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Abstract

Existing graph neural network (GNN) methods are
typically built upon the i.i.d. assumption, empha-
sizing the enhancement of the test performance
for in-distribution (ID) data. However, there has
been limited exploration of their adaptability to sce-
narios involving unknown distribution data. On
the one hand, in real-world application scenarios,
graph data often expands continuously with the
acquisition of external knowledge, which means
that new nodes with unknown categories may be
added to the graph data. The gap between the new
node distribution and the original node distribu-
tion can make existing GNN methods less effec-
tive. On the other hand, existing out-of-distribution
(OOD) detection methods often rely on the soft-
max confidence score, which makes the OOD
data suffer from overconfident posterior distribu-
tions. To address the above issues, we propose an
Energy Propagation-based Graph Neural Network
(EPGNN), which improves the OOD generaliza-
tion ability by endowing GNN with the capacity to
detect the OOD nodes in the graph. Specifically,
we first construct GNN encoder to obtain node
embedding that incorporates neighborhood struc-
tural information. Then, we design a plug-and-play
energy-based OOD evaluator by assigning corre-
sponding energy values to different nodes. Finally,
we construct a plug-and-play structure-aware en-
ergy propagation module and joint alignment regu-
larization, which make the node energy more flex-
ible during the training process. Extensive exper-
iments on benchmark datasets demonstrate the su-
periority of our method.

1 Introduction
Graph neural networks (GNN) have emerged as a powerful
framework for analyzing and modeling complex relationships
and structures in various domains [Liu et al., 2020], [Guo et
al., 2022], [Juan et al., 2024]. In general, GNN aggregates

∗Corresponding Author

Figure 1: Knowledge graph evolving example.

information from the connecting neighbor nodes and gener-
ates smooth embedding of the center node. Therefore, by
capturing the complex dependencies and relationships among
nodes, GNN possesses powerful non-Euclidean embedding
and complex pattern mining capabilities, which enable GNN
to play a crucial role in numerous practical graph data min-
ing applications and tasks. GraphSAGE [Hamilton et al.,
2017] employs an adaptive neighbor sampling strategy to up-
date the embedding of a node by sampling neighbor nodes at
each layer and then aggregating the features of the neighbors.
GAT [Velickovic et al., 2017] captures the important rela-
tionships between nodes by introducing attention mechanism
that dynamically learns the weights between a node and its
neighbors. GIN [Xu et al., 2019] aggregates the neighbor in-
formation at each hop and then mixes and adjusts them with
the node’s original features by introducing learnable parame-
ters, thereby obtaining the expressive node embedding.

However, existing methods still suffer from the following
limitations. On the one hand, they are generally designed
based on the independently and identically distributed (i.i.d.)
assumption, which means that the training and test data are
drawn from the same distribution. Under this assumption,
GNN considers that all data follows the same distribution,
ignoring distinct characteristics and complex patterns across
distributions. In real-world scenarios, graph data tends to
expand continuously with the acquisition of external knowl-
edge, which implies that new nodes with unknown categories
may be added. For instance, in knowledge graph scenario, the
new entities and relationships may be discovered along with
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the knowledge enhancement, necessitating the integration of
these new nodes into the existing graph structure (as shown
in Figure 1). The addition of these new nodes with unknown
categories forces GNN models to be equipped to handle this
uncertainty and learn from the continuously evolving graph
data. On the other hand, although some methods attempt
to identify OOD data within the dataset, they often rely on
the softmax confidence scores. However, the softmax poste-
rior distribution assumes every input belongs to an observed
class. Even if the input is OOD, softmax may still assign high
confidence to incorrect labels, leading to overconfident poste-
riors for OOD data. In contrast, the energy-based model can
map each node embedding into a common scalar space that is
lower for observed node instances and higher for unobserved
ones. Intuitively, the energy scores of nodes are theoretically
aligned with the probability density of the input, which is less
susceptible to the overconfidence problem. Therefore, con-
structing an energy function with strong adaptability is cru-
cial for the model to recognize OOD nodes.

To address the above limitations, we propose Energy
Propagation-based Graph Neural Network (EPGNN), which
enhances OOD generalization by leveraging energy-based
model for identifying OOD nodes within the graph. Specifi-
cally, to capture the intricate node dependencies, we initially
construct GNN encoder to generate node embeddings that in-
corporate neighborhood structural information. This makes
the node embedding contain rich semantic and structural in-
formation about each local environment. Then, to distinguish
nodes from different distributions, we design a plug-and-play
energy-based OOD evaluator. This evaluator is meticulously
designed with an energy function to generate energy scores
that are theoretically aligned with the probability density of
the input nodes. We assign specific energy values to vari-
ous nodes, which helps the model delineate the distributional
attributes of the nodes, thereby, the model can identify the
node instances from previously unseen or unknown distribu-
tions. In addition, to further enhance the model’s capability in
detecting OOD data, we introduce a plug-and-play structure-
aware energy propagation module, which can increase the
adaptability of node energy values as the training progresses.
This makes the model more sensitive to the changes in the
graph’s structure and better equipped to refine its energy-
based node representations. Finally, we design joint align-
ment regularization, enabling the model to capture general-
izable knowledge across different distributions, thereby im-
proving the model’s OOD generalization ability. Extensive
experiments on benchmark datasets validate the superiority
of EPGNN. Our contribution can be summarized as follows:

• We propose the Energy Propagation-based Graph Neural
Network (EPGNN), which enhances OOD generaliza-
tion capabilities by utilizing an energy-based approach
to recognize OOD nodes within the graph.

• We design an energy function to generate energy values
that are consistent with the probability density distribu-
tion of the input nodes, which makes the model distin-
guish the ID and OOD nodes.

• We conduct extensive experiments on three benchmark
datasets to demonstrate the effectiveness of EPGNN.

2 Related Work
2.1 Out-of-distribution Detection
The goal of OOD detection [Yang et al., 2024b], [Salehi
et al., 2022], [Shen et al., 2024] is to identify input sam-
ples that do not belong to the model’s training distribution.
OOD detection is widely used in applications such as au-
tonomous driving [Schmarje et al., 2024] and medical di-
agnosis [Abdi et al., 2024]. MSP [Hendrycks and Gimpel,
2017] demonstrates that ID samples often have larger max-
imum softmax probability than OOD samples, allowing the
use of the maximum softmax probability to detect OOD sam-
ples. ODIN [Liang et al., 2018] employs temperature scal-
ing to better separate the softmax probability between ID and
OOD samples and adds perturbations to the input to enhance
the effectiveness of the OOD detection method. GODIN
[Hsu et al., 2020] proposes decomposed confidence scoring
to simulate the difference in confidence distribution between
OOD and ID samples and improves the input preprocessing
method. KNN+ [Sun et al., 2022] explores the effectiveness
of non-parametric nearest neighbor distance in OOD detec-
tion, achieving OOD detection without imposing any distri-
butional assumptions. OE [Hendrycks et al., 2019] leverages
an auxiliary dataset of outliers to enhance the ability to rec-
ognize and classify unknown distribution data. GOOD [Hoff-
mann et al., 2023] proposes a weakly supervised relevance
feedback method that diminishes the dependence on thresh-
olds in OOD detection. OODGAT [Song and Wang, 2022]
leverages graph connectivity patterns to provide information
for better OOD detection.

2.2 Energy-based Model
Energy-based models (EBMs) [Song and Kingma, 2021],
[Arbel et al., 2021] compute energy values using an energy
function to capture variable dependencies. These energy val-
ues can be viewed as a measure of the discrepancy between a
sample and the distribution expected by the model. EBMs are
widely used in various practical applications, such as image
processing [Peng et al., 2024] and natural language process-
ing [Yang et al., 2024a]. LB-EBM [Pang et al., 2021] lever-
ages EBM to achieve multimodal trajectory prediction. EN-
GINE [Tu et al., 2020] leverages an energy-based approach to
train non-autoregressive translation models, thereby achiev-
ing efficient performance. EBM-FCE [Gao et al., 2020] pro-
poses a joint training method for combining an EBM with
a flow model, which enhances unsupervised feature learning
while enabling adaptation to semi-supervised learning. Cui
et al. [Cui et al., 2023] effectively learn hierarchical repre-
sentations by combining the strengths of Latent Space EBM
and multi-layer generative models. Du et al. [Du et al., 2020]
leverages an energy-based approach to construct a generative
model for better inference.

3 Problem Statement
Given a graph G = (V,E), where V denotes the node set and
E denotes the edge set. The graph structure is represented
by a binary adjacency matrix A ∈ {0, 1}|V |×|V |, where each
element Aij = 1 if the connection exists between vertices
vi ∈ V and vj ∈ V , otherwise Aij = 0. Each node v ∈
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V is associated with a feature vector x and a one-hot label
vector y. The overall feature matrix and class matrix can be
represented by X = {xi}|V |

i=0 and Y = {yi}|V |
i=0, respectively.

The traditional graph mining methods often assume that all
data instances obey the same distribution (i.e., i.i.d. assump-
tion), and they can access all kinds of categories. Unlike the
traditional graph learning process, in real-world scenarios, we
often have limited access to all data labels, and the underly-
ing data distributions become increasingly diverse as the data
accumulates. This process can be defined as follows:

Gnew = {V ∪ V new, E ∪ Enew} (1)

where V new denotes the expanded OOD nodes with unseen
labels, Enew denotes the new added edges. Hence, our goal
is to enhance traditional graph mining methods with some
plug-and-play modules that enable rapid identification of new
OOD nodes. Specifically, we aim to construct a graph repre-
sentation learning fθ(·) that can effectively utilize its learned
knowledge to detect OOD nodes V new during the learning
process, which can be defined as follows:

fθ(G
new) = V new (2)

where V new denotes the OOD nodes in Gnew.

4 Energy Propagation-based Graph Neural
Network

In this section, we introduce the fundamental components of
our framework: energy-based out-of-distribution evaluator,
structure-aware energy propagation, and joint alignment reg-
ularization. In addition, we provide a description of the over-
all optimization objective of our framework. Our framework
diagram is illustrated in Figure 2.

4.1 Energy-based Out-of-distribution Evaluator
In this subsection, we introduce the main components of the
plug-and-play energy-based out-of-distribution evaluator.

Graph Representation Learning Backbone
Considering that in real-world application scenarios, the node
diversity in a graph typically expands continuously with the
increase of nodes. Given a graph G, we first design a data
set partitioning strategy to simulate OOD scenarios. Specif-
ically, we select a portion of the node categories in graph G
as the source node set, which constitutes the main data dis-
tribution that the model encounters during the training phase.
At the same time, the remaining node categories in the graph
are designated as the OOD node set, which represents a test
environment that is different from the training distribution,
thus simulating a scene of OOD generalization. The data set
partition process can be defined as follows:

V S = {vcji ∈ V, cj ∈ CS}
V T = {vcji ∈ V, cj ∈ CT }

(3)

where V denotes the node set of input graph G, V S and V T

denote the selected source and OOD node set, respectively,
and CS and CT denote the source node categories set and
OOD node categories. We respectively assign meta-labels to

the nodes in V S and V T , namely “source node” and “OOD
node”. Then, we construct the GNN embedding layer by ag-
gregating the local neighboring structure information to the
corresponding center node, and we construct the graph rep-
resentation learning backbone fθ(·) by leveraging a series of
GNN embedding layers. The forward process of node v at
k-th layer f (k)

θk
(·) can be defined as follows:

h(k)
v = σ(AGGw(h(k−1)

u : u ∈ N (v) ∪ {v})) (4)

where h(k)
v denotes the embedding of node v at the k-th layer,

w is a learnable parameter, σ is a non-linear activation func-
tion (e.g., Sigmoid), N (v) denotes the neighbors of node v,
and AGG is the aggregate function. Subsequently, we feed
the selected source and simulated OOD node set V S and V T

into fθ for obtaining the node embedding matrix, where the
output at k-th layer can be defined as follows:

Z
(k)
S = f

(k)
θk

(GS)

Z
(k)
T = f

(k)
θk

(GT )
(5)

where f
(k)
θk

denotes the k-th layer of graph representation
learning backbone, GS and GT denote the sampled sub-
graphs by using V S and V T respectively. Z(k)

S and Z
(k)
T de-

note the output node embedding matrices of the GS and GT ,
where their meta-labels are “source node” and “OOD node”
respectively. Finally, we concat the Z

(k)
S and Z

(k)
T for obtain

the final output Z(k) = [Z
(k)
S ||Z(k)

T ] at k-th layer.

Energy Function Construction
Because the core task of the model is to capture and under-
stand the implicit differences between the source node set
and the OOD node set, thereby the model can learn the inter-
nal relationships among the various node distributions. This
requires the model to not only parse the characteristics of
each individual category in depth but also to identify and un-
derstand the interrelationships and differences between dif-
ferent categories. Therefore, the model can be more robust
and flexible, effectively extracting useful feature information
when dealing with OOD data. For this purpose, we design an
energy-based function E(·), which maps the node embedding
into a scalar called energy to indicate whether a node belongs
to OOD nodes, which can be defined as follows:

E(vi, G
ego
vi

, fθ) = −T × log

|C|∑
j=1

efθ(vi,G
ego
vi

)[j]/T (6)

where vi denotes the input node instance of original graph
G, Gego

vi denotes the r-ego subgraph centered by vi, fθ de-
notes the graph representation learning backbone, C =
{c1, · · · , cN} denotes the category labels of source node set,
fθ(vi, G

ego
vi )[j] denotes the j-th column of the output, and T

denotes the temperature parameter. In this function, for ID
data, the model typically assigns significantly higher logit
values to one category, resulting in lower energy. For OOD
data, since the model is more uncertain about its class predic-
tion, the logits distribution tends to approach a uniform dis-
tribution, leading to higher energy. This function extracts the
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Figure 2: The architecture of EPGNN. Each GNN layer’s embeddings are processed by the Energy-based OOD Evaluator to generate node
energy vectors, which are then aggregated in the Structure-aware Energy Propagation module. The weighted energy combined with node
entropy from the final GCN layer, forms a consistency regularization term that is jointly optimized with the cross-entropy loss.

energy of the node directly from the fθ, without affecting the
backbone itself. By adding this plug-and-play energy-based
OOD evaluator, the model gains the ability to differentiate
between ID and OOD nodes.

4.2 Structure-aware Energy Propagation
We design plug-and-play structure-aware energy propagation
to enhance the significance of the energy difference between
different distribution nodes. Specifically, we aggregate the
neighboring node energy values to the target node. In this
process, a reasonable approach is to assign higher weights
to the neighbor nodes with the same distribution as the target
node. Conversely, the neighbor nodes with other distributions
should have a smaller influence on energy aggregation, hence
assigned with lower weights. This way, the energy values can
better reflect the distribution differences between nodes. To
realize the energy propagation process, we introduce an edge
energy score to quantify the neighboring node weights, which
can be defined as follows:

slij = 1−
∣∣sli − slj

∣∣ (7)

where slij denotes the edge energy score of adjacent nodes
vi and vj , sli and slj are the node energy scores of vi and vj
at layer l. Then, we aggregate the node energy scores and
edge energy scores to update the target node energy score,
the update process can be defined as follows:

sli =
∑

j∈N (vi)∪{vi}

exp(slij)∑
k∈N (vi)∪{vi} exp(s

l
ik)

· slj (8)

where sli is the energy score of node i, N (vi) is the neigh-
bor node set. By adding this plug-and-play structure-aware
energy propagation module to the energy-based OOD evalu-
ator, we can not only strengthen the energy connections be-
tween nodes of the same distribution but also weaken the en-
ergy transfer between nodes of different distributions. This
increases the energy disparity between nodes of varying dis-
tributions, thereby optimizing the energy distribution charac-
teristics of the entire network and enhancing the stability and
efficiency of the network.

4.3 Joint Alignment Regularization
To enhance the precision and robustness of node energy as-
sessment, we design the joint alignment regularization. Our
objective is to fine-tune node energy scores to further quan-
tify the energy discrepancies among nodes within the graph.
In addition, considering that the entropy of the output distri-
bution generated by the graph representation learning back-
bone is a favorable measure of the disorder of the data distri-
bution, it can reveal deviations between the data distribution
and the training distribution. A higher entropy indicates that
the model is encountering unknown data patterns (i.e., OOD
samples), and a lower entropy suggests that the model is deal-
ing with familiar patterns from the training set. By calculat-
ing the entropy of sample outputs, we can monitor whether
the sample distribution deviates from the normal range. We
leverage the final output entropy to guide the fine-tuning pro-
cess. The entropy is defined as follows:

ei = −
|C|∑
j=1

fθ(vi, G
ego
vi

)[j]log(fθ(vi, G
ego
vi

)[j]) (9)

where vi denotes a target node, Gego
vi denotes the r-ego sub-

graph centered by vi, fθ denotes the graph representation
learning backbone, C = {c1, · · · , cN} is the label set. The
computation of entropy not only serves as an auxiliary tool
for identifying OOD samples but also helps maintain the sta-
bility and reliability of the model when dealing with unseen
data. Hence, we design the joint alignment regularization to
harmonize the relationship between energy scores and output
entropy. The core of the regularization is to minimize the dis-
crepancy between output entropy and energy scores, ensuring
consistency in predictions and preventing biases in energy as-
sessment. Formally, the discrepancy between output entropy
and energy scores of the each layer can be defined as follows:

Lcon = − cos (̂s, ê) (10)

where ŝ = [ŝ1, · · · , ŝ|V |]
⊤ and ê = [ê1, · · · , ê|V |]

⊤ is the
normalized node energy score vector and entropy vector re-
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Dataset OOD classes ID size OOD size train-ID val-ID test-ID train-OOD val-OOD test-OOD

Cora 0, 1, 2, 3 904 1804 6.64% 18.47% 34.96% 4.43% 18.46% 37.92%
Citeseer 0, 1, 2 1805 1522 9.97% 9.97% 80.06% 9.99% 9.99% 80.03%
Coauthor-CS 0, 1, 2, 3, 4 13290 5043 10.00% 10.00% 80.00% 9.99% 9.99% 80.01%

Table 1: Data partitions.

spectively. The normalization process is defined as follows:

ŝi =
si − µs

σs

êi =
ei − µe

σe

(11)

where µs and µe are the mean energy score and entropy
across all nodes, respectively, and σs and σe are the standard
deviations of the energy scores and entropy values, respec-
tively. Then, the final joint alignment loss is calculated by
first determining the discrepancy between the output entropy
of the last layer and the energy scores of each individual layer,
and then averaging these differences across all k layers:

Lcon = −1

k
×
(
cos(̂s1, ê) + · · ·+ cos(ŝk, ê)

)
(12)

where ŝi is the normalized node energy score vector for
the i-th layer, and ê is the normalized entropy vector of the
last layer. This formulation ensures that the joint alignment
loss considers the consistency between the entropy and en-
ergy scores across all layers of the model. By adopting
this method, we not only ensure the synergy between energy
scores and output entropy, meaning that both metrics should
yield similar predictive results across all nodes, but also un-
cover the intrinsic connection between energy scores and the
final layer outputs of the model. During training, energy
scores and output entropy exhibit a mutually restrictive and
co-evolving relationship. The joint alignment regularization
ensures that both metrics maintain a uniform trend through-
out the training process, narrowing the model’s hypothesis
space. This makes it more likely for gradient descent algo-
rithms to converge on solutions closer to reality, thereby en-
hancing the model’s accuracy in node energy assessment and
its discriminative power across nodes with different distribu-
tions, thereby improving its generalization capability. Finally,
we further classify ID nodes, and the overall joint optimiza-
tion objective of EPGNN can be defined as follows:

L = CE(fθ(v,Gego
v ), y) + atβLcon (13)

where CE(·, ·) denotes the cross-entropy loss function, a ∈
[0, 1] is a number that controls the decay of the regularization
weight, t is the number of iteration steps, β is the hyperpa-
rameter that controls the strength of regularization term.

5 Experiments
To verify the effectiveness of EPGNN, we try to answer the
following questions:

• Q1: How does EPGNN compare to other baseline meth-
ods in terms of OOD node detection and ID node classi-
fication performance?

• Q2: How do the various modules within EPGNN affect
the model’s performance?

• Q3: How do the hyperparameters of EPGNN influence
the experimental outcomes?

5.1 Experimental Setup
Datasets and splits
We utilize three classic node classification datasets for eval-
uating the effectiveness of our framework, including citation
networks [Kipf and Welling, 2017] (i.e., Cora, Citeseer), and
academic network [Tang et al., 2008] (i.e., Coauthor-CS). In
practice, new node classes are often unpredictable. Randomly
selecting categories as OOD nodes can better simulate the
unknown categories a model might encounter in real scenar-
ios. We divide the original dataset based on node categories,
where we select a node subset that is in the candidate cate-
gories as ID instances and make the remaining nodes as OOD
instances. Specifically, the partition details are in Table 1.

Baselines
To assess the effectiveness of our proposed OOD node detec-
tion framework EPGNN, we compare it with both methods
that rely on softmax probability scores and methods specifi-
cally designed for OOD detection. The baseline methods are
introduced as follows:

• MLP [Hu et al., 2021] is a feedforward neural network
that does not take into account structural information.

• GCN [Kipf and Welling, 2017] is a graph neural net-
work that operates by aggregating features from neigh-
boring and capturing the graph’s structural information.

• GraphSAGE [Hamilton et al., 2017] is a graph neural
network that learns a node’s representation by sampling
and aggregating features from its local neighbors.

• GAT [Velickovic et al., 2017] leverages attention mech-
anisms to weigh the importance of different neighbors’
contributions when aggregating node features, enhanc-
ing its ability to focus on relevant nodes in a graph.

• GATv2 [Brody et al., 2022] introduces a more flexi-
ble and dynamic attention mechanism and addresses the
limitation of GAT’s static attention allocation.

• OE [Hendrycks et al., 2019] is an OOD detection
method originally developed for computer vision tasks,
which identifies OOD samples by modeling the uncer-
tainty in the prediction scores.

• GNNSafe++ [Wu et al., 2023] is a method specifically
designed for OOD node detection in graph-structured
data. It employs the energy propagation technique but
does not consider blocking the propagation of energy be-
tween data with different distributions.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Cora Citeseer Coauthor-CS

Method AUROC AUPR Acc AURPC AUPR Acc AUROC AUPR Acc

MLP 72.31 58.20 76.58 71.53 75.37 80.83 82.23 92.51 91.42
GCN 83.99 74.43 91.50 83.04 83.80 86.02 88.38 95.30 92.34
SAGE 85.44 77.10 89.24 80.17 82.06 87.05 92.17 96.95 95.12
GAT 83.01 71.26 90.80 81.88 83.49 87.61 82.47 93.29 89.75
GATv2 84.75 77.06 90.50 82.45 83.79 88.09 89.25 95.68 90.82

OE 89.63 77.19 88.29 74.28 64.67 82.32 96.47 98.67 95.01
GNNSafe++ 92.94 82.44 91.14 82.61 69.98 84.82 97.94 99.26 95.24

EPGNN 93.35 87.14 91.45 84.31 85.05 88.16 98.48 99.29 95.25
Avg. Imp. 10.95 19.06 4.09 6.47 10.08 3.48 10.06 3.54 2.67

Table 2: Comparison of OOD node detection and ID node classification performance on benchmark datasets. All metrics are reported in %.

Figure 3: OOD detection performance with different variants.

For MLP, GCN, GraphSAGE, GAT, and GATv2, we utilize
the maximum softmax probability as the OOD score for the
nodes. For OE and GNNSafe++, we utilize the original OOD
scores provided by the methods themselves.

Implementations and Metrics
We utilize a 2-layer GCN with 64 hidden units as the back-
bone encoder for EPGNN. The dropout probability is 0.7, and
the learning rate is 0.01. We set the regularization weight
decay coefficient a = 0.9 and the time factor coefficient
b = 0.01. For the Cora dataset, the balance parameter for
the joint alignment regularization and the temperature coef-
ficient in the energy function is set to β = 1 and T = 3,
respectively. For Citeseer, these parameters are β = 0.5 and
T = 2, and for Coauthor-CS, they are β = 5 and T = 3. For
the OOD node detection task, we use the AUROC and AUPR
metrics, which are commonly used in OOD detection litera-
ture. Meanwhile, for ID node classification tasks, we use the
accuracy (Acc) metric. During the training process, we set
the maximum number of iterations to 2000, and we use early
stopping when AUROC+Acc doesn’t improve within 200 it-
erations. All experiments are done with PyTorch Geometric.

5.2 Performance Analysis
Analysis of Main Results
To answer question Q1, we present a comparison of different
OOD node detection methods in Table 2. Our main observa-
tions are as follows:

❶ EPGNN is more robust in identifying OOD nodes and
ID node classification. In terms of OOD detection, EPGNN

achieves an average improvement of 9.16% in AUROC and
10.89% in AUPR against the baseline methods. For ID node
classification, EPGNN surpasses the baseline methods by an
average of 3.41% in Acc. The reason is that the energy score
can effectively simulate the probability density distribution of
the input nodes. Moreover, EPGNN excels in capturing graph
structural information and the attributes of data with different
distributions through energy propagation module. Addition-
ally, EPGNN fosters synchronization between energy scores
and output entropy through joint alignment regularization.

❷ Integrating graph structure into node representations
enhances the distinction between ID and OOD nodes. Across
all datasets, GCN significantly outperforms MLP, which does
not consider graph topology. Since graph structural infor-
mation exposes the intrinsic geometric structure of the data
and the relationships between nodes, it is crucial for precisely
capturing the complex interdependencies among nodes.

❸ Energy-based methods are more accurate and robust
in distinguishing complex distribution data. Energy-based
methods EPGNN and GNNSafe++ exhibit significant advan-
tages over methods relying on softmax confidence. Due to the
energy function mapping the energy of unobserved nodes to
higher values, it aligns better with probability densities. This
mapping mechanism reduces the problem of overconfidence
and improves the accuracy of identifying OOD nodes.

❹ The energy propagation module is better at capturing
distinctive attributes of variously distributed data. EPGNN
outperforms GAT and GATv2. A key reason is that, unlike the
traditional attention mechanism, the energy propagation mod-
ule iteratively spreads the energy scores, which capture infor-
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Cora Citeseer Coauthor-CS

Method AUROC AUPR AURPC AUPR AUROC AUPR

GCN 80.44 66.61 80.57 82.44 89.38 95.39
GCN+Align 91.71 84.52 93.19 84.06 98.22 99.20
GCN+Align+Pro 93.35 87.14 84.31 85.05 98.48 99.29
GAT 83.01 71.26 81.88 83.49 82.47 93.29
GAT+Align 92.12 85.52 83.94 85.01 97.28 98.83
GAT+Align+Pro 93.44 87.50 85.01 85.50 97.52 98.94
SAGE 85.44 77.10 80.17 82.06 92.17 96.95
SAGE+Align 91.20 94.69 81.14 82.33 97.93 99.08
SAGE+Align+Pro 91.99 85.10 81.99 82.95 98.29 95.25

Table 3: AUROC(%) and AUPR(%) of EPGNN variants with differ-
ent backbones.

mation about nodes with different distributions, among nodes
with similar distributions. This makes aggregation more ef-
fective and significantly enhances OOD detection capability.

❺ The joint alignment regularization plays a crucial role
in EPGNN. EPGNN performs better than methods that solely
employ CE loss. Because the joint alignment regularization
coordinates the relationship between energy scores and out-
put entropy, it guides the model to focus on key information
that can distinguish ID and OOD samples. This process helps
the gradient descent procedure more accurately locate the pa-
rameter space that is close to the actual solution.

Ablation Studies
Our method comprises two key modules: structure-aware en-
ergy propagation and joint alignment regularization. To an-
swer research question Q2 and explore each module’s con-
tribution to EPGNN’s overall performance, we conduct a de-
tailed ablation study. Specifically, we evaluate the model’s
AUROC and AUPR by adding each module incrementally.
Results are shown in Figure 3. Then, to explore the effec-
tiveness of our plug-and-play modules across different back-
bones, we replace EPGNN’s graph representation learning
backbone with GCN, GAT, and GraphSAGE. The results are
shown in Table 3. We draw the following observations:

❶ Joint alignment regularization is instrumental in captur-
ing generalizable knowledge. Adding joint alignment regu-
larization to the detection method using only cross-entropy
loss increases average AUROC by 9.05% and AUPR by
10.94%, showing significant improvement in OOD detection.
The reason is that the alignment of energy scores with out-
put entropy fosters a deeper understanding of the differences
between samples from different distributions, effectively en-
hancing the model’s ability to identify OOD samples.

❷ Energy propagation module enhancing the OOD de-
tection capability. When the model is further added to the
structure-aware energy propagation module, there is an aver-
age improvement of 1.13% in AUROC and 1.45% in AUPR.
The energy propagation module facilitates information ex-
change among nodes of the same distribution while block-
ing communication between nodes of different distributions,
thereby widening the energy gap between OOD and ID nodes
and improving the ability of OOD detection.

Hyperparameter Studies
To answer research question Q3, we investigate the impact of
hyperparameters on experimental results. The hyperparame-

Figure 4: Hyperparameter studies.

ter β is the balance parameter for the joint alignment regular-
ization, controlling the weight distribution between the cross-
entropy loss and the joint alignment regularization term. The
hyperparameter T is the temperature parameter used to con-
trol the smoothness of energy scores. We use AUROC as
the metric and conduct experiments with different hyperpa-
rameter values to determine their impact on EPGNN’s per-
formance. The performance results are shown in Figure 4.
We draw the following observations:

❶ For Cora, Citeseer, and Coauthor-CS datasets, EPGNN
achieves optimal performance with β values of 1.25, 0.4, and
1.0, respectively. We found that the influence of β show an
inverted U-shaped pattern. As β increases, the OOD detec-
tion performance initially improves, reaches a peak, and then
starts to decline. This is because the balance between the
cross-entropy loss and the joint alignment regularization term
is achieved effectively at the optimal β, but when β deviates,
the balance is disrupted, resulting in suboptimal performance.

❷ For Cora, Citeseer, and Coauthor-CS datasets, EPGNN
achieves optimal performance with T values of 1.00, 1.75,
and 2.00, respectively. The hyperparameter T also has an
optimal value that makes the model perform optimally. When
T is at the optimal value, the sharpness of the energy scores is
most appropriate. A low T makes scores too sharp, causing
the model to overfit the training data and poor performance
on unseen data. Conversely, a high T makes energy scores
overly smooth, leading to a lack of discrimination between ID
and OOD samples, thus affecting the OOD detection ability.

6 Conclusion
We introduce EPGNN, a novel framework for OOD detec-
tion in graph. Specifically, we design an energy-based OOD
evaluator to distinguish ID and OOD nodes. Furthermore,
we introduce a structure-aware energy propagation module to
achieve effective energy aggregation. Additionally, we pro-
pose a joint alignment regularization to guide the learning
process of EPGNN. Extensive experiments demonstrate that
EPGNN outperforms existing methods in OOD node detec-
tion and ID node classification.
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