Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

A Reduction-based Algorithm for the Clique Interdiction Problem

Chenghao Zhu, Yi Zhou*, Haoyu Jiang

University of Electronic Science and Technology of China
axs7384 @gmail.com, zhou.yi@uestc.edu.cn, FirstSSAT @outlook.com,

Abstract

The Clique Interdiction Problem (CIP) aims to min-
imize the size of the largest clique in a given graph
by removing a given number of vertices. The CIP
models a special Stackelberg game and has impor-
tant applications in fields such as pandemic con-
trol and terrorist identification. However, the CIP
is a bilevel graph optimization problem, making it
very challenging to solve. Recently, data reduction
techniques have been successfully applied in many
(single-level) graph optimization problems like the
vertex cover problem. Motivated by this, we inves-
tigate a set of novel reduction rules and design a
reduction-based algorithm, RECIP, for practically
solving the CIP. RECIP enjoys an effective prepro-
cessing procedure that systematically reduces the
input graph, making the problem much easier to
solve. Extensive experiments on 124 large real-
world networks demonstrate the superior perfor-
mance of RECIP and validate the effectiveness of
the proposed reduction rules.

1 Introduction

1.1 Problem Background

The maximum clique problem (MCP) is fundamental and
well-studied in graph theory and combinatorial optimization.
The size of the maximum clique is an important metric to
measure the density or cohesion of graphs. A larger size of
the maximum clique implies a denser graph structure [Bor-
gatti er al., 2024], often corresponding to tightly connected
communities in applications such as social networks, biolog-
ical networks, and signal processing [Van Cleemput, 2012;
Dunbar and Spoors, 1995; Malod-Dognin et al., 2010; Douik
et al., 2020].

In many real-world applications, it is important not only
to identify large cliques but also to disrupt or minimize their
sizes through a process known as interdiction [Dempe, 2020].
This leads to the notion Clique Interdiction Problem (CIP).
The CIP is defined as follows: Given a graph G and an in-
terdiction budget value k, decide at most k vertices to be re-
moved from (; or interdicted in) the graph such that the size

*Corresponding author.

of the maximum clique in the remaining graph is minimized.
From the lens of application, the problem is used to identify
critical nodes in various real-world networks. One can see
that the vertices for interdiction are typically among the most
important or influential in the graph, as their removal has the
greatest impact on the graph structure. We list some specific
applications in the following.

Pandemic Control For epidemic control, identifying im-
portant nodes for disease spreading is a central topic in net-
work epidemiology, as large cliques play a significant role
in the spread of diseases [Wang er al., 2012; Siki¢ et al.,
2013]. Therefore, it is essential to identify critical nodes
that can reduce the size of cliques and monitor these nodes
to control the spread of epidemics [Valdez et al., 2023;
Grass and Fischer, 2016].

Terrorist Identification Large cliques can be potential
sources of catastrophic events, such as terrorist attacks or cy-
berattacks [Sageman, 2004; Berry et al., 2004]. Cliques pro-
mote cohesion and solidarity, enabling large groups within
terrorist or criminal networks to coordinate devastating ac-
tions. Therefore, monitoring and regulating the cohesiveness
of terrorist networks is of critical importance.

1.2 Related Literature

The general problem of interdicting several vertices or edges
such that the graph becomes less cohesive is receiving in-
creasing attention. Specific formulations include the clique
interdiction problem in the paper, the minimum vertex
blocker clique problem, which minimizes the number of ver-
tices removed to ensure the maximum clique in the remain-
ing graph is below a specified size [Nasirian et al., 2019;
Mahdavi Pajouh et al., 2014], and the edge interdiction clique
problem, which minimizes the maximum clique size after re-
moving at most k edges [Furini et al., 2021; Mattia, 2024]. In
the optimization community, such problems are classified as
bilevel optimization problems and two-stage stochastic opti-
mization problems with recourse(2SPRs) [Dempe, 2020]. In
particular, the CIP models a special Stackelberg game where
the leader interdicts a set of vertices and the follower maxi-
mizes the clique in the remaining graph [Xiao et al., 2014].
In this sense, the problem is different from another recently
studied problem called the k-defective clique problem, which
maximizes the maximum clique size after adding & edges

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Luo et al., 2024; Chen er al., 2021] because adding edges
and maximizing the clique are not adversarial.

From the perspective of computational intractability, the
CIP is challenging as the decision of maximum clique size
in the remaining graph is NP-hard [Karp, 2010], W[1]-
hard [Downey and Fellows, 2012], and hard to approx-
imate [Hastad, 1996]. In fact, the decision version of
CIP has been shown to be Zg-complete [Rutenburg, 1994;
Griine and Wulf, 2024]. Nevertheless, there are at least two
existing algorithms for solving the CIP practically and opti-
mally. One method is to formulate the problem as a bilevel
integer linear program (BILP), and then rely on the BILP
solver to obtain the solution [Becker, 2017; Tang et al., 2016;
Fischetti er al., 2017]. However, this approach may be inef-
ficient because it does not make full use of the specific struc-
ture of the CIP. Another algorithm called CLINTER-INTER,
probably the state-of-the-art algorithm for the CIP to our
knowledge, recasts the problem to a normal single-level inte-
ger linear problem with an exponential number of rows [Fu-
rini et al., 2019], then uses the maximum clique solver for
constraint generation to solve this ILP. Clearly, the scale of
the linear program depends on the input graph. Therefore,
when the input graph is huge, which is often the case in
real-world scenarios, efficient reduction pre-processing tech-
niques can be useful for reducing the size of the linear pro-
gram. This in turn improves the efficiency of the final al-
gorithm. On the other hand, the data reduction technique has
been widely used for simplifying NP-hard problems, like ver-
tex cover [Hespe er al., 2020], independent set [Xiao ef al.,
20211, or cluster editing [Blésius er al., 2022]. A nice recent
review in [Abu-Khzam et al., 2022] pointed out the possibil-
ity of extensive application of this technique for harder dis-
crete problems. The study of reduction rules and reduction-
based algorithms for interdiction optimization problems like
the basic CIP is still limited in existing literature. Motivated
by this gap, we propose an efficient algorithm for the CIP with
a particular focus on data reduction, enabling better scalabil-
ity and efficiency.

1.3 Our Contributions

Our contributions are mainly two-fold.

First, we investigate the data reduction techniques for the
CIP. We propose novel reduction rules including color, exact
clique, triangle, interdiction, and the domination reduction
rules, which are used to simplify the input. These rules rely
on an in-depth structural analysis and can reduce the input,
i.e., the graph G and the budget %, with an optimality guaran-
tee.

We secondly provide a reduction-based algorithm, RECIP,
for solving the CIP in real-world graphs. Based on the re-
duction rules, we provide a unified reduction algorithm that
preprocesses the input instance. Worst-case time complex-
ity guarantees for each reduction step are also given. We also
provide polynomial-time algorithms for finding lower bounds
that are tighter than current methods for some instances. Fi-
nally, the RECIP integrates the reduction algorithm and the
lower bound estimations into a branch-and-cut framework.

Extensive experiments demonstrate that RECIP outper-
forms the state-of-the-art methods on nearly 90% of real-

world networks. Notably, RECIP features a powerful graph
reduction ability in preprocessing. A reduction of 85% ver-
tices is often observed for most graphs. Some reduction steps
which are not polynomial-time in the worst case (due to the
invocation of the maximum clique oracle) perform still effi-
?iently in practice. The source codes are publicly available

2 Preliminary

Let G = (V, E) be a simple finite undirected graph, where
V' is the vertex set and FE is the edge set of G. When the
context is clear, we use n to denote the number of vertices | V|
and m to denote the number of edges |E| of the graph. The
open neighborhood of a vertex v € V is the set of its adjacent
vertices, Ng(v) = {u | {u,v} € E}, and the size of the set is
the degree of v, d(v) = | Ng(v)|. We further define the closed
neighborhood of a vertex v € V to be Ng[v] = N(v) U {v}.
For convenience, we use N (u) to denote N¢(u) and Nu] to
denote Ng[v] unless otherwise specified.

A vertex set C' C V is called a cligue if every pair of dis-
tinct vertices u,v € C satisfies {u,v} € E. The maximum
clique size of GG, which is the size of the largest clique in G,
is denoted by w(G). We denote T,(n) as the time complexity
of computing w(G), where n is the number of vertices in G.
The current computation of w(@G) is in fact very fast in large,
sparse graphs empirically even though the best-known T, (n)
is still exponential O*(1.2™) [Xiao and Nagamochi, 2017] in
theory. In the paper, we employ the well-performed algorithm
in [Chang, 2019] to compute w(G) and find the maximum
clique in the graphs. Furthermore, a clique is referred to as a
maximal clique if it is not a proper subset of any other clique.
Given a vertex set S C V/, the subgraph of G induced by S is
denoted by G[S].

Given a graph G = (V, E) and a nonnegative integer k,
0(G, k) represents the minimum value of the size of the max-
imum clique in the graph obtained by removing at most k
vertices from G. Formally,

0(G,k) = min
SCV,|8|<k

w(G[V \ 9)).

The set S(G, k) refers to all subsets .S that obtain the optimal
0(G,k),ie. S(G,k) = {S|S = argmaxgcy, sj<x w(G[V'\
S))}, for a given G and k.

3 Reduction Rules

In the paper, the reduction rule refers to the rule that reduces
the size of the problem instance, for example, the number
of vertices and edges of graph G, or the budget value £,
while preserving optimality. Before introducing these reduc-
tion rules, we assume that a lower bound value b of (G, k)
is known beforehand. We defer the methods of obtaining ef-
fective lower bounds to Section 4.1.

Exact Clique Reduction Our first reduction is based on a
simple observation: If the size of the maximum clique con-
taining vertex w is less than 6(G, k), then removing vertex
u does not affect the solution to this instance G and k. As

'https://github.com/axs7385/RECIP

https://github.com/axs7385/RECIP

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

0(G, k) is not known beforehand, we use the lower bound of
lb instead in the following reduction rule.

Lemma 1 (Exact Clique Reduction). Given a graph G =
(V, E), an integer k, and an integer 1b, if 0(G, k) > b and
there is a vertex u € V such that w(G[N (u)]) < b — 2, then
0(G, k) = 0(G[V \ {u})).

Proof of this lemma, as well as missing proofs in the re-
mainder of the paper, are left in the appended file.

Suppose that (G, k) > Ib. We can exhaustively remove
all vertices u € V that w(G[N(u)]) < Ib — 2 based on
this reduction rule. The time complexity of this reduction
is O (X ,cv Te(d(u))). Specifically, we observe that the re-
moval of a vertex from the graph does not make other ver-
tices satisfy this removable condition by Lemma 2. So we
only need to compute the maximum clique size in G[N (u)]
for each u.

Lemma 2. Given a graph G = (V, E), an integer k, and two
adjacent vertices u,v € V, if w(G[N(u)]) < w(G[N(v))),
then w(G[N (v) \ {u}]) = w(G[N(v))).

Degree Reduction For the efficiency consideration, we
hope to avoid calculating the w(G[N (u)]) for all u € V if
the input graph is huge. Hence, we propose the degree reduc-
tion rule, which is obtained from the fact that d(u) is an upper
bound for w(G[N (u)]).

Lemma 3 (Degree Reduction). Given a graph G = (V, E),
an integer k and an integer lb, if 0(G, k) > lb and there is
a vertex u € V such that d(u) < Ib — 2, then 0(G,k) =
O(GV \{u}], k).

The correctness of Lemma 3 can be directly derived from
Lemma 1, using the fact that w(G[N (u)]) < d(u).

The degree reduction was also used in CLIQUE-INTER
[Furini er al., 2019], the best-known existing solver for the
CIP. Suppose that (G, k) > b, the time complexity of ex-
haustively removing all vertices v € V that d(u) < Ib — 2
is linear time, O (m). This is based on the observation that,
when a vertex u is removed, the degree of vertices in N (u)
is decreased by 1, making these vertices removable as well.
Similar to the k-core computation where a linear-heap is used
to maintain the vertices of different degrees [Chang and Qin,
2019], one can obtain the linear time reduction procedure.

Color Reduction A coloring of a graph G is a mapping
¢ : V. — Col from the vertex set V to a color set C'ol (namely,
a set of integers), such that no vertex shares the same color
with any of its neighbors. Suppose that a coloring c is given
for a graph G. For a vertex u, the number of distinct colors
assigned to all vertices in N(u), [{c(v) : v € N(u)}|, is an
upper bound on the size of the maximum clique in G[N (u)].
We denote this value by ds.(u) and refer to it as the satura-
tion of a vertex u.

Lemma 4 (Color Reduction). Given a graph G = (V, E), an
integer k, an integer lb and a coloring c of G, if (G, k) > 1b
and there is a vertex u € V such that ds.(u) < lb — 2, then
0(G, k) = 0(G[V \ {u}]).

The correctness of Lemma 4 can also be directly derived
from Lemma 1, using the fact that w(G[N (u)]) < ds.(u).

Given a coloring ¢ of the graph G, suppose 6(G, k) > [b.
We can exhaustively remove all vertices u € V that ds.(u) <
lb — 2 based on this reduction rule. The time complexity of
this operation can be simply achieved in linear time O(m).
In order to obtain an initial coloring, we use the heuristic col-
oring algorithm in the state-of-the-art maximum clique algo-
rithm [Li et al., 2017]. Indeed, we can remove more vertices
if the colors of the vertices are dynamically adjusted during
the reduction process. This results in a more complex reduc-
tion process, with a running time of O(nm). The details are
provided in the appended file.

Triangle Reduction For an edge {u, v}, if the number of
common neighbors of v and v, |N(u) N N (v)], is less than
0(G, k) — 2, then the size of the clique containing both ver-
tices is smaller than 6(G, k) — 2. This implies the triangle
reduction rule.

Lemma 5 (Triangle Reduction). Given a graph G = (V, E),
an integer k and an integer b, if (G, k) > b and there is
an edge {u,v} € E such that |[N(u) N N(v)| < lb— 3 then
0(G, k) = 0((V, E\ {{u, v}}), k).

Suppose that 8(G, k) > 1b. The triangle reduction rule in-
dicates that we can exhaustively remove all edges {u,v} € E
that [N (u) N N(v)| < Ib — 3 based on this reduction rule.
In order to identify such edges, we can list all triangles (3-
cliques) in the GG, which can be done in time O(m!®) [Lat-
apy, 2008]. Then, the size of |[N(u) N N(v)| is equal to
the number of triangles including edge {u, v}. Moreover, if
{w, u,v} forms a triangle, the removal of edge {u,v} also
makes edges {w, u} or {w, v} involved in fewer triangles. In
other words, we need to keep updating the number of trian-
gles that each edge is involved with. This can be also done in
linear time O(3m) because each edge can be removed at most
once. In total, the running time of exhaustively removing all
edges is O(m!%).

The relationship between triangle reduction and edges is
analogous to that between degree reduction and vertices.
Similarly, we could extend this concept to reductions based
on color numbers or maximum cliques of common neighbors.

Lemma 6 (Triangle Clique Reduction). Given a graph G =
(V, E), an integer k and an integer b, if 0(G, k) > 1b and
there is an edge {u,v} € E such that w(G[N(u) NN (v)]) <
6(G, k) — 3, then 6(G, k) = O((V. E\ {{u, v}}), k).
Lemma 7 (Triangle Color Reduction). Given a graph G =
(V,E), an integer k, and an integer lb, if 0(G,k) > Ib
and there is an edge {u,v} € E such that |{c(w)

w € N(u) N Nw)} < 0(G,k) — 3, then 0(G,k) =
0((V, E\{{u,v}}), k).

Clearly, exhaustively removing edges that satisfy the trian-
gle clique or triangle color reduction rules is more compu-
tationally expensive than that of triangle reduction. On the
other hand, after exhaustively applying the degree, color, and
triangle reductions, the graph becomes significantly denser,
making it hard to remove edges meeting the triangle clique
and color reduction rule. Thus, the above two reductions are
only used when a long computational time is allowed.

Interdiction Reduction The previous reductions primarily
identify vertices that are not in S(G, k) or not in any maxi-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

mum clique of G. In contrast, now we introduce interdiction
reduction rules that identify vertices that must be a part of
every maximum clique in the remaining graph.

Lemma 8 (Interdiction Reduction). Given a graph G =
(V,E), an integer k > 0, and a vertex u € V, if for
any v € V \ N[u], w(G[N(u)]) — k > w(G[N(v)]), then
0(G, k) = O(GIV \ {u}], ko~ 1).

In other words, if the largest clique containing vertex u is
larger than any maximum clique that excludes « by more than
k, then in any solution where at most k vertices are removed
and u is not among them, the largest remaining clique must
include w.

We can remove all vertices v € V that for any v €
V\ Nu], w(G[N(u)]) — k > w(G[N(v)]) based on this re-
duction rule. The time complexity of this reduction is O (nz)
when we have already computed w(G[N (u)]) for all vertices
u € V in the exact clique reduction above.

Domination Reduction If all the neighbors of a vertex v
are also neighbors of another vertex u, and w has additional
neighbors that are not connected to v, then removing vertex u
is always more effective than removing vertex v. We call this
property u dominates v.

Lemma 9 (Domination Reduction). Given a graph G =
(V,E), an integer k, and two vertices u,v € V, if N(v) C
N(u) or N[v] C N|ul, then if there exists a set S € S(G, k)
suchthatv € Sandw ¢ S, then (S'\ {v}) U{u} € S(G, k).

We can find all pairs of vertices u,v € V that v domi-
nates v based on this reduction rule. The time complexity
of this reduction is O (nm) because the time complexity of
determining the domination relationship for a pair of vertices

(u,v) is O(d(u) + d(v)).

4 The Reduction-and-Search Algorithm
4.1 Lower Bound Estimation

The proposed reduction rules rely on a known lower bound
of 6(G, k). In this section, we elaborate on the algorithm to
obtain an effective lower bound.

The Linear Program Relaxation Given a graph G =
(V,E) and an integer k, it is known that (G, k) can be
computed using the following ILP formulation [Furini ef al.,
20191.

min y
s.t.quzn—k‘,
ueV

Y @, <y, VCEC,

ueC
y € R, z, € {0,1},

ILP-CIP(G, k,C)

YueV

where C is the set of all cliques in the graph G. Note that the
binary z,, = 0 means that vertex w is interdicted.

Clearly, we can obtain a lower bound for 6(G, k) by relax-
ing the ILP. A common relaxation technique is modifying the
domain of x,, to all real values in the range [0, 1]. However,
it is still difficult to obtain the optimal solution of this LP due

to the exponential number of cliques in G. Yet it is hard to
separate the inequality in polynomial time.

Due to the exponential size of |C|, in the paper, we provide
an alternative relaxation by restricting C to only a subset of
the maximal cliques in the graph. We note that the following
observation holds.

Lemma 10. Assume C = {C4, ...,C,} where C1,...,C), are
cliques in G (, probably not all cliques in G). Then the opti-
mal solution to ILP-CIP(G, k, C) is a lower bound of 0(G, k).

Restrict C to Disjoint Cliques By Lemma 10, when C
only includes some mutually disjoint cliques of G, the ILP-
CIP(G, k, C) is clearly a lower bound of 0(G, k). We refer to
this lower bound as the disjoint lower bound.

To compute a disjoint lower bound, we first construct a set
C which consists of disjoint cliques in G using the simple
Algorithm 2 in the appended file. This algorithm uses the
simple greedy strategy and has a time complexity of O(n?).

If C consists solely of disjoint cliques of G, then ILP-
CIP(G, k,C) can be computed without the need to invoke
an ILP solver. Denote f(C,y) as the minimum number of
vertices that need to be removed such that the size of the
largest clique in C is less than or equal to y, i.e., f(C,y) =
> cece max(0,|C|—y). The smallest y such that f(C,y) < k
is the result of ILP-CIP(G, k,C). Because f(C,y) is non-
decreasing as y increases, allowing us to use binary search
to determine y, ILP-CIP(G, k, C) is obtained in O(|C| logn).
In sum, the time to obtain a disjoint lower bound is O(n? +
|C|log n) = O(n?) when C only contains disjoint cliques.

Relaxation to Bipartite Cliques Furthermore, supposing
that C can be partitioned into C; and Csy, where C; includes
some mutually disjoint cliques of G, and Cs also includes
some mutually disjoint cliques of G, then ILP-CIP(G, k,C)
is also a lower bound of 6(G, k) by Lemma 10. We refer to
this lower bound as the bipartite lower bound.

In order to obtain C; and Ca, we simply run the greedy
Algorithm 2 in the appended file twice. Then, we use a flow-
based algorithm to compute ILP-CIP(G, k,C = C; U Cs).

For notational convenience, let us denote f'(C = C; U
Co,y) as the minimum number of vertices that need to be
removed such that the size of the largest clique in C is less
than or equal to y, i.e. f'(C,y) = > cee, max(0,|C| —y) +
> cee, max(0, |C|—y)—h(C1,Ca,y). Here, h(Cy,Ca, y) de-
notes the maximum number of vertices that can be removed
to simultaneously reduce the size of cliques in C; and Cs to at
least y.

Given sets C; and Co, and an integer y, the h(Cq,Ca,y) is
computed using a maximum flow algorithm. We first build a
flow network as shown in Figure 1. For each clique C' in C;
and Co, we create a node in the network representing the C.
We also create an additional source node S and a target node
T'. Each node representing a C; € C; connects to the source
S with capacity max(0, |C1|—y), and each node representing
C5 € Co connects to the target T' with capacity max (0, |C| —
y). Edges between Cy € C; and Cy € Cy have capacity
|Cy N Cy]. The maximum (S, T")-flow in this flow network
is equal to h(Cy,Ca,y). The total time of building the flow
network and computing the maximum flow is O(n?3).

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Figure 1: Structure of the network flow model, the value on the side
represents the flow size.

As h(Cq1,Ca,y) can be computed efficiently, it is easy to
compute ILP-CIP(G, k,C = C; U Cy). Similar to the disjoint
lower bound, the smallest y such that f'(C = C; UCo,y) < k
is the result of ILP-CIP(G, k,C = C; U C2). Thereby, the
total running time of computing the bipartite lower bound is
O(n3logn).

4.2 The Reduction-based Preprocess

Firstly, these reduction rules require a valid lower bound of
0(G, k). Hence, the initial step is to use the simple disjoint
cliques relaxation method to obtain a lower bound.
Afterwards, we call the degree reduction and triangle re-
duction to reduce the (G, k). The two reductions can be done
in an intertwined manner. Specifically, the deletion of an edge
decreases the degree of its connected vertices, while the dele-
tion of a vertex affects the triangles that an edge involves.
Hence, we maintain the vertex degrees and triangles simul-
taneously and update them when a vertex (and its incident
edges) or an edge is removed from the graph. The total time
complexity of this combined reduction step remains O(m?!5).
When the graph can no longer be reduced by degree or tri-
angle reduction, we apply color reduction, followed by clique
reduction. It is known that the computation of clique reduc-
tion is relatively expensive. To achieve a better trade-off be-
tween reduction time and effectiveness, we use the bipartite
lower bound before the clique reduction. Intuitively, a tighter

(Combined Reduction

O(ml.S)

Disjoint Lower
Bound

on? Degre?e
Reduction
0(m)
Bipartite C0104r h Triangle
Lower Bound = Reduction |« Redinsiem
0(n® log n) 0(nm) o(m's /
Clique Interdiction
Reduction —* Reduction
0(nT(n)) 0(n?)

Figure 2: Flowchart of the reduction-based preprocess, time com-
plexities are given to each step.

Algorithm 1 RECIP
Input: Graph G = (V, E), an integer k
Output: 6(G, k)
1: G, k,lb,Cligues < preprocess(G, k)
2: ans <+ branc_and_cut(G, k, b, Cliques)
3: return ans

lower bound can help reduce more vertices in the clique re-
duction.

So far, the reductions are used in an increasing order of
their complexity. Exceptions are given to the interdiction re-
duction. The interdiction reduction step follows the clique
reduction because it asks for w(G[N(u)]) for each u € V.
Finally, the pre-processing outputs graph G and budget k.

4.3 Integrating the Reduction and Branch-and-cut

Our algorithm, RECIP, consists of two main components.
The first component is the reduction-based preprocessing
step described earlier, which aims to reduce the size of the
graph. The second component is a branch-and-cut algorithm
[Mitchell, 2002] to solve the ILP-CIP formulation.

Initial Linear Program We use ILP-CIP(G, k,C) to build
the linear program, where C are cliques obtained by the reduc-
tion process. Additionally, based on the domination reduction
rule (Lemma 9), we find all dominance relations between any
wand v € V. Then we add z,, < x, when z, dominates z,
to tighten the LP.

Speciation Oracle When a solution (z*,y*) is obtained,
the branch-and-cut algorithm asks a separation oracle to de-
cide if there is a clique C' such that the inequality) .~ @7, <
y is not satisfied. If so, a new inequality of the form
ZUEC z, < y is added to continue the search. This sepa-
ration oracle is equal to the maximum clique problem in the
graph G[V*] where V* = {u € V : 2}, = 1} [Furini et al.,
2019]. Again, we use the algorithm in [Chang, 2019] to find
maximum cliques.

S Experiments

In this section, we evaluate the performance of our al-
gorithm. As mentioned, there are two existing methods,
the general BILP solver [Becker, 2017; Tang et al., 2016;
Fischetti et al., 2017] and CLIQUE-INTER [Furini et al.,
2019], for solving the CIP. According to the experiments in
[Furini et al., 2019], CLIQUE-INTER is faster than the BILP
solver by several orders of magnitude on all tested cases.
Therefore, we mainly compare our RECIP with CLIQUE-
INTER in the experiments.

Experimental Setup All experiments were conducted on a
machine equipped with an AMD R9-7940HX CPU and 16GB
of RAM, running Ubuntu 22.04. The codes were written in
C++ and compiled with GCC version 11.4.0 using the -O2
optimization flag. The IBM CPLEX solver version 12.7 was
used as the underlying solver for the integer linear program.
All algorithms run in single-threaded mode with the default
settings of CPLEX.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

o
o

100

RECIP 95.16

= | CLIQUE INTER
S, 80 {7903 80 | 78.23
»
S
8 60 60
(o))
o 40 40
c

20 20

0.1 1 10 100 600 0.1 1 10 100 600

time [s] time [s]

(a) k = [0.005|V|] (b) k = [0.01]V]]

91.94

100 ;
91.94 8790
80 80
e e {7419
60 : w
’ 40 .
20 20
0.1 | ¥ 100 600 0.1 1 10 100 600
time [s] fime [s]

© k = [0.02|V[] () k = [0.05|V]]

Figure 3: The proportion of instances solved by both algorithms within the time range of 0.1 to 600 seconds on real-world network graphs

under different k values.

Real-world Dataset Our experiments use 124 real-world
networks sourced from the SNAP database and the Network
Repository[Leskovec and Sosi¢, 2014; Rossi and Ahmed,
2015] 2. The dataset covers a variety of categories, includ-
ing social networks, technological networks, biological net-
works, and more. These graphs can be as large as 1.9 million
vertices and 5 million edges. We leave a detailed description
in the appended file.

5.1 Results on Real-world Network Graph

We compare the performance of the two algo-
rithms under four different budget values (kK €
{[0.005|V[1, [0.01]V[], [0.02]V[], [0.05]V[]}) with a
runtime limit of 600 seconds.

Figure 3 shows the number of instances solved within dif-
ferent time limits for each budget value k. For every k,
RECIP consistently outperforms CLIQUE-INTER across all
time frames, solving over 10% more instances after 600s.
Furthermore, for a fixed time frame, the number of instances
solved by both algorithms decreases as k increases. This
trend matches the observation that fewer vertices and edges
can be reduced when k increases.

In the scatter plot in Figure 4, each point represents an in-
stance, i.e., a pair (G, k), where the axes represent the run-
time of the two algorithms. Points below the diagonal line
indicate cases where RECIP is faster than CLIQUE-INTER,
while points above indicate the opposite. There are 410 in-
stances that RECIP outperforms CLIQUE-INTER, account-
ing for 89.7% of the total instances. We note that there are 39
instances that both algorithms cannot solve within the time
limit.

Furthermore, we observed that in some relatively denser
graphs, the reduction process can be highly time-consuming.
For example, in graph scc_reality, where |V| = 6809
and |E| = 4714485, when k = [0.05n], the clique reduc-
tion step takes 816 seconds but only removes 5 vertices. In
contrast, the subsequent branch-and-cut process completes in
just 1.6 seconds.

5.2 Effectiveness of Reduction Rules

Now, we give a detailed break-up analysis of the reduction
algorithms. For each instance, we record the graph size af-

>The dataset can be downloaded from https:/Ics.ios.ac.cn/
~caisw/graphs.html.

1000 3

600 []scc_reality
o k=1[0.005V]] e
100 o k=[0.01|V[] d
o k=1[0.02]V]] No’
o k= [0.05V]] E TR A
B 103 it Do
o ° .. “.:\ o ¢
= 9% 70q © Y 4 o
O [0% &g £
I&J 14 ‘.-; ° 4 .! e
) +7 ee 88 2 e
£ PATIE R
= 0.1 .).C ° . R .
o ot %% e,] :
o] A ot aedacy
*®
° °
0.001 4= Y T T T T pzaais
0.001 0.01 0.1 1 10 100 600 1000

Time-CLIQUE-INTER [s]

Figure 4: Runtime of both algorithms for each instance, with in-
stances exceeding the 600-second time limit plotted at the boundary.
For clarity, a dashed line representing x = y is added.

ter each reduction step, i.e., degree, triangle, color, and exact
clique reductions, and we also record the size of the remain-
ing graph. Due to space limitations, we report the 10 graphs
with the most vertices from those that can be solved by RE-
CIP within 600s and where not all vertices are removed dur-
ing the reduction process in Figure 5.

Clearly, the simple degree reduction removes at least half
of the vertices for the majority of graphs. This is within our
expectation as these graphs are sparse. In contrast, the in-
terdiction reduction step removes few vertices. Nevertheless,
the remaining reduction steps still play an important role in
reducing around 20% of the number of vertices, especially
when k = [0.05|V|]. Increasing the value of k& makes the
reduction process less effective, resulting in a greater number
of remaining vertices.

5.3 Analysis with Lower Bounds

To demonstrate the effectiveness of our lower bound algo-
rithm, we record the disjoint lower bound and bipartite lower
bound for the 10 graphs. We present the results for £ =
0.005|V| in Table 1 and leave the rest in the appended files.
We observe that the gap between our lower bound algo-
rithm and 6(G, k) is very small. The bipartite lower bound

https://lcs.ios.ac.cn/~caisw/graphs.html
https://lcs.ios.ac.cn/~caisw/graphs.html

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

100}W - . 100 === 100 100
-
80 W W SOW WW W SOW W W BOIM NE = _pN
= g U
$ 60 60 60 60
o
£
2 404 40 40 40
o
c
20 20 20 20
0 0 0 0
NPl 6 O\ o0 D DK oGl o O\ PO NPl 6 O\ PO DoPuinl 6 2O\ 0 DK
LRNB LD LR LA LR NS I LI RN IR NN IR
VQQ/A\\/O,A\Q.GQ. RO Ry AN 2O e A W SR, A A O
2° SN SRSy D& 2° S 02X TR S T 2° S 220N SR S O 2° SN SR S W&
O AT O oY O P AR O AN O S R OO N PR OO F O
SN LTI T SN F LS G ST SN F LSS T ST SN PP IS T T
(\«Q\(?,o < P@ q\éd NIV \‘@g LCEF & & " {@0’ 6"\“\0"’0 d \Q’&eﬁd

(@) k = [0.005V[] (b) k = [0.01[V[]

Degree Reduction Triangle Reduction

JEEEE Color Reduction

(©) k= [0.02|V[] (d) k = [0.05|V]]

=== Exact Clique Reduction Interdiction Reduction Remain

Figure 5: Reduction proportion at each step for 10 selected graphs and the average, with different k£ values.

Table 1: Disjoint and bipartite lower bound for 10 selected graphs
with k& = [0.005|V|].

disjoint bipartite 0(G, k)
Ib time[s] 1b time[s]

rt-retweet-crawl 3 0.31 3 238.10 3
inf-roadNet-PA 3 0.134 3 0.201 3
ca-MathSciNet 7 0.067 7 2.54 7
ca-dblp-2012 15 0.105 15 0.506 15
ca-citeseer 25 0.044 25 0.317 25
ca-dblp-2010 19 0.039 19 0.245 19
soc-gowalla 7 0.056 8 23913 8
tech-RL-caida 4 0.043 4 20212 5
sc-shipsec5 21 0.084 21 1.005 21
web-arabic-2005 49 0.051 49 4711 49

obtains a tighter bound for soc-gowalla with a sacrifice of
running time. Across all the 455 instances where 6(G, k) is
known, the sum of the gaps between 6(G, k) and the bipartite
lower bound is only 24. This demonstrates the effectiveness
of our lower-bound algorithms.

5.4 Analysis with Random Graphs

To further investigate the scalability of the algo-

rithm, we create 5 groups of Erd8s-Rényi random
G(n,p) graphs, each group has a vertex number
n(|V|) selected from {50,75,100,125,150}. In

each group, we generate 11 graphs of edge densities

(» € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.95,0.98}),
then we evaluate four different budget values
(k€ {[0.05V]],[0.1{V[], [0.2[V[], [0.4]V[]}) ~for

each of these graphs. The cut-off time is still 600 seconds.
In order to know how graph density affects the reduction

algorithm, in Figure 6, we present the runtime and the per-

centage of vertices removed for different graph densities p.

3The edge density p is |E|/(|‘2/|)

#OPT 2020201917161513141519 &
22,100
1000 L. . I
.0 ’ g 80 |I
100 2 | ;
@ 10 L - 2e0
s cadlilEe |
; 40
S 01{. " N l H ®
L 3 20
0.01 @‘f S ,
0.001 o 0L+ i
1020304050607080909598 - 1020304050607080909598
density [%] 2 density [%)]

(a) Runtime for each instance, (b) The percentage of vertices re-
with the number of completed moved for each instance during
instances within the 600-second the reduction process.

time limit indicated at the top.

Figure 6: Results on random graphs, grouped by density.

The average runtime reaches its peak when p is in [0.8,0.9],
and few vertices can be removed when p > 0.7. We guess
that in these dense graphs, the reduction rules in RECIP are
less effective, making it perform worse than CLIQUE-INTER
on such instances. Additional evaluation on another dense
benchmark from the Second DIMACS Implementation Chal-
1enge4 confirms this trend, with RECIP and CLIQUE-INTER
competing closely with each other.

6 Conclusion and Future Work

In this paper, we introduce new reduction rules and propose
a novel algorithm, RECIP. Experiments demonstrate that our
algorithm outperforms the current state-of-the-art method by
an order of magnitude in terms of efficiency on large-scale
datasets. The results highlight the effectiveness of our re-
duction techniques, with some limitations observed in dense
graphs. Thus, it is possible to further enhance its overall per-
formance by exploring new reduction rules for dense graphs
and improving the branch-and-cut algorithm in the future.

“This dataset can be downloaded from https://iridia.ulb.ac.be/
~fmascia/maximum_clique/

https://iridia.ulb.ac.be/~fmascia/maximum_clique/
https://iridia.ulb.ac.be/~fmascia/maximum_clique/

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

We thank the authors of CLIQUE-INTER for kindly provid-
ing the source code. This work was supported by the National
Natural Science Foundation of China under grant 62372093.

References

[Abu-Khzam et al., 2022] Faisal N Abu-Khzam, Sebastian
Lamm, Matthias Mnich, Alexander Noe, Christian Schulz,
and Darren Strash. Recent advances in practical data re-
duction. Algorithms for Big Data, pages 97—133, 2022.

[Becker, 2017] Timothy Becker. Bilevel Clique Interdiction
and Related Problems. PhD thesis, Rice University, 2017.

[Berry et al., 2004] Nina Berry, Teresa Ko, Tim Moy, Juli-
enne Smrcka, Jessica Turnley, and Ben Wu. Emergent
clique formation in terrorist recruitment. In The AAAI-04
Workshop on Agent Organizations: Theory and Practice,
pages 1198-1208, 2004.

[Blisius er al., 2022] Thomas Blisius, Philipp Fischbeck,
Lars Gottesbiiren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm. A
branch-and-bound algorithm for cluster editing. In 20th
International Symposium on Experimental Algorithms
(SEA 2022). Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, 2022.

[Borgatti et al., 2024] Stephen P Borgatti, Martin G Everett,
Jeffrey C Johnson, and Filip Agneessens. Analyzing Social
Networks. SAGE Publications Limited, 2024.

[Chang and Qin, 2019] Lijun Chang and Lu Qin. Cohesive
subgraph computation over large sparse graphs. In 2019
IEEE 35th International Conference on Data Engineering
(ICDE), pages 2068-2071. IEEE, 2019.

[Chang, 2019] Lijun Chang. Efficient maximum clique com-
putation over large sparse graphs. In Proceedings of the
25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 529-538, 2019.

[Chen et al., 2021] Xiaoyu Chen, Yi Zhou, Jin-Kao Hao, and
Mingyu Xiao. Computing maximum k-defective cliques
in massive graphs. Computers & Operations Research,
127:105131, 2021.

[Dempe, 2020] Stephan Dempe. Bilevel optimization: the-
ory, algorithms, applications and a bibliography. Bilevel
optimization: advances and next challenges, pages 581—
672, 2020.

[Douik et al., 2020] Ahmed Douik, Hayssam Dahrouj,
Tareq Y Al-Naffouri, and Mohamed-Slim Alouini. A
tutorial on clique problems in communications and signal
processing. Proceedings of the IEEE, 108(4):583-608,
2020.

[Downey and Fellows, 2012] Rodney G Downey and
Michael Ralph Fellows. Parameterized complexity.
Springer Science & Business Media, 2012.

[Dunbar and Spoors, 1995] Robin IM Dunbar and Matt
Spoors. Social networks, support cliques, and kinship. Hu-
man nature, 6:273-290, 1995.

[Fischetti e al., 2017] Matteo Fischetti, Ivana Ljubid,
Michele Monaci, and Markus Sinnl. A new general-
purpose algorithm for mixed-integer bilevel linear
programs. Operations Research, 65(6):1615-1637, 2017.

[Furini et al., 2019] Fabio Furini, Ivana Ljubié, Sébastien
Martin, and Pablo San Segundo. The maximum clique
interdiction problem. European Journal of Operational
Research, 277(1):112-127, 2019.

[Furini er al., 2021] Fabio Furini, Ivana Ljubi¢, Pablo
San Segundo, and Yanlu Zhao. A branch-and-cut algo-
rithm for the edge interdiction clique problem. European
Journal of Operational Research, 294(1):54-69, 2021.

[Grass and Fischer, 2016] Emilia Grass and Kathrin Fischer.
Two-stage stochastic programming in disaster manage-
ment: A literature survey. Surveys in Operations Research
and Management Science, 21(2):85-100, 2016.

[Griine and Wulf, 2024] Christoph Griine and Lasse Wulf.
Completeness in the polynomial hierarchy for many nat-
ural problems in bilevel and robust optimization. arXiv
preprint arXiv:2311.10540, 2024.

[Hastad, 1996] Johan Hastad. Clique is hard to approximate
within n/sup 1-/spl epsiv. In Proceedings of 37th Con-
ference on Foundations of Computer Science, pages 627—
636. IEEE, 1996.

[Hespe et al., 2020] Demian Hespe, Sebastian Lamm, Chris-
tian Schulz, and Darren Strash. Wegotyoucovered: The
winning solver from the pace 2019 challenge, vertex cover
track. In 2020 proceedings of the SIAM workshop on com-
binatorial scientific computing, pages 1-11. SIAM, 2020.

[Karp, 2010] Richard M Karp. Reducibility among combi-
natorial problems. Springer, 2010.

[Latapy, 2008] Matthieu Latapy. = Main-memory triangle
computations for very large (sparse (power-law)) graphs.
Theoretical computer science, 407(1-3):458-473, 2008.

[Leskovec and Sosi¢, 2014] Jure Leskovec and Rok Sosié.
Snap: Stanford network analysis project. https://snap.
stanford.edu/, 2014. Accessed: 2025-01-12.

[Li et al., 2017] Chu-Min Li, Hua Jiang, and Felip Manya.
On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem.
Computers & Operations Research, 84:1-15, 2017.

[Luo et al., 2024] Chunyu Luo, Yi Zhou, Zhengren Wang,
and Mingyu Xiao. A faster branching algorithm for the
maximum k-defective clique problem. In ECAI 2024,
pages 4132-4139. IOS Press, 2024.

[Mahdavi Pajouh et al., 2014] Foad Mahdavi Pajouh,
Vladimir Boginski, and Eduardo L Pasiliao. Minimum
vertex blocker clique problem. Networks, 64(1):48-64,
2014.

[Malod-Dognin et al., 2010] Noé&l Malod-Dognin, Rumen
Andonov, and Nicola Yanev. Maximum cliques in protein
structure comparison. In Experimental Algorithms: 9th In-
ternational Symposium, SEA 2010, Ischia Island, Naples,
Italy, May 20-22, 2010. Proceedings 9, pages 106-117.
Springer, 2010.

https://snap.stanford.edu/
https://snap.stanford.edu/

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Mattia, 2024] Sara Mattia. Reformulations and complexity
of the clique interdiction problem by graph mapping. Dis-
crete Applied Mathematics, 354:48-57, 2024.

[Mitchell, 2002] John E Mitchell. Branch-and-cut algo-
rithms for combinatorial optimization problems. Hand-
book of applied optimization, 1(1):65-77, 2002.

[Nasirian et al., 2019] Farzaneh Nasirian, Foad Mahdavi Pa-
jouh, and Josephine Namayanja. Exact algorithms for the
minimum cost vertex blocker clique problem. Computers
& Operations Research, 103:296-309, 2019.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K.
Ahmed. The network data repository with inter-
active graph analytics and visualization. https:/
networkrepository.com/, 2015. Accessed: 2025-01-12.

[Rutenburg, 1994] Vladislav Rutenburg. Propositional truth
maintenance systems: Classification and complexity anal-
ysis. Annals of Mathematics and Artificial Intelligence,
10:207-231, 1994.

[Sageman, 2004] Marc Sageman. Understanding terror net-
works. University of Pennsylvania, 2004.

[Sikic et al., 2013] Mile Siki¢, Alen Lan¢i¢, Nino Antulov-
Fantulin, and Hrvoje Stefanci¢. Epidemic centrality—is
there an underestimated epidemic impact of network pe-
ripheral nodes? The European Physical Journal B, 86:1—
13, 2013.

[Tang et al., 2016] Yen Tang, Jean-Philippe P Richard, and
J Cole Smith. A class of algorithms for mixed-integer
bilevel min—max optimization. Journal of Global Opti-
mization, 66:225-262, 2016.

[Valdez et al., 2023] Lucas Daniel Valdez, Lautaro Vassallo,
and Lidia Adriana Braunstein. Epidemic control in net-
works with cliques. Physical Review E, 107(5):054304,
2023.

[Van Cleemput, 2012] Katrien Van Cleemput. Friendship
type, clique formation and the everyday use of communi-
cation technologies in a peer group: A social network anal-
ysis. Information, Communication & Society, 15(8):1258-
1277, 2012.

[Wang et al., 2012] Bing Wang, Lang Cao, Hideyuki Suzuki,
and Kazuyuki Aihara. Impacts of clustering on interacting
epidemics. Journal of theoretical biology, 304:121-130,
2012.

[Xiao and Nagamochi, 2017] Mingyu Xiao and Hiroshi
Nagamochi. Exact algorithms for maximum independent
set. Information and Computation, 255:126-146, 2017.

[Xiao et al., 2014] Kaiming Xiao, Cheng Zhu, Weiming
Zhang, Xiangyu Wei, and Songchao Hu. Stackelberg net-
work interdiction game: nodal model and algorithm. In
The 2014 5th International Conference on Game Theory
for Networks, pages 1-5. IEEE, 2014.

[Xiao et al., 2021] Mingyu Xiao, Sen Huang, Yi Zhou, and
Bolin Ding. Efficient reductions and a fast algorithm of
maximum weighted independent set. In Proceedings of
the Web Conference 2021, pages 3930-3940, 2021.

https://networkrepository.com/
https://networkrepository.com/

