dynamic evo-
lution process as: dHT

t

dt = fT (HT
t ), where HT

t is the hid-
den temporal representation at time t and fT represents the
learnable evolution mechanism. Given the initial temporal
representation, i.e., HT

0 , we can obtain the hidden temporal
representation at any time t as: HT

t = HT
0 +

∫ t

0
fT (HT

τ )dτ.
We also use the Predictor-Corrector method [Abramowitz
and Stegun, 1964] to approximate the intractable integral as:
HT

t+∆t = HT
t + ∆t

2 [fT (HT
t ) + fT (HT

t−∆t + 2∆tfT (HT
t ))],

where ∆t is the integration interval. Note that the tempo-
ral representation at future time t + ∆t, i.e., HT

t+∆t, can be
obtained by iterative calculations of the previous two steps,
i.e., HT

t and HT
t−∆t. To initiate iterative computation, we

set the outputs from the spatial GDE as the first two steps,
i.e., HT

0 = Hout
K−1 and HT

1 = Hout
K . After m iterations,

we can obtain the temporal representations in the future as
HT

t+∆t:t+m∆t ∈ Rn×m×dh . See Appendix B.2 for the de-
tailed derivation.

4.5 Decoder
The decoder receives the future hidden representations
HT

t+∆t:t+m∆t from the temporal NDE, and then performs de-
coding operations to restore it to the original space of the
time series as: X̂t+∆t:t+m∆t = fDe(H

T
t+∆t:t+m∆t), where

X̂t+∆t:t+m∆t ∈ Rn×m is the predictions for multivariate time
series and fDe is a decoder, parameterized by an LSTM fol-
lowed by a linear layer (see Figure 2(e)).

4.6 Loss Function
To learn the parameters in each module of SF-GDE, we
design a loss function with a stability penalty as follows:
L = Lpred + βLstable, where Lpred is the prediction error
between predictions and ground truth, Lstable is a stability
penalty, and β is a penalty coefficient. Specifically, we choose
the commonly used mean square error as empirical risk, i.e.,
Lpred = 1

nm

∑n
i=1

∑m
j=1 (Xi,j − X̂i,j)

2
, where n is the num-

ber of variables, m is the length of time series to be predicted,
and Xi,j and X̂i,j are the ground truth and prediction of vari-
able i at step j, respectively. The most important feature of
the dynamical system in the SF-GDE is its stability, as an
unstable system cannot complete the expected control tasks
[Erichson et al., 2019]. We, thus, add a stability penalty to

the loss function to ensure the effectiveness of the SF-GDE.
Here, we focus on Lyapunov’s second method [Cunningham,
1962] to measure stability, which is applicable to nonlinear
systems that are difficult to solve. The following two main
conditions need to be considered: 1) The dynamical system
has an equilibrium at the origin, i.e., f(0) = 0, where f is a
differential equation. 2) We choose a quadratic scalar equa-
tion as the Lyapunov function to ensure its positive definite,
i.e., V(x1:p) = x21+, . . . ,+x2

p, where x1:p is an p-dimensional
vector, and its derivative should satisfy negative definite, i.e.,
V̇ < 0. Therefore, we can construct the stability penalty
based on the above conditions as: Lstable = (fS(0))2 +

(fT (0))2+
∑

k σ(
∂V(HS

k)
∂k +ξ, 0)+

∑
t σ(

∂V(HT
t )

∂t +ξ, 0), where
fS is the differential equation in spatial GDE, fT is the differ-
ential equation in temporal NDE, σ(.) = ReLU(.), ∀k ≥ 0,
∀t ≥ 0, and ξ > 0. In implementation, we sample the k and
t of intermediate states. Note that the larger ξ is, the more
strictly negative definite V̇ is. The computational complexity
analysis of our model can be found in Appendix C.

5 Experiment
We test the SF-GDE1 on four real-world datasets in various
fields, including air quality, climate, and transportation, to an-
swer the following questions: 1) Can the proposed SF-GDE
bring performance improvement to multivariate time series
forecasting in practical applications? 2) What factors in the
SF-GDE have an impact on performance? 3) Can the pro-
posed continuous graph propagation with the state feedback
mechanism boost more nonlinear GDEs?

Task description. We perform multivariate time series
forecasting tasks using l historical steps to predict the next
1 to m steps, i.e., Xt−l+1:t ∈ Rn×l → X̂t+1:t+m ∈ Rn×m.
We set l and m to 5 and 10 respectively.

Datasets: Seoul PM2.5 dataset2 contains PM2.5 concen-
tration data collected from 25 locations from 2017 to 2019,
where the data collection interval is 1 hour. PEMS04 traffic
flow dataset [Song et al., 2020] contains the traffic flow of
307 locations over 59 days, with a 5-minute interval between
records. Beijing temperature dataset 3 collects the temper-
ature data from 18 regions in Beijing, China, from January
30th, 2017 to January 30th, 2018 with a sampling frequency
of once an hour. A large-scale Traffic dataset [Wu et al.,
2021a] contains the taffic flow of 862 locations over 61 dayse,
with the same records interval as PEMS04. The division of
the training, validation, and testing sets follows 6:2:2.

Baselines: We select nine representative and cutting-edge
methods for comparison, which can be divided into four
groups: CNN/RNN-based methods, i.e., LSTNet [Lai et al.,
2018], GNN-based methods, i.e, Graph WaveNet [Wu et al.,
2019b] and STGCN [Song et al., 2020], GDE-based meth-
ods, i.e., STGODE [Fang et al., 2021], TG-ODE [Gravina et
al., 2024], and STDDE [Long et al., 2024], and transformer-
based methods, i.e., Autoformer [Wu et al., 2021a], Cross-

1Our source code and the accompanying appendices can be
found at https://github.com/QipengW/SF-GDE.

2www.kaggle.com/datasets/bappekim/air-pollution-in-seoul
3https://biendata.com/competition/kdd2018
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Models Metrics Seoul PM2.5 Dataset PEMS04 Dataset Temperature Dataset Average ranking1 4 7 10 1 4 7 10 1 4 7 10

LSTNet RMSE 2.49 2.90 3.43 4.13 34.95 42.98 50.39 57.10 1.40 4.16 6.07 7.26 8.25
MAE 2.18 2.39 2.49 2.77 23.12 28.90 34.29 39.39 1.00 3.36 4.96 5.89 8.25

Graph WaveNet RMSE 0.31 1.03 2.04 3.09 25.52 28.63 43.89 61.33 4.68 4.89 6.64 7.27 5.92
MAE 0.24 0.79 1.54 2.25 18.54 20.66 31.02 44.65 3.63 3.86 5.34 6.01 6.08

STGCN RMSE 2.71 2.82 3.01 3.30 33.41 37.27 41.69 45.95 2.45 4.60 6.48 6.62 7.00
MAE 2.02 2.14 2.28 2.56 21.35 24.26 27.70 31.18 1.82 3.46 4.92 5.15 6.42

STGODE RMSE 1.34 1.49 2.26 3.33 31.48 37.33 44.14 51.47 3.66 5.34 6.92 7.63 7.67
MAE 0.92 1.00 1.58 2.40 21.39 25.38 30.35 36.01 2.65 4.37 5.84 6.40 7.50

TG-ODE RMSE 0.21 1.13 2.21 3.42 29.82 37.90 45.87 53.67 1.22 4.23 6.57 7.44 6.17
MAE 0.15 0.82 1.61 2.51 18.84 24.86 30.95 36.97 0.91 3.59 5.77 6.33 6.25

STDDE RMSE - - - - 33.34 35.54 39.49 43.55 - - - - 5.25
MAE - - - - 21.95 23.51 26.55 29.75 - - - - 5.50

Autoformer RMSE 1.86 2.05 2.57 3.01 24.98 26.74 42.42 63.33 4.66 5.11 5.94 6.61 5.83
MAE 1.25 1.48 1.66 2.02 18.31 19.62 28.88 46.21 3.67 4.14 4.69 5.24 6.42

Crossformer RMSE 0.51 0.84 2.61 3.56 34.42 36.47 39.07 43.37 4.19 5.19 5.68 6.61 5.83
MAE 0.42 0.64 2.07 2.88 25.48 26.68 27.82 32.63 3.01 4.12 4.44 5.28 6.92

iTransformer RMSE 2.18 2.33 2.74 2.92 28.77 35.54 40.17 47.44 4.00 4.36 5.67 6.60 5.33
MAE 1.27 1.37 1.60 1.82 20.43 22.83 26.54 32.16 3.02 3.36 4.41 5.23 4.83

SF-GDEl
RMSE 0.22 0.87 1.78 2.79 29.48 34.15 38.74 42.93 2.51 3.64 5.62 6.53 2.42
MAE 0.14 0.60 1.25 1.98 18.10 21.70 24.98 28.05 1.57 2.81 4.36 5.10 1.92

SF-GDEnl
RMSE 0.45 0.93 1.80 2.75 29.81 33.79 37.83 41.88 2.49 3.80 5.46 6.32 2.33
MAE 0.29 0.64 1.26 1.93 18.23 21.43 24.33 27.33 1.63 2.92 4.24 4.93 2.08

Table 1: Comparison of accuracy of 1,4,7,10-step ahead prediction on three real-world datasets. The predictive Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) are reported. The best results are bolded, while the second-best results are underlined.

Models 1-th step 3-th step 5-th step 7-th step 10-th step
STGCN 0.0255 0.0312 0.0351 0.0382 0.0401
TG-ODE 0.0250 0.0305 0.0352 0.0359 0.0364

Autoformer 0.0153 0.0182 0.0279 0.0347 0.0472
SF-GDEl(ours) 0.0112 0.0189 0.0221 0.0233 0.0242

SF-GDEnl(ours) 0.0109 0.0185 0.0220 0.0234 0.0238

Table 2: Predictive error (MAE) on the large-scale Traffic dataset
at the 1,3,5,7,10 step ahead. The best results are bolded, while the
second-best results are underlined.

former [Zhang and Yan, 2023], and iTransformer [Liu et al.,
2024]. SF-GDEl and SF-GDEnl are respectively denoted as
linear and nonlinear implementations of our proposed mech-
anisms. More settings can be found in Appendix D.

5.1 Performance Comparison
From Table 1, we see that as the future time steps that need
to be predicted become longer, the model performance shows
a decreasing trend, which means that medium- and long-term
predictions are more difficult than short-term. The LSTNet
has the worst performance mainly due to the lack of effective
modeling of spatial features. By explicitly modeling spatial
patterns, GNN-based and GDE-based methods have advan-
tages in predicting multivariate time series, with an average
ranking of around 5 to 7. Due to the fact that the STDDE
is specifically designed for traffic flow forecasting and intro-
duces delay estimation that requires the use of a road network,
we only compared it on the PEMS04 traffic flow dataset. The
transformer-based methods have good results in short-term
prediction, i.e., making predictions within the next 5 steps,
but perform poorly in long-term prediction, i.e., making pre-

dictions beyond the next 5 steps. In comparison, the linear
implementation of state feedback, i.e., SF-GDEl, performs
well in short-term prediction, while non-linear implementa-
tion, i.e., SF-GDEnl, has a significant performance improve-
ment in long-term prediction, mainly because the real-world
datasets often have strong nonlinear characteristics and non-
linear feedback can facilitate adaptive learning to more suit-
able representations. Overall, our SF-GDEs have the best
performance, with an average ranking of around 1 to 2, far
surpassing others, demonstrating that the introduction of the
state feedback brings a good theoretical basis and can ef-
fectively improve performance. The comparison results on
large-scale Traffic dataset also have the same observations
(see Table 2). From Figure 3, we see that the predicted
trends of all methods are close to the ground truth, but as the
prediction steps increase, the distributions of predictive er-
rors for the iTransformer and TG-ODE gradually show heavy
tails and their means have shifted, indicating an increase in
errors and the emergence of model prediction bias. Mean-
while, distributions of predictive errors from ours still form
normal distributions, demonstrating that they work normally.
The zoomed subplots in Figure 3 shows that, the longer the
prediction step, the more local predictive bias will occur in
the SF-GDEl. That is, some local trends will be opposite to
the ground truth. By comparison, SF-GDEnl maintains con-
sistency with truth, demonstrating the potential of nonlinear
implementation of state feedback in practical applications, es-
pecially for long-term prediction. Additional analyses of re-
sults and baseline comparisons with consistent conclusions,
including T-Mixer [Wang et al., 2024], M-TCN [Luo and
Wang, 2024], and P-former [Chen et al., 2024], can be found
in Appendices E.1 and E.2.
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Figure 3: Traffic flow on the first sensor in California for 1-step (a), 5-step (b), and 10-step (c) ahead prediction.

Figure 4: (a) Ablation experiment for main modules in the architec-
ture of the SF-GDE. (b) Ablation experiment for spatial GDE.

Figure 5: The cosine similarity matrix of node features after 7 mes-
sage passing steps on the Beijing temperature dataset.

5.2 Ablation Experiment
To analyze the rationality behind our SF-GDE, we conducted
ablation validation on the main modules, including the initial
spatial representation learning (Step 2), spatial GDE with the
state feedback (Step 3), temporal NDE for dynamic evolution
(Step 4), and Lyapunov stability penalty in the loss function.
From Figure 4(a), we see that our SF-GDE outperforms the
variants, demonstrating the effectiveness of the design of the
main modules in the architecture. From Figure 4(b), our SF-
GDE has smaller errors compared to other shallow and deep
GNN variants. Moreover, the spatial GDE with the state feed-
back in our SF-GDE demonstrates more discriminative rep-
resentations after multiple rounds of graph propagation (see
Figure 5 and Appendix E.3), effectively overcoming over-
smoothing. We also validated model tolerance for noisy and
missing data on a synthesized Lorentz system, and the results
show that ours have stronger robustness (see Appendix E.4).

5.3 Boosting Nonlinear GDEs
The proposed feedback mechanism mainly focuses on the
simplified linear GDE. Here, we propose a more general form
that applies to a wider range of nonlinear GDEs to verify its

Models GCN GDEGCN SF-GDEGCNl SF-GDEGCNnl

RMSE 159.01(0.02) 39.82(6.17) 39.30(6.04) 38.77(5.87)
MAE 130.06(0.03) 26.35(4.56) 25.89(4.32) 25.50(4.33)

Models GIN GDEGIN SF-GDEGINl SF-GDEGINnl

RMSE 40.70(6.59) 40.27(6.80) 40.21(6.71) 40.19(6.81)
MAE 27.22(5.00) 26.84(5.24) 26.52(4.95) 26.62(5.17)

Table 3: Comparison of mean (standard deviation) of predictive er-
rors from nonlinear GDEs on the PEMS04 dataset. The best results
are bolded, while the second-best results are underlined.

applicability. For the linear feedback, we adopt the follow-
ing extension: dHS

k /dk = GNN(A,HS
k ) − HS

k MB, and for
the nonlinear feedback, we use the following graph propaga-
tion: dHS

k /dk = GNN(A,HS
k )−ffeedback(H

S
k ), where GNN

can be any graph neural network, such as GCN and GIN.
Let GDEGCN and GDEGIN respectively denote the nonlinear
GDEs propagated using GCN and GIN. The methods with
subscript l introduce linear feedback implementation, while
those with subscript nl add nonlinear feedback implementa-
tion. Table 3 shows that methods with feedback mechanisms
perform best, demonstrating that the feedback path opened
up for graph propagation does indeed enhance model perfor-
mance. See more results in Appendix E.5.

6 Conclusion
In this study, we propose a novel graph propagation to en-
hance the GDEs by opening up a feedback pathway for
the message passing process, adaptively adjusting the rep-
resentations towards the desired performance, thereby fun-
damentally avoiding over-smoothing. Built on the linear
and non-linear implementations of the proposed propaga-
tion mechanism, we introduce the SF-GDE to effectively
model multivariate time series. Comprehensive experiments
on real-world datasets have demonstrated its outstanding per-
formance. Moreover, the proposed feedback mechanism
can empirically enhance any GDEs in a plug-and-play man-
ner. Nevertheless, challenges persist in efficiently and ef-
fectively modeling multivariate relationships, higher dimen-
sional states, and heterogeneous graphs. Further inferring the
governing equations of multivariate time series, and provid-
ing support for subsequent mathematical analysis and regula-
tion, is also crucial for explainable artificial intelligence.
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